
E-ISSN: 2149-7222 (Online)

Journal **Cellular Neuroscience** and Oxidative Stress

http://dergipark.gov.tr/jcnos

Former name; Cell Membranes and Free Radical Research

Brain Research School

Editor in Chief Prof.Dr. Mustafa NAZIROĞLU

Volume 10, Number 3, 2018

Journal of Cellular Neuroscience and Oxidative Stress

http://dergipark.gov.tr/jcnos

An Official Journal of the Cellular Neuroscience and Oxidative Stress Society

http://hsord.org.tr/en/

Formerly known as:

Cell Membranes and Free Radical Research (2008 - 2014)

Volume 10, Number 3, 2018

25 June – 1 July 2018 Isparta /TURKEY 2018.brs.org.tr

Volume 10, Number 3, 2018 E-ISSN Number: 2149-7222 (Online) Indexing: Google Scholar, Index Copernicus, Chemical Abstracts, Scopus (Elsevier), EBSCOhost Research DatabaseCitation Index Database,

EDITOR IN CHIEF

Prof. Dr. Mustafa Nazıroğlu, Department of Biophysics and Neurosciences, Medical Faculty, Suleyman Demirel University, Isparta, Turkey. Phone: +90 246 211 36 41, Fax:+90 246 237 11 65 E-mail: mustafanaziroglu@sdu.edu.tr

Managing Editors

Kenan Yıldızhan and Yener Yazğan Department of Biophysics, Medical Faculty, Suleyman Demirel University, Isparta, Turkey. E-mail: biophysics@sdu.edu.tr

Editorial Board

Neuronal Membranes, Calcium Signaling and TRP Channels

Alexei Tepikin, University of Liverpool, UK. Jose A. Pariente, University of Extremadura, Badajoz, Spain. James W. Putney, Jr. NIEHS, NC, USA. Laszlo Pecze, University of Fribourg, Switzerland. Stephan M. Huber, Eberhard-Karls University, Tubingen, Germany.

Neuroscience and Cell Signaling

Denis Rousseau, Joseph Fourier, University, Grenoble, France. Makoto Tominaga, National Institute for Physiological Sciences (NIPS) Okazaki, Japan. Ömer Çelik, Süleyman Demirel University, Turkey. Ramazan Bal, Gaziantep University, Turkey. Saeed Semnanian, Tarbiat Modares University, Tehran, Iran. Yasuo Mori, Kyoto University, Kyoto, Japan.

Antioxidant and Neuronal Diseases

Suresh Yenugu, Osmania University, Hyderabad, India. Süleyman Kaplan, Ondokuz Mayıs Univesity, Samsun, Turkey. Özcan Erel, Yıldırım Beyazıt University, Ankara, Turkey. Xingen G. Lei, Cornell University, Ithaca, NY, USA. Valerian E. Kagan, University of Pittsburg, USA.

Antioxidant Nutrition, Melatonin and Neuroscience

Ana B. Rodriguez Moratinos, University of Extremadura, Badajoz, Spain. Cem Ekmekcioglu, University of Vienna, Austria. Peter J. Butterworth, King's College London, UK. Sergio Paredes Department of Physiology, Madrid Complutense University, Spain.

AIM AND SCOPES

Journal of Cellular Neuroscience and Oxidative Stress is an online journal that publishes original research articles, reviews and short reviews on the molecular basis of biophysical, physiological and pharmacological processes that regulate cellular function, and the control or alteration of these processes by the action of receptors, neurotransmitters, second messengers, cation, anions, drugs or disease.

Areas of particular interest are four topics. They are;

A- Ion Channels (Na⁺- K⁺ Channels, Cl⁻ channels, Ca²⁺ channels, ADP-Ribose and metabolism of NAD⁺, Patch-Clamp applications)

B- Oxidative Stress (Antioxidant vitamins, antioxidant enzymes, metabolism of nitric oxide, oxidative stress, biophysics, biochemistry and physiology of free oxygen radicals)

C- Interaction Between Oxidative Stress and Ion Channels in Neuroscience

(Effects of the oxidative stress on the activation of the voltage sensitive cation channels, effect of ADP-Ribose and NAD^+ on activation of the cation channels which are sensitive to voltage, effect of the oxidative stress on activation of the TRP channels in neurodegenerative diseases such Parkinson's and Alzheimer's diseases)

D- Gene and Oxidative Stress

(Gene abnormalities. Interaction between gene and free radicals. Gene anomalies and iron. Role of radiation and cancer on gene polymorphism)

READERSHIP

Biophysics	Biochemistry
Biology	Biomedical Engineering
Pharmacology	PhysiologyGenetics
Cardiology	Neurology
Oncology	Psychiatry
Neuroscience	Neuropharmacology

Keywords

Ion channels, cell biochemistry, biophysics, calcium signaling, cellular function, cellular physiology, metabolism, apoptosis, lipid peroxidation, nitric oxide, ageing, antioxidants, neuropathy, traumatic brain injury, pain, spinal cord injury, Alzheimer's Disease, Parkinson's Disease.

