
 

191 
 

    eefdergi 
     Cilt 21 Sayı 2                                                                                     Erzincan Üniversitesi Eğitim Fakültesi Dergisi 

        e-ISSN 2148-7510 

        http://eefdergi.erzincan.edu.tr | eefdergi@erzincan.edu.tr 

Doi numarası: 10.17556/erziefd.467668  

 

Classroom Reflections of Model-Based Instruction: Ace Teaching Cycle* 

Elif KILIÇOĞLU**, Abdullah KAPLAN*** 

 

Received date: 05.10.2018 Accepted date: 15.02.2019 

 

Abstract 

Aim of this study was to reveal reflections of the instruction process based on ACE (Activity, Class 
Discussion, Exercises) teaching cycle. The study was carried out with 7th graders in a public middle 
school on equations in 2014-2015 academic year. This quasi-experimental study lasted for 20 
hours in total. The whole implementation process was videotaped, and the records were 
transcribed by the researcher and was written as a document. The obtained documents were 
analyzed through content analysis. Consequently, it was revealed from the classroom reflections 
that the students could express their ideas easily, they could question their incorrect or 
incomplete ideas without hesitation, they learnt how to act with reference to these incomplete 
ideas, they perceived that incorrect ideas are as important as the correct ones, different 
approaches were precious and different approaches could emerge for all circumstances.     

Keywords: Mathematical abstraction, APOS Theory, ACE Teaching Cycle, Mathematics teaching 
with model, Classroom reflections.
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Öz 

Bu çalışmanın amacı matematiksel soyutlama temelli geliştirilen ACE (Activity, Class Discussion, 
Exercises) öğretim modeline göre uygulanan öğretim sürecinin yansımalarını sunmaktır. 
Uygulama 2014-2015 eğitim-öğretim yılında Erzurum iline bağlı bir devlet ortaokulunun 7. 
sınıfında denklem alt öğrenme alanında gerçekleştirilmiştir. Yarı deneysel yönteme göre 
şekillendirilen bu çalışma, toplamda 20 saat süren bir uygulama sürecini kapsamaktadır. 
Uygulamanın tamamı video ile kayıt altına alınmış, daha sonra bu kayıtlar araştırmacı tarafından 
transkript edilerek yazılı dokumanlar haline getirilmiştir.  Elde edilen dokumanlar içerik analizine 
tabi tutulmuştur. Araştırma sonunda sınıf içi yansımalardan; öğrencilerin düşüncelerini rahatlıkla 
ifade edebildikleri, yanlış düşüncelerinin ya da eksik düşüncelerinin çekinilmeden 
sorgulayabildikleri, eksik düşüncelerden hareket etmeyi öğrendikleri, yanlış düşüncelerin en az 
doğru düşünceler kadar değerli olduğunu algıladıkları, farklı yaklaşımların değerli olduğu ve tüm 
durumlar için farklı yaklaşımların olabileceği gibi bazı çıkarımlar elde edilmiştir. 

Anahtar Kelimeler: Matematiksel soyutlama, APOS Teorisi, ACE Öğretim Döngüsü, Modelle 
matematik öğretimi, Sınıf içi yansımalar. 
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1. Introduction 

One of the most crucial characteristics of human beings is the ability to think. Thinking is 
described as a competence to make comparisons, to separate, to join, to comprehend connections 
and formations (TDK, 2018). This competence is a complex process that is necessary for people 
to adapt their surroundings. Especially, mathematical thinking becomes more complicated since 
both mathematics and thinking are quite rich. Mathematical thinking is a rich structure containing 
concepts such as guessing, induction, deduction, description, generalization, abstraction, 
exemplification and proving (Liu, 2003). Abstraction among these concepts is very important part 
of mathematical thinking process and it plays a key role in development of this process.  

It can be told that there are a lot of descriptions about the concept of abstraction (Hampton, 2003; 
Hazzan and Zazkis, 2005; Noss and Hoyles, 1996). In this study, Dienes’ description (1963) was 
taken into consideration. According to him, abstraction is the core of a thing which is common in 
different situations. When this and other descriptions are studied, it can be claimed that 
abstraction is a strategy of simplification.  

Abstraction is a process that deals with cognitive activities of individuals like mathematics. This 
makes abstraction one of the important subjects of mathematics. There are several studies 
revealing the importance of abstraction in mathematics.  While some researchers claim that 
abstraction is a basic process of math (Ferrari, 2003; Meel 2003; Yılmaz, 2011), some others think 
that it can lessen the complexity of mathematics (Mason and Pimm, 1984; McQuain and Keller, 
2001; Mitchelmore and White, 2004a). Therefore, it is important to present the reflections of 
abstraction-based instruction.  

