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Stress-Strength Reliability Estimation for the Type I Extreme-Value
Distribution Based on Records

I.Tip Ucdeger Dagilimindan Gelen Rekor Degerler I¢cin Stres Dayamkhilik Modelinin
Giivenilirliginin Tahmini

Fatih KIZILASLAN
Marmara University, Faculty of Arts and Sciences, Department of Statistics, Kadikoy, 34722, Istanbul, Turkey

Abstract

In this paper, we consider the stress-strength reliability ® = FLX =¥ for record data when the distribution of random stress ¥ and
strength & have the type I extreme-value distribution. First, classical inference methods, namely uniformly minimum variance unbiased

estimate (UMVUE) and maximum likelihood estimate (MLE), are used for R Second, Bayesian inference of B are considered for gamma
priors assumption. When the common parameter of stress and strength variables is known, the exact Bayes estimate and Bayesian credible
interval of & are obtained. Markov Chain Monte Carlo (MCMC) method are used to derive the Bayes estimate and highest probability
density (HPD) credible interval of B when the common parameter is unknown. Finally, Monte Carlo simulations are performed to compare
the performance of the obtained estimates. A real data set about the weather temperature is analyzed to illustrate the performances of the
derived estimators in the paper.

Keywords: Stress-strength model, Record values, Extreme-value distribution, Bayesian estimation.

Oz

Bu ¢alismada, stres Y ve dayaniklilik X rastgele degiskenleri I. Tip u¢deger dagilimina sahip oldugunda rekor degerler i¢in stres dayaniklilik
modelinin gilivenilirligi R = PLX =¥ ¢le alinmustir. [1k olarak # i¢in klasik yaklagim yani degismez en kii¢iik varyansli yansz minimum
varyans tahmin edici ve en ¢ok olabilirlik tahmin edicisi kullanilmistir. Sonra, dnsellerin gamma dagilimina sahip olmasi varsayimi altin

R jcin Bayes yaklagim ele alinmustir. Stres ve dayamklilik degiskenlerinin ortak parametresi biliniyorken, & nin kesin Bayes tahmin

edicisi ve Bayes giiven aralig1 elde edilmistir. Stres ve dayaniklilik degiskenlerinin ortak parametresi bilinmiyorken, Ropin Bayes tahmin
edicisi ve en yiiksek olasilik yogunluklu Bayes giiven araligi Markov Zinciri Monte Carlo (MCMC) metodu ile elde edilmistir. Son olarak
elde edilen tahmin edicilerin performanslarini karsilagtirmak icin Monte Carlo simiilasyonu gergeklestirildi. Elde edilen tahmin edicilerin
performanslarini gostermek i¢in hava sicakliklari ile ilgili gergek veri seti analiz edilmistir.

Anahtar Kelimeler: Stres dayaniklilik modeli, Rekor degerler, U¢deger dagilimi, Bayes tahmini.

L. INTRODUCTION

In the literature, there are many lifetime distributions exist. It is known that to introduce new distributions or distribution
families are also popular topic in recent years. The exponential and Weibull distributions are commonly used in many diffe-
rent areas and applications, see Murthy et al. [1]. The hazard rate function of the exponential distribution is constant and it
is increasing or decreasing or constant for Weibull distribution. Hence, these distributions cannot be used to modelling for
some data. That is why some extension and modified versions of Weibull distribution are proposed. Lai and Xie [2] introdu-
ced the new modified Weibull distribution (NMWD) with cumulative distribution function (cdf) and probability density fun-
ction (pdf) are given by, respectively,
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Fix) = 1 — exp(—ax?e™),

1
Flx) = a(b + Ax)x? L e exp(—ax?e'™) @)
with parameters & = 0bz=0,94>0 When5=04p (1),
the NVWD reduces to
Fl(x) =1 —expl—ae™), -0 < x < w0 3)

which is a type I extreme-value distribution and is also
known as a log-gamma distribution. The pdf of type I extre-
me-value distribution is

Flx) = ale™ exp(—ae™),—mw <x < @, 4

and it is denoted by £V (. 4],

Let 1420 e a sequence of independent and identically

X

distributed random variables. An observation “*% is called an upper
record value if its value exceeds all previous observations, i.e.

