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Güvenilirliğinin Tahmini
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Abstract

In this paper, we consider the stress-strength reliability  for record data when the distribution of random stress  and 
strength  have the type I extreme-value distribution. First, classical inference methods, namely uniformly minimum variance unbiased 
estimate (UMVUE) and maximum likelihood estimate (MLE), are used for . Second, Bayesian inference of  are considered for gamma 
priors assumption. When the common parameter of stress and strength variables is known, the exact Bayes estimate and Bayesian credible 
interval of  are obtained. Markov Chain Monte Carlo (MCMC) method are used to derive the Bayes estimate and highest probability 
density (HPD) credible interval of  when the common parameter is unknown. Finally, Monte Carlo simulations are performed to compare 
the performance of the obtained estimates. A real data set about the weather temperature is analyzed to illustrate the performances of the 
derived estimators in the paper.
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Öz

Bu çalışmada, stres Y ve dayanıklılık X rastgele değişkenleri I. Tip uçdeğer dağılımına sahip olduğunda rekor değerler için stres dayanıklılık 
modelinin güvenilirliği ele alınmıştır. İlk olarak  için klasik yaklaşım yani değişmez en küçük varyanslı yansz minimum 
varyans tahmin edici ve en çok olabilirlik tahmin edicisi kullanılmıştır. Sonra, önsellerin gamma dağılımına sahip olması varsayımı altın 

 için Bayes yaklaşımı ele alınmıştır. Stres ve dayanıklılık değişkenlerinin ortak parametresi biliniyorken,  nin kesin Bayes tahmin 
edicisi ve Bayes güven aralığı elde edilmiştir. Stres ve dayanıklılık değişkenlerinin ortak parametresi bilinmiyorken, ’nin Bayes tahmin 
edicisi ve en yüksek olasılık yoğunluklu Bayes güven aralığı Markov Zinciri Monte Carlo (MCMC) metodu ile elde edilmiştir. Son olarak 
elde edilen tahmin edicilerin performanslarını karşılaştırmak için Monte Carlo simülasyonu gerçekleştirildi. Elde edilen tahmin edicilerin 
performanslarını göstermek için hava sıcaklıkları ile ilgili gerçek veri seti analiz edilmiştir.

Anahtar Kelimeler: Stres dayanıklılık modeli, Rekor değerler, Uçdeğer dağılımı, Bayes tahmini.

I. INTRODUCTION

In the literature, there are many lifetime distributions exist. It is known that to introduce new distributions or distribution 
families are also popular topic in recent years. The exponential and Weibull distributions are commonly used in many diffe-
rent areas and applications, see Murthy et al. [1]. The hazard rate function of the exponential distribution is constant and it 
is increasing or decreasing or constant for Weibull distribution. Hence, these distributions cannot be used to modelling for 
some data. That is why some extension and modified versions of Weibull distribution are proposed. Lai and Xie [2] introdu-
ced the new modified Weibull distribution (NMWD) with cumulative distribution function (cdf) and probability density fun-
ction (pdf) are given by, respectively,
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					     (1)

		  (2)

with parameters ,  and . When  in (1), 
the NVWD reduces to

		  (3)
which is a type I extreme-value distribution and is also 

known as a log-gamma distribution. The pdf of type I extre-
me-value distribution is

	(4)

and it is denoted by .

Let  be a sequence of independent and identically 
distributed random variables. An observation  is called an upper 
record value if its value exceeds all previous observations, i.e. 

 for . Using this analogous, the definition of lower 
record values can be given similarly. People are interested records 
such as weather records, sports records etc. in the real life. Also, 
records can be seen in life testing if one wants to observe only 
the minimum or maximum value of testing materials. The main 
concept of the record values was first introduced by Chandler [3]. 
Since then the statistical inferences of the records are considered by 
many researchers, for detailed references see Arnold et al. [4] and 
Ahsanullah and Nevzorov [5].

In the reliability literature, the probability of the random strength 
 of a component exceeds the random stress  experienced by 

the system is called stress – strength reliability and defined as 
. This problem was first introduced by Birnabum 

[6]. Since then statistical inference of  has been considerably 
studied by many researchers under different distributional 
assumptions and data types. Kotz et al. [7] present a great review 
for the development of the stress-strength reliability. Some recent 
contributions about the statistical inferences of reliability can be 
found the following papers Tavirdizade and Gharehchobogh [8], 
Basirat et al. [9], Kızılaslan and Nadar [10], Rasethuntsa and Nadar 

[11] and Çetinkaya and Genç [12].