There are perspectives that shape abstraction-based teaching and models developed from these 
perspectives. While APOS theory (Action-Process-Object-Shema) is a theory that deals with 
abstraction mechanism from a cognitive perspective, ACE teaching model is a pedagogical 
approach based on the theory. According to this model, lessons taught with traditional teaching 
model are re-arranged by getting divided into three parts which are purposeful (activities-A) 
prepared for the related subjects, (class discussion-C) during implementation of the activities, 
and extracurricular activities; that is homework (exercises-E), giving opportunity to the students 
to perform what they have learnt. It is significant what would instruction with a model bring both 
for the teachers and the students since a teaching model. Furthermore, the findings of this study 
will contribute about validity of the model. Therefore, mainly the following question was tried to 
be answered in the study:  

What are the classroom reflections of instruction based on ACE teaching cycle?  

1.1. APOS Theory and ACE Teaching Cycle  

A model or a theory in mathematics can support prediction, have power of explanation, help 
individuals organize their thoughts about complex and interrelated phenomena, serve as a tool 
for data analysis and provide a language for communication of ideas about learning that go beyond 
superficial descriptions (Dubinsky & McDonald, 2001). Therefore, it can be claimed that using a 
model in teaching will support constructivist approach because of these contributions.  

Using a model in teaching is available for various reasons such as to increase effectiveness of 
teaching, to empower created meaning, to help sustainability, to support conceptual learning or 
to reinforce teaching provided. The models used may vary according to theoretical framework on 
which they are based. ACE teaching model used in this study is a pedagogical approach based on 
APOS theory (Weller, Arnon and Dubinsky, 2009). APOS theory is a theoretical attempt created 
for explaining the mechanism of reflective abstraction which is used for describing development 
of logical thinking in children suggested by Piaget (Dubinsky, 1991).  

Dubinsky (1991) stated that this theory arose from the hypothesis that “mathematical knowledge 
consists in an individual’s tendency to deal, in a social context, with perceived mathematical problem 
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situations by constructing mental actions, processes, and objects and organizing them in schemas to 
make sense of the situations and solve the problems”. This suggested theory has been called as APOS 
(Action-Process-Object-Schema) theory by referring to mental actions stated in the hypothesis. 
Several studies have been carried out on this theory. While some researchers used this theory as 
a research method (Cottrill, 1999; Montiel, Wilhelmi, Vidakovic and Elstak, 2009a; Kashefi, Ismail 
and Mohammed Yusof, 2010), some others tried to use it as an instructional model (Asiala, Cottrill, 
Dubinsky and Schwingendorf, 1997; Asiala, Dubinsky, Mathews, Morics and Oktaç, 1997; Çetin, 
2009; Kathleen, 1999). On any ground, all of these studies revealed positive effects of the theory.  

Asiala et al. (1997) suggested by regarding APOS theory that mathematical abstraction consisted 
of three components which are theoretical analysis, design and implement instruction and 
observations and assessments (Figure 1). ACE instructional model was suggested with reference 
to this structure. Components of the model: 

 

A (Activities): These are activities developed for improving abstraction skills of the students. As 
the goal is to improve cognitive thinking ways of the students, in activities, expressions requiring 
explanation and interpretation are preferred rather than expressions such as “What?” or “Find the 
solution.”    

C (Class Discussion): It is providing students a setting where they can reflect their ideas and giving 
them opportunities to be active. What is important here is to carry out class discussion in an 
interactive way.  

E (Exercises): These are exercises done outside the class with the aim of helping students use the 
mathematical concepts they learnt at school and of empowering the concepts learnt. 

There are studies showing effects of ACE instructional model in the literature. These studies 
revealed that ACE instructional model is a model that provides information to be learnt by 
abstracting it, supports meaningful learning by affecting students’ perceptional structures, 
provides permanent learning and especially gives opportunity for students acquire mathematical 
skills (Asiala, Cottrill, Dubinsky and Schwingendorf, 1997; Asiala, Dubinsky, Mathews, Morics and 
Oktaç, 1997; Çetin; 2009; Maharaj, 2013; Tzirias, 2011; Weller et al., 2009). Additionally, 
effectiveness of ACE teaching cycle in helping students while learning mathematics and creating 
cognitive structures was highlighted in most of those studies. 

2. Methodology 

 

2.1. Model of the Research 

This research is a quasi-experimental study intended to reveal classroom reflections of instruction 

implemented on a single group. It was formed according to experimental design without control 
group since there was only experimental group and no group for comparison. Design without 

control group is a plain and clear experimental research design in which empirical process is 

Figure 1. Research design based on APOS theory (Asiala et al., 1997) 
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carried out on a single group and which gives opportunity to observe changes formed by 

manipulation created by the researcher (Sönmez & Alacapınar, pp. 56-57, 2014).  