X=X for k= 3 Using this analogous, the definition of lower
record values can be given similarly. People are interested records
such as weather records, sports records etc. in the real life. Also,
records can be seen in life testing if one wants to observe only
the minimum or maximum value of testing materials. The main
concept of the record values was first introduced by Chandler [3].
Since then the statistical inferences of the records are considered by
many researchers, for detailed references see Arnold et al. [4] and
Ahsanullah and Nevzorov [5].

In the reliability literature, the probability of the random strength

Xofa component exceeds the random stress Y experienced by
the system is called stress — strength reliability and defined as

R=FX=V)

. This problem was first introduced by Birnabum

[6]. Since then statistical inference of R has been considerably
studied by many researchers under different distributional
assumptions and data types. Kotz et al. [7] present a great review
for the development of the stress-strength reliability. Some recent
contributions about the statistical inferences of reliability can be
found the following papers Tavirdizade and Gharehchobogh [8],
Basirat et al. [9], Kizilaslan and Nadar [10], Rasethuntsa and Nadar

n-1

Le. g.2lr.5) = f‘im] f{r]

where L = (e t) andZ = (50w 5“1],f and ¥ are the pdf

and cdf of stress variables from EV (@4} and 9 and @ are the pdf
and cdf of strength variables from EV {.E A, Then, we have

+EyL, 5 Arg

Le. g il s) = a"pmanmg AT "exp(—ael™ ) exp(—fe

(6)

The ML estimates of @ # and 4 have a closed forms and are given

by

Ao ]
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[11] and Cetinkaya and Geng [12].

In this paper, the statistical inference of reliability is considered
in stress-strength setup when the underlying random variables are
independent and follow the type I extreme-value distribution with

parameters (B.4) and {”"1], respectively. When the common

i

parameter is unknown, Bayes estimate and HPD credible

interval of f have been developed by using MCMC method.

When the common parameter dis known, the MLE, UMVUE and
exact Bayes estimates, as well as exact confidence and Bayesian

credible intervals of & are derived. In this case, we also obtain
Bayes estimates using MCMC to see the performance of the exact
Bayes estimate.

The paper is organized as follows. In Section 2, classical inference

of R is considered for both 4 is known and unknown cases. In

Section 3, Bayes estimate and HPD credible interval of R are
developed in exactly and approximately when the parameters
have independent gamma priors. In Section 4, the performance of

the obtained point estimates and intervals of B are compared by
using Monte Carlo simulations. Some plots are presented to see the
difference of estimates performance. Furthermore, a temperature
data set is used to illustrate the findings. Finally, the paper is
concluded in Section 5.

I1. CLASSICAL INFERENCE OF R

When the common parameter A is known and unknown, the ML
and UMVU estimates of B = FIX = ¥) are obtained. Also, the
exact confidence interval of R is constructed for A is known case.

Let the strength X and stress ¥ be independent random variables
from the type I extreme-value distribution with parameters { 5. 1)
and (¢t A}, respectively. Then, the stress-strength reliability is

=[P =Y¥Iv =y)£(dy =

R=PX =Y —()

o+ 8

In this study, we assume that the stress and strength random
variables follow from the type I extreme value distribution. Let

By Byand S Sm are independent set of upper records from
EV(e. 1) gng EV(8. 1) , respectively. Then, joint pdf of based on
(Ryve ByoSp0ees Sm) is obtained as using Arnold et el. [4]

g(s ]HL G{ —00 Ly L g 00, —00 £ 5 L. LSy < 00
- L

& _ n 5 _ m z _ n+m
MLE ™ giMLERR MLE ™ eAMLESm’ MLE ™ E:“‘:|:RIJ_RI"+E!|'II=|I-""|.'| —.\'J:I
@)
Then, the MLE of R S R MLE, IS given by
" - A A ~
Rue = Bue/ B + Sozze),