In this paper, the statistical inference of reliability is considered 
in stress-strength setup when the underlying random variables are 
independent and follow the type I extreme-value distribution with 
parameters  and , respectively. When the common 
parameter  is unknown, Bayes estimate and HPD credible 
interval of  have been developed by using MCMC method. 
When the common parameter  is known, the MLE, UMVUE and 
exact Bayes estimates, as well as exact confidence and Bayesian 
credible intervals of  are derived. In this case, we also obtain 
Bayes estimates using MCMC to see the performance of the exact 
Bayes estimate.

The paper is organized as follows. In Section 2, classical inference 
of  is considered for both  is known and unknown cases. In 
Section 3, Bayes estimate and HPD credible interval of  are 
developed in exactly and approximately when the parameters 
have independent gamma priors. In Section 4, the performance of 
the obtained point estimates and intervals of  are compared by 
using Monte Carlo simulations. Some plots are presented to see the 
difference of estimates performance. Furthermore, a temperature 
data set is used to illustrate the findings. Finally, the paper is 
concluded in Section 5.

II. CLASSICAL INFERENCE OF 

When the common parameter λ is known and unknown, the ML 
and UMVU estimates of  are obtained. Also, the 
exact confidence interval of  is constructed for λ is known case.

Let the strength  and stress  be independent random variables 
from the type I extreme-value distribution with parameters  
and , respectively. Then, the stress-strength reliability is

(5)

In this study, we assume that the stress and strength random 
variables follow from the type I extreme value distribution. Let 

 and  are independent set of upper records from 
 and , respectively. Then, joint pdf of based on 

 is obtained as using Arnold et el. [4]

(7)

Then, the MLE of , , is given by 
.

If the common parameter  is known i.e. , we can 
find the distribution of  and . It is readily obtained 
that  and . Using simple 
transformations, the pdf of  is derived as

where  and ,  and  are the pdf 

and cdf of stress variables from  and  and  are the pdf 

and cdf of strength variables from  Then, we have

(6)

The ML estimates of  and  have a closed forms and are given 
by
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Since , the  exact 
confidence interval of  is derived as

(8)

where  is the th percentile points 
of a  distribution with  degrees of freedom.

Moreover, the UMVUE of  can be derived. In this case, the joint 
likelihood function is

and  are the complete sufficient 

statistics for  and follow Gamma distributions with 
parameters  and , respectively. Let

where  and  are the first record values. Since  
and  follow exponential distributions with means  
and , we can obtain that . It is easily seen 
that the conditional distributions are derived by using Lemma 1 in 
Basirat et al. [13]

Then, the UMVUE of , , is obtained by using Lehmann-
Scheffe’s Therorem

(9)

III. BAYESIAN INFERENCE OF 

In this section, it is assumed that the parameters  and  are 
statistically independent random variables and follow gamma 
priors with parameters , respectively. If the 
random variable  follows gamma distribution , i.e. by 

, then its pdf is given as

We obtain the joint posterior density of  and  given data 
 as follows

(10)

where  is the normalizing constant. Then, under the squared 

error loss (SEL) function, the Bayes estimate of , , is 
given by

 	 (11)

Since the integral in Equation (11) cannot be obtained explicitly, 
we use the MCMC method to obtain the point estimate and 
HPD credible interval of . In the MCMC method, samples are 
generated from the posterior distributions and then Bayes estimates 
are computed by using these samples. The marginal posterior 
density functions of  and  given data  are obtained as

(12)

and

(13)

It is clear that samples from  and  are generated easily from the 
Gamma distributions. However, the posterior distribution of  is 
not well known distribution. Normal distribution can be used to 
approximate the posterior density function, when it is unimodal and 

roughly symmetric (see Gelman et al., [14]). Since  
is log-concave function of , the hybrid Metropolis-Hastings 
and Gibbs sampling algorithm can be used in our case. In this 
algorithm, the Metropolis-Hastings scheme is combined with the 
Gibbs sampling scheme under the Gaussian proposal distribution. 
The following algorithm is used
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Step 1. Start with initial point .

Step 2. Set .

Step 3. th value of , i.e. , is generated from 

.

Step 4. th value of , i.e. , is generated from 

.

Step 5.  is generated from  using the Metropolis-
Hastings algorithm under the proposal distribution  follows 

. It is given as follows

(a)	 Let .

(b)	  is generated from the proposal distribution .

(c)	 Let  .