2.2. Sample 

The experimental group consisted of 31 students, 16 of whom were male and 15 of whom were 

female. As aim of the research was to reveal how an implementation would shape the classroom 

atmosphere, the students’ skills of expressing their ideas gained importance. Hence, it was 

necessary for group members to express themselves clearly. Moreover, it was obligatory rather 

than optional for the students to be objective while expressing their ideas. In this respect, the 

researcher’s being applying teacher simultaneously contributed considerably. Furthermore, it 

was intended to put forward the position of the selected group compared to the other groups 

with some numeric data before intervention. With this aim, the students’ scores of the readiness 

test in which questions that could be prerequisite for the subject of implementation were 

included and their achievement scores in mathematics in the previous academic semester were 

taken into consideration. As a result of the data obtained, it was understood that choosing this 

group was an accurate decision. 

2.3. Implementation and Data Collection Process  

The data of the study were collected from a camera positioned by sighting the whole class. 

Videotape is a method that provides the environment analyzed to be observed again and again 

(Goodnough, 2011). Additionally, the researcher finds opportunity to analyze both his/her and 

the participants’ behaviors during the research, and to see special cases that he/she missed.  The 

research lasted for 20 hours of class time. The students’ desks were in U-shape. Thus, the students 

could express their ideas interactively.   The researcher functioned as a coordinator during the 

process and contributed the process by working as a manager about disagreements. No other 

intervention was applied. Mainly a process in which the students were active was dominant. The 

students discussed in groups or in whole class related to the activities they did during the class. 

Aim of the discussion was to create mental structures of the students (action, process, object and 

schema). After the discussion about the activities, the students were given homework to reinforce 

the subject they have learnt. The process continued as a cycle in this way. This cycle is referred as 

ACE teaching cycle.  

Some books taught at home and abroad were used for preparing the activities applied in the study 

(Abels, de Jong, Dekker, Meyer, Shew, Burrill and Simon, 2006; Kindt, Roodhardt, Wijers, Dekker, 

Spence, Simon, Pligge and Burrill, 2006; Kindt, Wijers, Spence, Brinker, Pligge, Burrill and Burrill, 

2006; Kindt, Dekker and Burrill, 2006; Wijers, Roodhardt, van Reeuwijk, Dekker, Burrill, Cole and 

Pligge, 2006). Aim of the activities was to help the students do reflective abstractions about the 

related subject. In addition to this, it was paid attention to encourage the students to think during 

the activities.  Therefore, completely or partly wrong cases were given in some of the activities to 

steer the students to question their learning and to improve their causal thinking.  Nineteen 

activities in total were used during the study. 

2.4. Data Analysis 

The video records of 20 class hours of the research were listened by the researcher carefully and 

transcribed. Some of the records chosen randomly were also watched and transcribed by another 

mathematics teacher and a mathematics educator. Content analysis was made for the records 

transcribed into written texts. Aim of content analysis is to reach individuals who can explain the 

data collected (Yıldırım & Şimşek, 2011, p. 227). For reliability of the analysis the colleague 
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approval and expert opinion were applied. Compatibility between the analyzers was found 86%. 

Consensus was built on the topics that were unaccountable.  

2.5. Validity and Reliability of the Research  

It was important to videotape all phases of the process since aim of the research was to reflect the 

classroom atmosphere. Existence of a material may distract students’ attention and may cause 

them to display extraordinary behaviors. Particularly, individuals who know that they are 

videotaped may perform unusual behaviors. Videotaping the process with a camera provide a 

basis for such problems. These problems may be reduced if the students get accustomed to the 

camera.  Therefore, using a camera before starting the real implementation can be useful. In this 

study, the camera was installed in the classroom 2 weeks earlier before the implementation, and 

the pre-process was shot. Thus, negative effects to be felt by the students caused by the camera 

were taken under control.  

Reliability of the activities prepared was important for the study, too. After the learning outcomes 

were determined, a range of activities were prepared by making use of domestic and international 

resources.  These activities were analyzed by the experts, and the ones to be used in the study 

were decided meticulously. The experts and experienced mathematics teachers were asked for 

checking suitability and sufficiency of these activities. Moreover, the pilot scheme gave the 

researcher feedback about structural suitability of the activities.  

The records were watched and transcribed by another researcher for reliability of the data 

obtained. Transcriptions made by researchers in different places were compared to each other. 

Additionally, the researcher analyzed the same records two weeks later for confirmation. After 

confirmation, the same process was followed for content analysis. 