pi

find the distribution of ﬁ.‘-z‘;z and _né;.ﬂz. It is readily obtained
that 2ee’o®n~ypl  and 2gelm ~yZ,. Using simple

transformations, the pdf of R iz is derived as

If the common parameter “* is known i.e. 4 =‘1ﬂ', we can
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i T —1
() = 1 rr..S')ﬂ‘ |ITJ' ) statistics for {”'.3] and follow Gamma distributions with
fﬁH,, Bi ( fo mfi1- I-'-"'_""":I <r<l Ii?‘l ﬂ:] {m E] i
nm} e IL+#J parameters “" "} and +HJ respectively. Let
_ R 1-fmie lifR, =5,
Since ¥ T1om e TEman the 10001 —1)% exact @RS = In ifR <5,
confidence interval of f is derived as
Hie L here 1 and 51 are the first record values. Since P, = e*¥1
([t + Bonom /2 (2] [t B a1 -y (SR2)] ) Whore T ond e
®) e and P = """ follow exponential distributions with means fa
and 'J-.-'r.l'-?, we can obtain that E{‘P{RL- 51.]} =R 1tis easily seen
P(F = Fop o (5) — % ( _ 5) . . that.the conditional distributions are derived by using Lemma 1 in
where TR Zis the 2/th percentile points Basirat et al. [13]
faf distribution with (271 2m}) degrees of freedom. _—

4 L. Py
B f.:'.-”:L,':PthL]={n_l]r_(l_r_l) O=p <t
Moreover, the UMVUE of “* can be derived. In this case, the joint : :
likelihood function is m—2

Forme, @It =m-D=(1-2) "o<p <t

La Bligr.s) = agm e 0 D=t D) yn gy (_godoms ) exp (— g etom)

S [ PY - SR P Then, the UMVUE of R ,ﬁ UMY E, s obtained by using Lehmann-
and {TJ-'TSJ - {g ", et } are the complete sufficient Scheffe’s Therorem Y g

Ryyvwz =E@R, ST, =, T =¢,) = Jﬂfpl}p_\.fpl o= Ll'i,.?ﬂtl]fp‘h h':,.?- |t. )dp, dp. =
E { J'] (r] ||I| | II"‘.ft"ﬁ::tj.
I ©)

1- g1 C—'] ,vl——. if ty =t

II1. BAYESIAN INFERENCE OF R K~Gamma(a.b) then its pdfis given as
bt .
In this section, it is assumed that the parameters a3 and 4 are f{x] = B=lg=8 v = (0,ab =0
statistically independent random variables and follow gamma a)
(o, b).i =123

priors with parameters respectively. If the

We obtain the joint posterior density of @B and 4 given data

random variable % follows gamma distribution (e b], ie. by (r.s)
—'=+as follows

—1 —gib +8t0Tn APPSR - T S 1 Lo i+@a—1  —d(By=Er ri-ET =
JT{IT._S..”E.E}:I{E.E}n‘ﬂ”"' Lo—aiby+e '|.Ei‘1.+|:_ L g=B(bp+e™0¥m) anem+agz—1 3Lz Vimdy=y .l'(lo)

and
where ! {E' E} is the normalizing constant. Then, under the squared

error lg)ss (SEL) function, the Bayes estimate of H, Bayes s ﬂ{ﬂlﬂ-_ﬁ-f-g} oc qremraz—1 =B KL ri-EL, 8 ) —aelTn - gelin
given by

(13)
Bogves =1 fo [ Rala.p.tlr.s ) dadf di
aves Boorct ' - ' an It is clear that samples from & and 5 are generated easily from the
Since the integral in Equation (11) cannot be obtained explicitly, Gamma distributions. However, the posterior distribution of A s

we use the MCMC method to obtain the point estimate and not well known distribution. Normal distribution can be used to
HPD credible interval of & In the MCMC method samples are approximate the posterior density function, when it is unimodal and

generated from the posterior distributions and then Bayes estimates roughly symmetric (see Gelman et al., [14]). Since Tr{‘l |” Br E}