(d)	 Generate  from . If , 

then accept the proposal and set , otherwise set .

Step 6. The stress-strength reliability is computed as 

.

Step 7. Set .

Step 8. Repeat Steps 2 through – 7,  times and obtain the posterior 

sample .

Then, the Bayes estimate of  under the SEL function is given by

	(14)

where  is the burn-in period. Using the method in Chen and Shao 
[15], the HPD credible interval of  is constructed by using these 
samples.

If the common parameter  is known, i.e. , then the 
Bayes estimate of  is derived explicitly in terms of Gauss 
hypergeometric function. In this case, it is assumed that  and  
are statistically independent random variables and follow gamma 
priors with parameters , respectively. Then, the 

joint posterior density of  given data  and posterior 
density of  are derived as

and

where ,  and 
. Under the SEL function, the exact Bayes 

estimate of , , is obtained as

	 (16)

	 (15)

where  is the Gauss hypergeometric function and

We also use MCMC method to evaluate the Bayes estimate of 
. Hence, we can compare the alternative method results with the 

exact results.

For the MCMC case, using  the  Gibbs sampling   algorithm, we 

generate the samples of  and  from  

and . Then, Bayes estimate and 
HPD credible interval of  are computed similar to  is unknown 
case.

Moreover, we    can   easily obtain the Bayesian credible interval of  using 

the relations  and 

. Then, we have . Hence, 
the  Bayesian credible interval for  is obtained as

where  and  are the th and percentile points of a  distribution with 
 degrees of freedom.



Int. J. Adv. Eng. Pure Sci. 2019, 3: 214-222� Reliability Estimation for Type I Extreme-Value Distribution

218

IV. SIMULATION STUDY

In this section, some numerical results are presented for the obtained 
estimates of type I extreme-value distribution based on upper 
records. The MSEs of the classic estimates (i.e. MLE and UMVUE) 
and estimated risks (ERs) of Bayesian estimate are listed in tables. 
The performance of the point estimates is compared by using MSE 
and ER values. The confidence and credible intervals and their 
corresponding coverage probabilities (cps) are also listed in tables. 
The performance of the interval estimates is compared by using 
average lengths and cps. When  is estimated by , the ER of  
under the SEL function is given by 
. All the simulations results are based 2500 replications.

For the common parameter  is known ( ), the ML, UMVU 
and Bayes estimates of  and their MSEs and ERs are given by using 
Equations (5), (7), (9) and (15) in Table 1. The point and interval 
estimates are evaluated for  and  
when  and , respectively. In 
the Bayesian case, Prior 1: 
, Prior 2:  and Prior 
3:  are used for 

 and , respectively. In the MCMC 
case, 5000 samples are generated for each step and using these 
samples Bayes estimate and HPD credible interval of  are 
computed. The Bayesian credible interval of  is also computed 
by using Equation (16). From Table 1, we observe that when 

 approaches to tails, the MLE and UMVUE have similar 
performance. When  is around 0.5, the MLE has good performance 
with respect to UMVUE. The ERs of Bayes estimates has smaller 
than that of MLE and UMVUE in all cases. The estimate and ER 

of Bayes estimate which is obtained by using MCMC method are 
very close to the exact Bayes estimate. The average lengths of the 
HPD credible intervals are smaller than other intervals but its cp 
values are close to nominal value as the sample size increases. 
However, the exact confidence intervals can be preferable to the 
other intervals with respect to the cp values.

Moreover, some graphs of  vs MSEs and ERs (for exact Bayes 
estimate) and  vs Biases are presented in Figures (1)-(6) to see the 
performance of the obtained estimates when . These graphs 
are plotted based on the ML, UMVU and exact Bayes estimates 
of  for  and 

. In these figures, the true values of  are taken from 
 to  and Monte Carlo simulation is carried for each 

 value based on 2500 replications. As the sample size increases, 
the MSEs, ERs and Biases of the estimates decrease. When  is 
near to tails, the MSEs, ERs and Biases of the estimates are small. 
However, these values are large, when  is near to 0.5. The ERs 
of the Bayes estimates are smaller than that of MLE and UMVUE 
in all cases. In addition, the MLE has good performance with 
respect to UMVUE when  is around 0.5 and their performances 
are similar when  is near to tails. The similar outcomes are also 
observed in Table 1.