3. Findings 

In this section, 4 samples which were considered to represent reflections of the research were 
presented. The samples that show how the students coped with the activities are as follows:  

Sample Implementation-1 

In this implementation, the students were given a figure pattern some boxes of which were partly 
shaded, and some questions regarding this figure were asked: 1- finding the general rule giving 
number of shaded boxes, 2- finding the general rule giving number of unshaded boxes, 3- finding 
the general rule giving number of all boxes, 4- explaining the relationship (if available) between 
these general rules (Appendix 1). The conversation among the students about this activity is as 
follows:  
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Figure 2. Sample Implementation-1 case representation 

Aleyna: 1 is shaded in the first, 4, 9, 16 are shaded in the second. The first increased 3, the second 
5 and the third 7; that is, increased by odd numbers.  

Taha: I found the same result, too. It increased two by two. 

Aziz: Teacher, let me say the rule 2𝑛. 

Samet: I think Aziz’s explanation is wrong because  2𝑛 isn’t appropriate even for the first row. I 
think general rule for this pattern is 𝑛² because these are square of step numbers.  

Rüveyda: Teacher, there are squares in each step. Number of the shaded squares is the same as 
area of this square.  

Rabia: That is internal square, not outside.  

Rüveyda: Therefore, number of shaded square at the row of 𝑛. becomes area of the square with 
n-sided square.  

𝐀𝐳𝐢𝐳: It is 𝑛. 𝑛, teacher.   

Teacher: Okay. What can we say for the unshaded boxes?  

Elif: The rule here should be 4𝑛 + 4. Firstly, I wrote the number of boxes at each row; 8, 12, 16, 
20. That is to say, it should be 4𝑛 as a rule since it increased four by four. I multiplied 4 by 1 to find 
the first one, that is 4. To find 8, I should add 4, so it should be 4𝑛 + 4 .  

𝐃𝐢𝐥𝐚𝐫𝐚: But we should check the others. The first step is not enough; we already know that it is 
applicable for other steps.  

Teacher: Let’s go on.  

Sefa: Numbers of boxes are 9, 16, 25, 36, respectively. The rule enabling this is 7𝑛 + 2. 

Samet: Impossible! This formula is not valid for the third row.  

Alparslan: Can it be 4𝑛 + 4? 

İrem: It is not valid even for the first row. This is not possible.  

Yiğit: I think (𝑛 + 2). (𝑛 + 2) (meanwhile, he writes this statement on the board). 

Sefa: Hmm. Then it is 𝑛² + 4. 

Fatih: No it is not possible, either.  

Tuana: This is a perfect square because it multiplied two same statements.  

Yiğit: Yes, we can write as (n+2)². Because, if we do this statement for each row, we can find the 
number of all boxes.  

Taha: That is the number of both shaded and unshaded boxes.  

Teacher: What can you tell about the statements you found respectively?  
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Yasin: There is 𝑛 in all statements, and operations like addition and multiplication. 

Burcu: Sum of these is, we wrote (𝑛 + 2). (𝑛 + 2) finally, and we can find something if we do this 
(she wants to write what she thinks on the board. She adds 𝑛. 𝑛 to (𝑛 + 2). (𝑛 + 2), and tries to 
reach statement of 4𝑛 + 4. While doing this, she explains that ′𝑛. 𝑛 = 2𝑛, 2.2 = 4, 𝑛. 𝑛 = 2𝑛 in the 
beginning and the sum is 4𝑛 + 4).  

Yiğit: I thought in the same way, but +4 is not convenient.  

Yasin: I think so.  

Ömer: I think it is not problematic.  

İrem: I think so. Shouldn’t we already add 𝑛. 𝑛 to 4𝑛 + 4?  It should be 𝑛. 𝑛 + 4𝑛 + 4 = 𝑛² + 4𝑛 +
4, but why did I do like this? 

Yiğit: There is (𝑛 + 2)² here. Teacher, sum of the shaded and unshaded boxes just give the total. 
It means there are two formulas in this statement. There is already 𝑛² here. I found 4 in the second. 
There is 2𝑛  here, but we need one more 2𝑛. I also found it, one minute. (𝑛 + 2). (𝑛 + 2) I divided 
this (he is doing operations). Teacher, here are the first two formulas.  

Ömer and Ayşegül: We didn’t understand what Yiğit did.  

Sefa: I got it, and want to explain. When the second statement analyzed, the first two formulas are 
already in it. Because this statement gives us all boxes, and we needed these two rules.  

Fatih: I want to state my opinion, too. If 𝑛² is substracted from (𝑛 + 2). (𝑛 + 2), we can find 4𝑛 +
4. 

All the results obtained during the activity were elaborated with necessary explanations until all 
students understood them. In the previous activities, the students were helped to realize that sum 
or difference of two patterns is still a pattern. In this activity, they were also encouraged to 
visualize the situation in their minds. Therefore, time was allocated also for these explanations 
following the activity. It was highlighted that the students were required to think each activity 
independent from the previous ones and to structure them by associating them with each other.    