are computed by using these samples. The marginal posterior is log-concave function of .1, the hybrid Metropolis-Hastings

density functions of @B apg 4 given data (r.5) are obtained as and Gibbs sampling algorithm can be used in our case. In this
algorithm, the Metropolis-Hastings scheme is combined with the
Gibbs sampling scheme under the Gaussian proposal distribution.
(12) The following algorithm is used

el s~Gammaln + a,, b, + ™), gli,r, s~Gammal(m + a., b, + &'m)
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Step 1. Start with initial point‘ﬂ‘:ﬂ". sample Rppt =L, T.
Step 2. Set t=1 Then, the Bayes estimate of & under the SEL function is given by
: = L wope
Step 3. 'th value of‘1 .”, i.i.e. %), is generated from  Huewe = e ias1 R (14)
Gamma{n +a,. b el '-'}_
where M is the burn-in period. Using the method in Chen and Shao

Step 4. th value of B, e B 0, is generated from  [15], the HPD credible interval of & is constructed by using these
Gammalm + a., b, 4 eXi-1Fm } samples.

F o A =4
Step S.A:I'nis generated from“{‘””-ﬁ'f-é} using the Metropolis- If the common p ar;fmeter is known, ie. 0, then the
Hastings algorithm under the proposal distribution I!?'::ﬂ] follows Bayes estimate of % is derived explicitly in terms of Gauss

hypergeometric function. In this case, it is assumed that ® and B

N(g_po D) 1pis gi

- Itis given as follows are statistically independent random variables and follow gamma
(a) LetV = Ai-p priors with parameters CRARES 1'2, respectively. Then, the

joint posterior density of (e B) given data (r.g) and posterior
(b) " is generated from the proposal distribution 7. density of R are derived as
L wlw|egpBper =l qivd £ . &
© Let plv.w) = min Il'rrluhn' 38 -.r.sll'.':h'n}' mhex, B |Ag.7.5 :&ns'_LSE:_LE_“ﬁ'E_SW
T (wblor2) = pe5reen =
(d) Generate ¥ from Uniform(0.1) f u = p(v.w) and
then accept the proposal and set Ap= W otherwise set Ap=v
(PJ_SI':F'"S: J,.S:—L{-J_ _ J":]Sl_l

O=r=1

Step 6. The stress-strength reliability is computed as _fg':?"]
H: i .Eil"."r':.'rj‘!l" + ﬂil"]

~ Beta(5,.8:) (rgs + (1 —r)g J8i+5
i=istl where '5L=“+ﬂ1., 5:=m+ﬂ:-(ﬁ=bl+€‘l“n-‘ and

Step 7. Set* — * +1 _ LnZim

@2 =Db: + ™™™ Under the SEL function, the exact Bayes

Step 8. Repeat Steps 2 through — 7, T times and obtain the posterior estimate of & R Rexact g, is obtained as

_(a_)n £ J.(SL + 6.8, + 16, + 8. + 1.1 —%jl if 2 = @, (15)

7 . By +82
Exactd — fn rfa (ridr = 1+ : h .
—= = i 4 o ~
5"'5:(#1_:) F:L('EL+S!'5L:51.+ 5:+J..J._¢1_;) if 9 = @

. Apsi
"""" } is the Gauss hypergeometric function and and Gamma(m + a;. by + o } Then, Bayes estimate and

A

HPD credible interval of & are computed similar to “* is unknown

case.

By (e Biy.w) = 5 F72(1 — £)V-F-1(1 — et)~%dt,e] <

We also use MCMC method to evaluate the Bayes estimate of R

. . Moreover,we can easilyobtaintheBa esiancredibleintervalofH usin,
R . Hence, we can compare the alternative method results with the ’ y y g

2 oyl 2w, oyl

exact results. the relations 2p aldprys n+ay) and 2928 |‘1°'E Azrm+ay)
2@qaldp.r f2(n+ay)

For the MCMC case, using the Gibbs sampling algorithm, we . Then, we have 2#:z8lig= /2im+az)

Gammaln + a,, b, + e™ )