For the common parameter  is unknown, the ML and Bayes 
estimates using MCMC method and their MSE and ERs 
are tabulated in Table 2. The point and interval estimates 
are evaluated for  and 

 when  and 
, respectively. In the Bayesian case, Prior 4: 

Table 1. Estimates of  when  (Note: 1st row estimates (interval), 2nd row MSE or ER (length/cp))

(5,5) 0.2308 0.2481 0.2294 0.2456 0.2457 (0.0875,0.5229) (0.1058,0.4371) (0.0933,0.4151)
0.0141 0.0147 0.0039 0.0039 0.4357/0.9528 0.3313/0.9964 0.3218/0.9928

(8,8) 0.2419 0.2301 0.2433 0.2433 (0.1071,0.4550) (0.1200,0.4064) (0.1101,0.3897)
0.0085 0.0087 0.0036 0.0036 0.3479/0.9508 0.2864/0.9876 0.2796/0.9828

(10,10) 0.2400 0.2305 0.2422 0.2423 (0.1162,0.4284) (0.1269,0.3920) (0.1182,0.3777)
0.0066 0.0067 0.0033 0.0033 0.3122/0.9540 0.2651/0.9828 0.2595/0.9740

(12,12) 0.2371 0.2291 0.2400 0.2399 (0.1226,0.4068) (0.1318,0.3789) (0.1237,0.3659)
0.0054 0.0055 0.0030 0.0030 0.2843/0.9544 0.2471/0.9764 0.2422/0.9700

(15,15) 0.2353 0.2289 0.2384 0.2384 (0.1309,0.3846) (0.1384,0.3646) (0.1315,0.3537)
0.0045 0.0045 0.0027 0.0027 0.2537/0.9504 0.2263/0.9764 0.2223/0.9700

(5,5) 0.6000 0.5884 0.5970 0.5919 0.5919 (0.302,0.8273) (0.3807,0.7840) (0.3892,0.7888)
0.0221 0.0262 0.0050 0.0050 0.5253/0.9424 0.4032/0.9960 0.3996/0.9932

(8,8) 0.5913 0.5968 0.5923 0.5923 (0.3572,0.7915) (0.4066,0.7624) (0.4133,0.7663)
0.0139 0.0155 0.0049 0.0049 0.4343/0.9496 0.3558/0.9912 0.3529/0.9856

(10,10) 0.6003 0.6051 0.5979 0.5978 (0.3887,0.7810) (0.4249,0.7560) (0.4313,0.7598)
0.0111 0.0121 0.0046 0.0046 0.3923/0.9480 0.3311/0.9884 0.3285/0.9820

(12,12) 0.5939 0.5977 0.5936 0.5936 (0.3996,0.7633) (0.4307,0.7438) (0.4362,0.7469)
0.0094 0.0101 0.0044 0.0044 0.3637/0.9524 0.3130/0.9844 0.3107/0.9788

(15,15) 0.5945 0.5976 0.5941 0.5942 (0.4196,0.7488) (0.4437,0.7334) (0.4486,0.7863)
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, Prior 
5: , Prior 
6:  and 
Prior 7:  
are used for  and , 
respectively. In the MCMC case, two MCMC chains are used with 
different initial points and 6000 iterations are generated for each 
chain. The first 1000 draws is discarded and focus on the other 5000 
iterations for diminishing the effect of the starting distribution. In 
computing of Bayes estimates, we use only every 5th sample values 
after discarding the first 1000 iterations because of breaking the 
dependency in the Markov chains. Gelman et al. [12] proposed 
the scale reduction factor estimate for the convergence of MCMC 
simulations. This index is used in our MCMC part for more details 
see Gelman et al. [12]. The scale factor of the MCMC Bayes 
estimates are smaller than 1.1 in our simulation studies. It means 

the MCMC method is converged. From Table 2, it is observed that 
the Bayes estimate has good performance with respect to the MLE. 
The MSE and ER of estimates and average lengths decrease when 
the sample size increases.

As a real data analysis, we use the monthly average temperatures 
(in Celsius) Reykjavik, Iceland which is located close to the North 
Pole. It is observed that the monthly average temperatures of 
February and March are – 0.3 and 0.4, respectively from 1870 to 

2011. The data sets of February  and March  months from 
1970 to 2011 are considered (it can be downloaded from https://
crudata.uea.ac.uk/cru/data/temperature/) and their corresponding 
upper records data are listed in Table 3. We have checked to see 
whether type I extreme-value distribution is adequate to fit these 
two data sets or not. The Kolmogorov-Smirnov (K-S) distances 
between fitted and the empirical distribution functions and 
corresponding -values, the estimates of the parameters and stress-