As it can be seen in the conversation above, the students questioned how development of a perfect 
square statement is with reference to pattern rule. Although they used some incorrect statements 
in the beginning, they learnt the correct ones over time. The important issue here is that they tried 
to work in cooperation. In addition to this, participation of the class in the activities was quite 
high. An activity starting with confusion may make more participation essential.  

Sample Implementation-2  

In this section, an activity related to the learning outcome “…is able to solve first degree equations 
with one variable.” With this aim, the students were given two different patterns, and they were 
asked to question if the correlation (ascending, descending) of each term of these patterns at the 
same row would continue in the following steps or not. Furthermore, it was aimed to reveal if this 
circumstance would be significant (Appendix 2). The class discussion related to one part of this 
activity is as follows: 



 
 

 Elif KILIÇOĞLU & Abdullah KAPLAN 

199 
 

  

  

Figure 3. Sample Implementation-2 case representation 

Yasin: Each of them proceeds according to a pattern, so the result cannot change. Hence, R’s values 
are always greater than B’s values. 

Aziz: I think it’s not true because I checked the difference between each term. The difference is 25 
between the first terms, 24 between the second terms and 23 between the third terms. Therefore, 
it won’t continue like this. It proceeds descendingly. I think it becomes lesser when it proceeds 
too much.  

Teacher: What do you mean by “proceeds too much”?  

Aziz: In my opinion, it will proceed to 1, 2, and then the second pattern will be greater.  

Tuana: The first pattern increases by five and the second by six. It will go on like this and won’t 
change. R would be greater, and B would be less. 

Teacher: What can you tell about general terms of the patterns?  

Alparslan: The first should be 5𝑛 and the second should be 6𝑛. 

Yusuf: We should add 29 to the statement of 5𝑛 in the first pattern.  

Ayşegül: 3 should be added for the second statement; that is, 6𝑛 + 3 (The students make the 
necessary mathematical operations while finding the general rule).  

Beyza: Terms of the pattern will proceed in the same way. Both R and B are increasing; however, 
as the rise in R is more than the rise in B, R will always be greater than B.  

Sema: The way of the pattern will be the same, and nothing will change. R will be greater than B.  
However, the difference will be zero as it will gradually diminish, and they will be equal at zero… 
I think it will change when the difference is balanced.  

İrem: I think you misunderstand the question. While one is ascending by 5, the other is ascending 
by 6. It will get ahead upon closing the gap.  

Elif: I also think that it will get ahead. For example, B will get ahead of R in the 27th term because 
when B becomes 164, R will be 163.  
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Teacher: Why in the 27th term?  

Elif: The difference is 1 in the 27th term. They become equal when it is set to zero, but I could not 
count in which term.  

Sefa: The terms get equal in the 26th term. 

Yiğit: I think first 11 terms of the patterns were given, and the difference between the last terms 
is 15. It means that the difference will be 0 after 15 steps. That is 26th term as Sefa said. Even their 
equality proves that it doesn’t proceed like that. We don’t have to check the next step because it 
was always greater, but became equal in the 26th term. 

Teacher: Alright. Are there any easier ways to do this?  

Yiğit: We can do by using the pattern rules... 

Dilara: Teacher, as the difference is 0 in the 26th term, the terms are equal here…  

Elif: I think we can say briefly that the first amount of decrease is 25, and the differences become 
equal in the next step; that is, 25+1=26th term.  

Teacher: Try to think regarding the pattern rules…  

As it can be seen in this activity, the students’ answers were not different from their previous 
statements in the process. They could not generalize the situation that they could express as a 
term like the 26th term’s equalization mathematically such as equalization of general terms. In 
other words, the students could not consider the state of terms’ being equal as equalization of two 
general terms. The teacher guided the students for helping them make generalizations like this. 
What is important here is that not only did the students express their opinions, but they also 
searched for a basis; that is, justified their statements. For instance, Yiğit stated that the fact that 
the differences between the terms were equal was an evidence that both of the two patterns could 
not proceed increasingly.   

Sample Implementation-3 

The students were given a number pattern within bounds to find its general term. This pattern 
was illustrated in a table, and the students were asked to interpret this table. In the activity in 
which various questions related to the scenario were addressed, the students were also 
encouraged to design graphics. They were helped to generalize correlations they obtained via 
number pattern algebraically; to visualize with graphics and to correlate them (Appendix 3).  The 
video part related to this activity is as follows: 
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Figure 4. Sample Implementation-3 case representation 

Ayşegül: The first box in the table gives first length of Hasan’s hair; that is to say, it was 2 cm when 
he went to the hairdresser’s.   

Teacher: Do you think how Ayşegül could find this?  

Taha: Teacher, time when month was 0 in the table gives hair length in the beginning. In the part 
of 1 month, length is 3,5 cm. This means elapsed time, but when it was 2 cm no time passed. Then 
this was the first hair length.  