Iin+ay2im+as)
! ~". Hence,

generatethesamplesof™ and® from the 100 (1 -¥)% Bayesian credible interval for R is obtained as

([1 + F::r!+r.'| } ::i‘11+|::||:]"|'|r2:] (w]]_j- . I:.J- + F:!r!+r.'| } :!rr.+|::":]- —¥/Z) (w)]_j-] (16)

@y m+as gy [(M+az

. 1 _FE ¥
where F::i’!+l=| J ::i‘1'~+I=:I':]”-"r2:I ande:i’HEl J 3:?1'-+E:":J' —¥/2) are the (1 :]th and :z th percentile points of a F distribution with

(2(n + ay). 20m + a;)) degrees of freedom.

217



Int. J. Adv. Eng. Pure Sci. 2019, 3: 214-222

Reliability Estimation for Type | Extreme-Value Distribution

IV. SIMULATION STUDY

In this section, some numerical results are presented for the obtained
estimates of type I extreme-value distribution based on upper
records. The MSEs of the classic estimates (i.e. MLE and UMVUE)
and estimated risks (ERs) of Bayesian estimate are listed in tables.
The performance of the point estimates is compared by using MSE
and ER values. The confidence and credible intervals and their
corresponding coverage probabilities (cps) are also listed in tables.
The performance of the interval estimates is comrlared by using

average lengths and cps. When 8 is estimated by E, the ER of &
— VN 5 2

under the SEL function is given by ER(8) = LL.(6; — 6,)°/N

. All the simulations results are based 2500 replications.

For the common parameter A is known (‘1 = 3), the ML, UMVU

and Bayes estimates of R and their MSEs and ERs are given by using
Equations (5), (7), (9) and (15) in Table 1. The point and interval
estimates are evaluated for £ = 0.2308.0.6000 ;4 0.9231

when {”'.'rj‘] ={5'1'5]'{E'12] and {2'24], respectively. In
the Bayesian case, Prior I: (ay.5,) = (5.1).(az. b,) = (3.2)
, Prior 2: I:ﬂL' '[JJ.J = {5'1]'{”2'!’2] = (3.2) and Prior
3. (apb)=(1.2)(az.b2) = (6.1/4)  are ysed for
R =0.2308.0.6000 ,n4 0'9231, respectively. In the MCMC
case, 5000 samples are generated for each step and using these
samples Bayes estimate and HPD credible interval of B are

computed. The Bayesian credible interval of R s also computed
by using Equation (16). From Table 1, we observe that when

R approaches to tails, the MLE and UMVUE have similar
performance. When R is around 0.5, the MLE has good performance

with respect to UMVUE. The ERs of Bayes estimates has smaller
than that of MLE and UMVUE in all cases. The estimate and ER

of Bayes estimate which is obtained by using MCMC method are
very close to the exact Bayes estimate. The average lengths of the
HPD credible intervals are smaller than other intervals but its cp
values are close to nominal value as the sample size increases.
However, the exact confidence intervals can be preferable to the
other intervals with respect to the cp values.

Moreover, some graphs of & \s MSEs and ERs (for exact Bayes
estimate) and R \s Biases are presented in Figures (1)-(6) to see the

performance of the obtained estimates when A =2 These graphs
are plotted based on the ML, UMVU and exact Bayes estimates
of B o nm) = (5,5),(5.8),(8,8),(10,12), (12,8)

{15'12]. In these figures, the true values of R are taken from
0.0476 (, 0.9921
R

the MSEs, ERs and Biases of the estimates decrease. When R is
near to tails, the MSEs, ERs and Biases of the estimates are small.

and

and Monte Carlo simulation is carried for each

value based on 2500 replications. As the sample size increases,

However, these values are large, when R is near to 0.5. The ERs
of the Bayes estimates are smaller than that of MLE and UMVUE
in all cases. In addition, the MLE has good performance with
respect to UMVUE when & is around 0.5 and their performances
are similar when &
observed in Table 1.