The congress organization committee wishes thanks to the sponsors below

Abstract Book

of 3rd International Brain Research School 25 June – 1 July 2018 Isparta, Turkey

with collaboration of Cellular Neuroscience and Oxidative Stress Society & Neuroscience Research Center, Süleyman Demirel University

[Organization Committee]

Organization Chairman Prof. Dr. Mustafa NAZIROĞLU

Department of Biophysics, School of Medicine Suleyman Demirel University, Isparta, Turkey

Organization Vice Chairman Assoc. Prof. Dr. Ömer ÇELİK

Department of Biophysics, School of Medicine Suleyman Demirel University, Isparta, Turkey

Organization Secretariat Ahmi ÖZ & Bilal ÇİĞ & Ramazan ÇINAR

Department of Biophysics, School of Medicine Suleyman Demirel University, Isparta, Turkey

Accountant Kenan YILDIZHAN & Yener YAZĞAN (Graphic Designer & Webmaster) Department of Biophysics, School of Medicine Suleyman Demirel University, Isparta, Turkey

[Scientific Committee]

Prof. Dr. Ana B. Rodríguez

Department of Physiology, Neuroimmunophysiology and Chrononutrition Research Group, Faculty of Science, University of Extremadura, Badajoz, Spain

Prof. Dr. Peter McNaughton

Wolfson Centre for Age-Related Diseases, King's College London, London, UK

Prof. Dr. İlker Y. Eyüpoğlu

Department of Neurosurgery, University of Erlangen-Nuremberg Erlangen, Germany

Prof. Dr. Hülya Bayır

Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh Pittsburg, USA

Prof. Dr. Mustafa Nazıroğlu

Department of Biophysics, School of Medicine Suleyman Demirel University, Isparta, Turkey

Prof. Dr. Peter W. Reeh

Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany

Prof. Dr. Makoto Tominaga Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), Okazaki, Japan

Prof. Dr. Ismail Laher Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada

Prof. Dr. Yasuo Mori

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Kyoto, Japan

[Scientific Committee] _____

Prof. Dr. Jose A. Pariente

Department of Physiology, Neuroimmunophysiology and Chrononutrition Research Group, Faculty of Science, University of Extremadura, Badajoz, Spain

> **Prof. Dr. Anirban BASU** National Brain Research Centre Haryana, India

> > **Prof. Dr. Paolo Bernardi** Padova University Padova, Italy

Assist. Prof. Dr. M. Cemal Kahya İzmir Katip Çelebi University İzmir, Turkey

Assist Prof. Dr. Sergio D. Paredes Madrid Complutense University

Madrid, Spain

Assist Prof. Dr. Denis Rousseau

Applied and Fundamental Bioenergetic laboratory Joseph Fourier University Grenoble Cedex, France

Assist. Prof. Dr. Isabella Hininger-Favier

Joseph Fourier University Grenoble, France

Dr. Simon Hebeisen

B'SYS Analytics GmbH. Biningen, Switzerland

Dr. Sandra Derouiche

National Inst for Physiol. Sci. Okazaki, Japan

Dr. Nady Braidy

Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia

_____ [CONTENTS] ______

Speakers
beak No. 1. Pathophysiology of cation channels in pain: Focus on TRP Channels.
Mustafa NAZIROĞLU776
Deak No. 2. Calcium imaging techniques in cell lines.
Laszlo PECZE777
Deak No. 3. Western-blot, PCR and immunofluorescence analysis in mitochondrial biogenesis studies.
Denis ROUSSEAU778
Deak No. 4. Intravenous NAD ⁺ effectively increased the NAD metabolome, reduced oxidative stress and
inflammation, and increased expression of longevity genes safely in elderly humans.
Nady BRAIDY, James CLEMENT, John STURGES, Yue LIU, Anne POLJAK,
Perminder SACHDEV779
Deak No. 5. Voltage gated sodium channels and epilepsy.
Simon HEBEISEN