Teacher: Alright! The hair length after 6 months is asked. 

Beyza: As it grows 1,5 cm monthly, it becomes 11 cm after 6 months.  

Teacher: Is it easy to count this?  

Rüveyda: Because the amount of growing is 1,5. It means that there is a pattern, and it can be 
found easily by adding.  

Yiğit: In other words, there is a rule.  

Buse: Since there is a table, it is easier.  

Samet: Is it easy because it is the 6th step?  

Teacher: Why do you think Samet thinks so?  

Nergis: Because 6 is a small number.  

Yusuf: It is also a step which is empty box in the table.  

Teacher: What if it was a big number?  

Fatih: Then it couldn’t be counted easily.  

Teacher: What can we do then? 

Yiğit: Let’s write the rule so that we can find it directly. However, the first step here is 0. 

Samet: Some patterns would start from zero. We can then change the general term.  

Yiğit: Then the general term should be 1,5. 𝑛 + 𝑛. 

Berat: It does not provide, at zero order is 0, but here is 2. 

İrem: Then it should be +2. 

Yiğit: Yes, I misunderstood it. This should be 2 not 𝑛 (he edits his statement). 

Dilara: Thus, we can find his hair length after 12 months easily. Let’s write 12 instead of 𝑛 in this 
formula. The answer is 20 cm. 

Teacher: Can you interpret this statement that you found?  

Sema: Amount of growing plus elapsed time is equal to hair length.  
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Dilara: Can I tell, too? 

Sema: One minute, I will revise. The beginning amount plus growing amount times difference 
between them equals hair length.  

Teacher: I don’t ask you to re-read the explanation here, but to interpret it by considering the 
question.  

Ayşegül: Here, initial and final states of hair are associated, but I can’t express exactly.  

Ömer: Hair length is one and a half times of elapsed time plus 2.  

Sefa: It is overall length of 2 cm hair which grows 1,5 cm each month.   

………………………………………………………………………………………………… 

Teacher: Alright. How can we state these values and hair length changing with elapsed time in a 
different way?  

Ömer: It is monthly in the table. Maybe we can edit it as every two months, so we get rid of the 
decimal number.  

Sema: We indicated in the table.  

Taha: We also found the equation showing the correlation between them.  

Yiğit: I combine the table and the formula. In other words, I point out each value in one step by 
inserting all values in the table into the equation.  

Ayşegül: Can we show in graphics?  

Teacher: Sure. Can everybody try to do?  

During the activity, while the students designed graphics, the teacher observed them by walking 
around the classroom.  Most of the mistakes were maken in designing graphics because of zero 
point. Afterwards, they completed graphic design altogether in a class discussion. Furthermore, 
they interpreted type of the graphic they designed (linear and ascending). Then they assessed the 
things done under the guidance of the teacher, and tried to explain the correlation among the 
table, the equation and the graphic.  

In this activity, it was understood that the students could not explain what the mathematical 
statement meant and so they preferred to read it like reading a Turkish text (Sema and Ömer). 
Buse and Samet were aware of the fact that some small things provide convenience for bigger 
things, and Yiğit had an idea about explanation of this situation. This activity is a good example for 
revealing that proceeding by cooperating provides more effective results.  

İrem: Teacher, this is really easy. 

Dilara: Yes. I thought it was difficult. 

Samet: I think we will start coordinate system following this subject.  

We understand from the lines right above that the students became aware of the subject studied 
and which subject was based on it (Samet). This is directly related to predictive skill.  

Sample Implementation-4 

In this application, students were given problem situations related to the path taken by two frogs. 
It was questioned whether students could show the same algebraic expressions in different ways. 
They were asked to advance according to the scenario of the problem and to move from each 
other's thoughts (Appendix 4). The class discussion related to one part of this activity is as follows: 

Yiğit: One jumps 5 times and the other 3 times. If distance is the same, it should be like this (he 
wants to draw a template about his statement). 
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Figure 5. Yiğit’s case representation 

Yusuf: But the distances covered by the frogs’ jumps are equal, and it can’t be like that.  

Sema: Teacher, I drew this. While one jumps 5 times, the other jumps three times, and they cover 
the same distance. However, distances they first cover are different, which is important. The 
difference is 2 jumps, and with these two jumps 8 dm is ahead of 18 dm. If we subtract 8 from 18, 
difference is 10 dm. If this difference is equal to two jumps, we divide this value by 2. That is to 
say, each jump is 5 dm. 

 

Figure 6. Sema’s case representation 

İrem: I think the first jumps 8 by 8, and the other jumps 18, don’t they?  

Sema: No. It just shows how far they are from the pathway at first. Number of each jump is not 
clear yet...  

Samet: How can they be equal if each jump is 5 dm? 