is near to tails. The similar outcomes are also

For the common parameter 4 is unknown, the ML and Bayes
estimates using MCMC method and their MSE and ERs
are tabulated in Table 2. The point and interval estimates
R =0.2500,0.4444 ,0.6230

are  evaluated for and
09000 pen (@.8.4) =1(12,44).(5.43).(352) ,q
{0'5'4'5'2'5], respectively. In the Bayesian case, Prior 4:

Table 1. Estimates of & when 4 = 3 (Note: 1% row estimates (interval), 24 row MSE or ER (length/cp))

-

(m.m) |R ﬁ:»::,z J f— ﬁsztﬂ ﬁ:-:mc Exact C.1. Bayesian C. 1. HPD C.1I.
(5.,5) 0.2308 0.2481 0.2294 0.2456 0.2457 (0.0875,0.5229) (0.1058,0.4371) (0.0933,0.4151)
0.0141 0.0147 0.0039 0.0039 0.4357/0.9528 0.3313/0.9964 0.3218/0.9928
(8,8) 0.2419 0.2301 0.2433 0.2433 (0.1071,0.4550) (0.1200,0.4064) (0.1101,0.3897)
0.0085 0.0087 0.0036 0.0036 0.3479/0.9508 0.2864/0.9876 0.2796/0.9828
(10,10) 0.2400 0.2305 0.2422 0.2423 (0.1162,0.4284) (0.1269,0.3920) (0.1182,0.3777)
0.0066 0.0067 0.0033 0.0033 0.3122/0.9540 0.2651/0.9828 0.2595/0.9740
(12,12) 0.2371 0.2291 0.2400 0.2399 (0.1226,0.4068) (0.1318,0.3789) (0.1237,0.3659)
0.0054 0.0055 0.0030 0.0030 0.2843/0.9544 0.2471/0.9764 0.2422/0.9700
(15,15) 0.2353 0.2289 0.2384 0.2384 (0.1309,0.3846) (0.1384,0.3646) (0.1315,0.3537)
0.0045 0.0045 0.0027 0.0027 0.2537/0.9504 0.2263/0.9764 0.2223/0.9700
(5,5) 0.6000 0.5884 0.5970 0.5919 0.5919 (0.302,0.8273) (0.3807,0.7840) (0.3892,0.7888)
0.0221 0.0262 0.0050 0.0050 0.5253/0.9424 0.4032/0.9960 0.3996/0.9932
(8,8) 0.5913 0.5968 0.5923 0.5923 (0.3572,0.7915) (0.4066,0.7624) (0.4133,0.7663)
0.0139 0.0155 0.0049 0.0049 0.4343/0.9496 0.3558/0.9912 0.3529/0.9856
(10,10) 0.6003 0.6051 0.5979 0.5978 (0.3887,0.7810) (0.4249,0.7560) (0.4313,0.7598)
0.0111 0.0121 0.0046 0.0046 0.3923/0.9480 0.3311/0.9884 0.3285/0.9820
(12,12) 0.5939 0.5977 0.5936 0.5936 (0.3996,0.7633) (0.4307,0.7438) (0.4362,0.7469)
0.0094 0.0101 0.0044 0.0044 0.3637/0.9524 0.3130/0.9844 0.3107/0.9788
(15,15) 0.5945 0.5976 0.5941 0.5942 (0.4196,0.7488) (0.4437,0.7334) (0.4486,0.7863)
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0.0073 0.0077 0.0039 0.0039 0.3292/0.9576 0.2898/0.9836 0.2877/0.9744