Oral Presentations

Oral Presentation 1.	Traumatic brain injury models in rats. Kemal ERTILAV 781
Oral Presentation 2.	Neurodegenerative disease and microbiota. Mustafa GÜZEL, Doğan AKDOĞAN, Orhan AKPINAR
Oral Presentation 3.	The gut-brain axis: interactions between microbiota and nervous systems. Orhan AKPINAR
Oral Presentation 4.	Roles of dexmedetomidine and calcium signaling in cerebral ischemia: Focus TRP channels Haci Ömer OSMANLIOĞLU
Oral Presentation 5.	Depression models in experimental animals. <i>Arif DEMİRDAŞ</i>
Oral Presentation 6.	TRPV1 channel is a potential drug discovery channel for epilepsy. Ahmet ÖZŞİMŞEK 786
Oral Presentation 7.	Cerebral ischemia models in rats. Zeki Serdar ATAİZİ
Oral Presentation 8.	Involvement of TRP channels on fibromyalgia-induced pain. Atalay DOĞRU
Oral Presentation 9.	Involvement of Thermo TRP channels on chemothrepeutic agents-induced peripheral pain. Mustafa Kemal YILDIRIM
Oral Presentation 10	. Role of desflurane on oxidative stress in neuroscience. <i>Mustafa KÜTÜK, Gökçen GÖKÇE</i> 790
Oral Presentation 11	Effects of cell phone (900 and 1800 MHz) and Wi-Fi (2450 MHz) frequencies on oxidative stress in laryngeal mucosa. Sinem GÖKÇE KÜTÜK
Oral Presentation 12	. Role of melatonin on oxidative stress in traumatic brain injury. <i>Yener AKYUVA</i>

Poster Presentations

Poster No. 1.	Dysbiosis of gut microbiota and Alzheimer's Disease.
	Orhan AKPINAR
Poster No. 2.	Human gut microbiota and Parkinson Disease.
	Mustafa GÜZEL, Orhan AKPINAR
Poster No. 3.	Experimental Parkinson's disease models.
	Eda Duygu IPEK, Hulki BASALOGLU
Poster No. 4.	Effects of alpha lipoic acid on TRPV1 cation channel in dorsal root ganglion.
	of diabetes-induced rats
	Betül YAZĞAN, Yener YAZĞAN, Mustafa NAZIROĞLU

Speak No. 4

Intravenous NAD⁺ effectively increased the NAD metabolome, reduced oxidative stress and inflammation, and increased expression of longevity genes safely in elderly humans

<u>Nady BRAIDY</u>¹, James CLEMENT², John STURGES³, Yue LIU¹, Anne POLJAK^{1,4,5}, Perminder SACHDEV^{1,6}

 ¹Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
 ²BetterHumans Inc, USA
 ³John A Sturges MD, 2170 W Ironwood Center Dr # A, Coeur d'Alene, ID 83814, USA
 ⁴Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
 ⁵School of Medical Sciences, University of New South Wales, Sydney, Australia
 ⁶Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia

Nicotinamide adenine dinucleotide (NAD⁺) serves important roles in hydrogen transfer and as the cosubstrate for poly(ADP-ribose) polymerase (PARPs), the sirtuin (SIRT1-7) family of enzymes, and CD38 glycohydrolases. Recently, intravenous (IV) NAD⁺ therapy has been used as a holistic approach to treat withdrawal from addiction, overcome anxiety and depression, and improve overall quality of life with minimal symptoms between 3-7 days of treatment.

We evaluated repeat dose IV NAD⁺ (1000 mg) for 6 days in a population of 8 healthy adults between the ages of 70 and 80 years.

Our data is the first to show that IV NAD⁺ increases the blood NAD⁺ metabolome in elderly humans. We found increased concentrations of glutathione peroxidase -3 and paraoxonase-1, and decreased concentrations of 8-iso-prostaglandin F2 α , advanced oxidative protein products, protein carbonyl, C-reactive protein and interleukin 6. We report significant increases in mRNA expression and activity of SIRT1, and Forkhead box O1, and reduced acetylated p53 in peripheral blood mononuclear cells isolated from these subjects. No major adverse effects were reported in this study.

The study shows that repeat IV dose of NAD^+ is a safe and efficient way to slow down age-related decline in NAD^+ .

Keywords; Nicotinamide adenine dinucleotide; Oxidative stress: Inflammation: Longevity genes; Elderly humans.

References

- Braidy N, Berg J, Clement J, Khorshidi F, Poljak A, Jayasena T, Grant R, Sachdev P. 2018. NAD⁺ Precursors as Therapeutic Agents for Age-related Degenerative Diseases. Antioxidant and Redox Signaling. http://doi.org/10.1089/ars.2017.7269
- Braidy N, Grant R, Sachdev P. 2017. Nicotinamide adenine dinucleotide and its related precursors for the treatment of Alzheimer's disease. Current Opinion in Psychiatry. http://doi.org/10.1097/YCO.00000000000394.