Sema: Initial distances are important.  

Yiğit: Now that each jump is 5 dm, how many times did they jump until arriving here that they are 
at the distance of 8 and 18 dm? Then it needs to be sum times?  

Sema: Maybe they jumped 2dm near the pathway, it doesn’t concern us. What is important here 
is it is given beginning from the pathway.  

Nergis: Maybe they didn’t come by jumping. The question was started there, so it is not important.  

Aleyna: Here we will find how long each jump is.  

Dilara: I want to say something about accuracy of Sema’s notes. I think both her drawings and 
values are correct. Because if we add 8 to 25, we find 33 dm which is total distance. On the other 
hand, 18 + 15 = 33 for Fred. Two values are the same, and it is stated in the question that they 
covered equal distance. Thus, the answer is true.  

Ömer: But we haven’t written it algebraically. This is the result and we verified it, but can we write 
it algebraically, too?  
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Nergis: We can write an equation… 𝑥. 5 = 25, here we can find 𝑥 is 5. But let’s write 𝑥. 5, I mean it 
should be 𝑥 here (she notes on the template). 

Yiğit: Shouldn’t we write an algebraic statement here? The first way should be 8 + 5𝑥, and the 
second should be 18 + 3𝑥. 

Beyza: An equal sign should be added since these two ways are equal. 

Nergis: Yeah. Then let me write (she writes 8 + 5𝑥 = 18 + 3𝑥 on the board). 

Fatih: We can create one more equation (he writes 8 + (5𝑥 − 3𝑥) = 18 on the board). 

Teacher: What can you tell about Nergis and Fatih’s statements? 

Fatih: Actually, both statements are the same. Nergis used equality of the ways, and I wrote so.  

Elif: Fatih, I think you made your operation by looking at Alice and Fred’s jumping difference. 
Infact, both cases are the same.   

Rabia: In my opinion, Fatih parenthesized the unknowns. There is 3𝑥 on the one side; it is moved 
to the other side as −3𝑥.    

Ayşegül: As the unknowns are on one side in Fatih’s statement and parenthetical is first to be 
done, we can find the value of 𝑥. We cannot find in Nergis’s statement since there is 𝑥 on both 
sides.  

Yiğit: Teacher, both equations are the same. Just Fatih wrote the next step; in other words, we can 
say that the second equation was simplified.  

Yasin: Fatih gathered unknowns together to one side, teacher. It looks more organized.  

Yiğit: Teacher, then let’s write: 18 − 8 = 5𝑥 − 3𝑥. 

It can be seen that participation in the activity above was high. Therefore, these students’ success 
states varied. It was observed that especially the students with low classroom performance and 
participation could state their opinions and criticize their friend’s interpretations. On the other 
hand, it was understood from the students’ responses that they frequently reasoned (such as Yiğit, 
Sema and Nergis). This is an indicator confirming that the activity setting motivated the students 
and helped them feel free. Additionally, in view of the classroom atmosphere observed by the 
teacher, it can be claimed that the activities prepared helped the students keep their attention on 
the related subjects. 

4. Discussion and Conclusion 

Aim of the research was to inform the readers about reflections of an implementation carried out 
based on ACE teaching cycle. With reference to the findings we obtained, it can be stated that 
revealing students’ ideas is the first step of meaningful learning. Hence, situations like learning by 
questioning, focusing on mislearning and trying to find the correct way were encountered in all 
implementation samples. These are the key concepts for describing meaningful learning.  

It was concluded from the study that all students, either active and successful or not, tried to be 
included in the process and placed more importance on each other’s’ opinions. It can be claimed 
that the activities leaded the students, who were generally reluctant to participate in classes, to 
state their own ideas. Moreover, the fact that the students were encouraged to control themselves 
kept their motivation strong during the implementation. Providing such classroom settings can 
enable quality learning. This is an important issue which was also revealed some other previous 
studies (Akkaya, 2010; Sezgin-Memnun, 2011). 

Another matter attracting attention in teaching with ACE teaching cycle was that interaction 
among students is a crucial element of learning process. It is believed that group work, peer 
discussion on a subject and acting on each other’s opinions contribute to students’ own 
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development. This belief was observed in the first and last of the video records obtained during 
the process. In the beginning, the students behaved mostly independently, and so comprehension 
was more difficult. However, in the following implementations they improved their opinions by 
benefitting from each other’s ideas and helped each other. Furthermore, the students realized in 
time that stating their opinions easily was an ordinary behavior, and they tried to understand that 
showing evidence and reason was important. For instance, Yiğit’s explanation ‘…even its being 
equal proves that it cannot continue like this…’ is the best example for this. Students’ learning by 
justification always triggers more quality learning. Several studies can be found in the literature 
on this topic (Blair & Johnson, 1987; Driver, Newton & Osborne, 2000; Serin & Korkmaz, 2018). 