(5,5) 0.9231 0.9078 0.9214 0.9400 0.9400 (0.7410,0.9725) (0.8675,0.9809) (0.8817,0.9864)
0.0036 0.0028 0.0006 0.0006 0.2316/0.9468 0.1133/0.9624 0.1047/0.9192
(8,3) 0.9159 0.9239 0.9353 0.9353 (0.8026,0.9673) (0.8718,0.9741) (0.8827,0.9791)
0.0017 0.0015 0.0005 0.0005 0.1647/0.9568 0.1023/0.9648 0.0964/0.9196
(10,10) 0.9167 0.9230 0.9327 0.9327 (0.8201,0.9641) (0.8734,0.9705) (0.8829,0.9750)
0.0013 0.0012 0.0004 0.0004 0.1440/0.9520 0.0971/0.9676 0.0922/0.9336
(12,12) 0.9184 0.9236 0.9316 0.9316 (0.8344,0.9620) (0.8762,0.9678) (0.8845,0.9720)
0.0011 0.0010 0.0004 0.0004 0.1276/0.9468 0.0916/0.9644 0.0875/0.9372
(15,15) 0.9185 0.9227 0.9294 0.9294 (0.8460,0.9588) (0.8782,0.9641) (0.8853,0.9679)
0.0008 0.0007 0.0004 0.0004 0.1128/0.9512 0.0859/0.9624 0.0826/0.9324
Table 2. Estimates of & when * is unknown (Note: 15 row estimates (interval), 24 row MSE or ER (length/cp))
(n.m) |R Rugz R yene HFD C.I R Rugz L — HFD C.I.
(5,5) 0.2500 0.2226 0.2805 (0.1391,0.4335 0.6250 0.6478 0.6255 (0.4130,0.8273)
0.0238 0.0025 0.2944/0.9988 0.0341 0.0069 0.4143/0.9916
(8,%) 0.2324 0.2744 (0.1437,0.4150) 0.6370 0.6245 (0.4381,0.8033)
0.0140 0.0025 0.2714/0.9952 0.0187 0.0065 0.3652/0.9832
(10,10) 0.2340 0.2704 (0.1459,0.4038) 0.6361 0.6262 (0.4532,0.7922)
0.0104 0.0023 0.2579/0.9940 0.0154 0.0065 0.3390/0.9684
(12,12) 0.2345 0.2671 (0.1483,0.3941) 0.6367 0.6279 (0.4656,0.7838)
0.0086 0.0022 0.2458/0.9900 0.0118 0.0057 0.3181/0.9664
(15,15) 0.2353 0.2634 (0.1522,0.3822) 0.6332 0.6265 (0.4769,0.7705)
0.0065 0.0020 0.2300/0.9896 0.0092 0.0051 0.2936/0.9568
(5,5) 0.4444 0.4502 0.4504 (0.2408,0.6635) 0.9000 0.9192 0.8927 (0.7737,0.9831)
0.0407 0.0078 0.4227/0.9944 0.0064 0.0017 0.2093/0.9928
(8,8) 0.4405 0.4449 (0.2601,0.6329) 0.9167 0.8971 (0.7942,0.9779)
0.0202 0.0067 0.3727/0.9820 0.0040 0.0016 0.1838/0.9776
(10,10) 0.4377 0.4425 (0.2704,0.6177) 0.9110 0.8959 (0.7995,0.9735)
0.0160 0.0064 0.3472/0.9736 0.0034 0.0016 0.1740/0.9648
(12,12) 0.4434 0.4461 (0.2845,0.6103) 0.9110 0.8975 (0.8076,0.9709)
0.0130 0.0060 0.3258/0.9648 0.0027 0.0013 0.1632/0.9636
(15,15) 0.4433 0.4457 (0.2965,0.5971) 0.9080 0.8974 (0.8150,0.9663)
0.0096 0.0051 0.3006/0.9668 0.0023 0.0013 0.1512/0.9524