Although the students apply skills such as justifying, proving and associating, they always behave 
timidly about generalization. This study also revealed that the students applied skills such as 
associating, reasoning, predicting, justifying and proving, but they behaved timidly on 
generalization. Actually, students’ timidity on generalizations is not worth worrying because it is 
clear that easy generalizations generally cause mislearning.  This may be an indicator of that 
students are more attentive on learning concepts. Hence, Akkan and Çakıroğlu (2012) and Soylu 
(2006) stated in their studies that problems caused by incorrect generalizations are too difficult 
to overcome. It can be deduced from this study that the students comprehended the fact that 
generalization is not so easy, and for achieving this, it is important to create meaning by 
associating the concept, by supporting with different ideas and by enriching with various 
situations. These have the characteristics to be prior conditions for abstraction of information. 
According to Ferrari (2003), abstraction is a main process for improvement of mathematical 
thinking, and it is associated with creation of new mathematical concepts.    

It can be suggested that the implementation process gave opportunity to the students who were 
less successful than the others for closing the gap with their friends. For instance, Tuana was 
among the less successful students. However, in the first implementation she confidently said 
‘…This is a perfect square because it multiplied two same statements…’.  It is really interesting 
that a student with low success rate intervened in the process by explaining with mathematical 
expressions. The fact that the students found correct answers by benefitting from each other’s 
ideas helped them realize that every idea may be important regardless of its accuracy. This 
became meaningful especially on the matter of integrating less successful students into the 
teaching process.  

Finally, the students’ concept usage was taken into consideration, too. It was seen that the 
students did not avoid using mathematical concepts, and they used these concepts accurately. 
Concept usage is important in view of mathematical communication. National Council of Teachers 
of Mathematics [NCTM] (2000) emphasizes that “all students from Pre-K to 12th grade need to 
convey their mathematical thoughts by using mathematical language actively” as well as 
regarding mathematical communication as one of the five process standards (p. 60). Therefore, it 
would be natural to talk about the benefits of such teaching. 
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Appendix 1.                                           PATTERNS AND RELATIONSHIPS 

 

                             𝑛 = 1                   𝑛 = 2                             𝑛 = 3                                𝑛 = 4 

 

 

 

 

 

There is a pattern given above with the first four steps. According to this; 

 

1) Let's write the relation that gives the number of the hatched boxes in any row (n). 

 

 

 

2) Let's write the relation that gives the number of non-hatched boxes in any row (n). 

 

 

 

3) Let’s write the relation that gives the number of all the boxes in any row (n). 

 

 

 

4) Let’s relate the relationships we have found in questions 1, 2 and 3. 
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Appendix 2.      EQUATIONS 

 

 

         

                               

 

 

When we compare the numbers in the above R and B schemes with each other; 

34 > 9, 39 > 15, 44 > 21… 

 

 

 So if this comparison is continued as long as you want it, will it always give the same result? 

Let's discuss. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

34 39 44 49 54 59 64 69 74 79 84

9 15 21 27 33 39 45 51 57 63 69

R 

B 
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Appendix 3.                                           LINEAR EQUATIONS 

 

Hasan goes to the barbershop to cut his hair on Sunday. When she comes home she looks in the 

mirror and realizes that her hair is pretty short. He takes a decision not to take a haircut for a long 

time and decides to measure the speed of hair growth during this time. The following table shows 

the measurements that Hasan made every month. 

 

Time(month) 0 1 2 3 4 5 6 7 

Length(cm) 2 3.5 5 6.5     

 

 After the haircut, how many centimeters was the length of Hasan's hair? 

 

 How many centimeters will be the length of Hasan's hair in 6 months? 

 

 Is it easy to calculate this length? Why? 

 

 If Hasan never cuts his hair in one year, how many centimeters is the length of his hair? 

 

 Can you write a formula that related to time and length in the above table ? 

 

 Can the relationship between length of the hair with passing time be shown different?  
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Appendix 4.                                                   EQUATIONS 

 

 

 

Alice and Fred are two frogs that are on a path in the forest. One day they suddenly hear 

footsteps and jump to get away from danger. Alice and Fred start to jump in the same direction 

from the pathway, respectively at a distance of 8 dm and 18 dm. They stop after they jump a few 

times. 

                        Alice 8 dm  

                             

                        Fred            18 dm  

 

 Suppose that Alice jumps 5 times, Fred jumps 3 times and they take the same distance on the 

pathway. trail.Farz edelim ki Alice 5 kez, Fred ise 3 kez zıplıyor ve patikada aynı mesafeyi alıyorlar. 

How many decimeters is the length of each jump? (Note: The length of Alice and Fred's jump is 

equal) 

 

 

 How can you be sure the answer is correct? 
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