(ay.b,) = (12,1, (a5, b,) = (8.2), (a3.b5) = (82) pyior
5. (. by )= (5.1). (a,. b,) = (4.1). (ag. by) = (3.1} prior
6 (anb)=(31)(a:b) = 5.1), (a5 b) = (42) g
priop 7. (A By) = (1,2), (a2, b.) = (9,2), (az, by) = (5.2)
are used for R =0.2500,0.4444,0.6250 g 0.9000

respectively. In the MCMC case, two MCMC chains are used with
different initial points and 6000 iterations are generated for each
chain. The first 1000 draws is discarded and focus on the other 5000
iterations for diminishing the effect of the starting distribution. In
computing of Bayes estimates, we use only every 5% sample values
after discarding the first 1000 iterations because of breaking the
dependency in the Markov chains. Gelman et al. [12] proposed
the scale reduction factor estimate for the convergence of MCMC
simulations. This index is used in our MCMC part for more details
see Gelman et al. [12]. The scale factor of the MCMC Bayes
estimates are smaller than 1.1 in our simulation studies. It means
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the MCMC method is converged. From Table 2, it is observed that
the Bayes estimate has good performance with respect to the MLE.
The MSE and ER of estimates and average lengths decrease when
the sample size increases.

As a real data analysis, we use the monthly average temperatures
(in Celsius) Reykjavik, Iceland which is located close to the North
Pole. It is observed that the monthly average temperatures of
February and March are — 0.3 and 0.4, respectively from 1870 to

2011. The data sets of February (z) and March (s) months from
1970 to 2011 are considered (it can be downloaded from https://
crudata.uea.ac.uk/cru/data/temperature/) and their corresponding
upper records data are listed in Table 3. We have checked to see
whether type I extreme-value distribution is adequate to fit these
two data sets or not. The Kolmogorov-Smirnov (K-S) distances
between fitted and the empirical distribution functions and

corresponding F-values, the estimates of the parameters and stress-


https://crudata.uea.ac.uk/cru/data/temperature/
https://crudata.uea.ac.uk/cru/data/temperature/
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Table 3. Upper record values from February and March

: 1 2 3 4 5
- 22 0.6 24 2.9 33
— (February)
-1.7 1.3 2.1 3.7 3.9
= (March)
Table 4. Real data analysis
Kolmogorov-Smirnov test results Parameter and reliability estimates
Data set K-S (P-value) Parameter MLE Bayes (MCMC)
r 0.5578(>0.05) (e 8. 4) (0.9364,0.6906,0.5076) -
s 0.5371(>0.05) B 0.4244 0.4301
strength reliability (8) are computed and listed in Table 4. It is
observed that the type I extreme-value distribution provides an
0.025
adequate fit for both data sets L and £ The MLE of & is found as T o
0.4244. The Bayes estimate and HPD credible interval are found by 0.02F ] k - BractBayes
using MCMC method of as 0.4301 and (0.1548, 0.6979) when all
the prior parameters are % = 0; = 0.00L.1 =1.2.3 " ooter
g
0.03 0.01F
AN ——MLE MSE
Pk ~% - - = UMVUE MSE
0.025 - . % - Exact Bayes
0.005
0.02 -
0
% 0.015 0
=
0.01
0.01
0.005:1 OF “-riin, . - TSII\_AI\E/SEEBS 7]
NNy sdNassa,on,| ¢+ ExactBayes Bias
0 -0.01 [ -~
0
o -0.02
0.03 g 001 g
——MLE Bias 3]
0.02 - - - UMVUE Bias ‘0041 1
- Exact Bayes Bias
001 -0.05 -
0L —emarealitan o AN s e e
. -0.06 -
001+ "
@« -0.07
g -0.02
00 e 02 04 06 0s 1
004 R
-0.05 - R 1=2
o Figure 2. MSE and Bias against “* for ** = = and
o . (n.m) = (5.8)
007 ‘ e : :
0 0.2 0.4 0.6 0.8 1

R

Figure 1. MSE and Bias against Rgord =2 and

{(n.m) = (5.5)
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Figure 5. MSE and Bias againstR for* = 2 and (n.m) = (12.8)
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Figure 6. MSE and Bias against R for 1=2 and
{n,m) = (15.12)

V. CONCLUSION

In this study, the stress-strength reliability estimation for
the type I extreme-value distribution is considered based on
upper records. As expected, the MSEs and ERs of estima-
tes and average length of the intervals decrease when the
sample size increases. The performance of the Bayes esti-
mates is superior to the ML and UMVU (when it is avai-
lable) estimates in all cases. MCMC method is a good al-
ternative to obtain the Bayes estimates when it cannot be

obtained analytically.
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