0.0073 0.0077 0.0039 0.0039 0.3292/0.9576 0.2898/0.9836 0.2877/0.9744
(5,5) 0.9231 0.9078 0.9214 0.9400 0.9400 (0.7410,0.9725) (0.8675,0.9809) (0.8817,0.9864)

0.0036 0.0028 0.0006 0.0006 0.2316/0.9468 0.1133/0.9624 0.1047/0.9192
(8,8) 0.9159 0.9239 0.9353 0.9353 (0.8026,0.9673) (0.8718,0.9741) (0.8827,0.9791)

0.0017 0.0015 0.0005 0.0005 0.1647/0.9568 0.1023/0.9648 0.0964/0.9196
(10,10) 0.9167 0.9230 0.9327 0.9327 (0.8201,0.9641) (0.8734,0.9705) (0.8829,0.9750)

0.0013 0.0012 0.0004 0.0004 0.1440/0.9520 0.0971/0.9676 0.0922/0.9336
(12,12) 0.9184 0.9236 0.9316 0.9316 (0.8344,0.9620) (0.8762,0.9678) (0.8845,0.9720)

0.0011 0.0010 0.0004 0.0004 0.1276/0.9468 0.0916/0.9644 0.0875/0.9372
(15,15) 0.9185 0.9227 0.9294 0.9294 (0.8460,0.9588) (0.8782,0.9641) (0.8853,0.9679)

0.0008 0.0007 0.0004 0.0004 0.1128/0.9512 0.0859/0.9624 0.0826/0.9324

Table 2. Estimates of  when  is unknown (Note: 1st row estimates (interval), 2nd row MSE or ER (length/cp))

(5,5) 0.2500 0.2226 0.2805 (0.1391,0.4335 0.6250 0.6478 0.6255 (0.4130,0.8273)
0.0238 0.0025 0.2944/0.9988 0.0341 0.0069 0.4143/0.9916

(8,8) 0.2324 0.2744 (0.1437,0.4150) 0.6370 0.6245 (0.4381,0.8033)
0.0140 0.0025 0.2714/0.9952 0.0187 0.0065 0.3652/0.9832

(10,10) 0.2340 0.2704 (0.1459,0.4038) 0.6361 0.6262 (0.4532,0.7922)
0.0104 0.0023 0.2579/0.9940 0.0154 0.0065 0.3390/0.9684

(12,12) 0.2345 0.2671 (0.1483,0.3941) 0.6367 0.6279 (0.4656,0.7838)
0.0086 0.0022 0.2458/0.9900 0.0118 0.0057 0.3181/0.9664

(15,15) 0.2353 0.2634 (0.1522,0.3822) 0.6332 0.6265 (0.4769,0.7705)
0.0065 0.0020 0.2300/0.9896 0.0092 0.0051 0.2936/0.9568

(5,5) 0.4444 0.4502 0.4504 (0.2408,0.6635) 0.9000 0.9192 0.8927 (0.7737,0.9831)
0.0407 0.0078 0.4227/0.9944 0.0064 0.0017 0.2093/0.9928

(8,8) 0.4405 0.4449 (0.2601,0.6329) 0.9167 0.8971 (0.7942,0.9779)
0.0202 0.0067 0.3727/0.9820 0.0040 0.0016 0.1838/0.9776

(10,10) 0.4377 0.4425 (0.2704,0.6177) 0.9110 0.8959 (0.7995,0.9735)
0.0160 0.0064 0.3472/0.9736 0.0034 0.0016 0.1740/0.9648

(12,12) 0.4434 0.4461 (0.2845,0.6103) 0.9110 0.8975 (0.8076,0.9709)
0.0130 0.0060 0.3258/0.9648 0.0027 0.0013 0.1632/0.9636

(15,15) 0.4433 0.4457 (0.2965,0.5971) 0.9080 0.8974 (0.8150,0.9663)
0.0096 0.0051 0.3006/0.9668 0.0023 0.0013 0.1512/0.9524

https://crudata.uea.ac.uk/cru/data/temperature/
https://crudata.uea.ac.uk/cru/data/temperature/
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strength reliability  are computed and listed in Table 4. It is 

observed that the type I extreme-value distribution provides an 

adequate fit for both data sets  and . The MLE of  is found as 

0.4244. The Bayes estimate and HPD credible interval are found by 

using MCMC method of as 0.4301 and (0.1548, 0.6979) when all 

the prior parameters are .

Figure 1. MSE and Bias against  for  and 

Figure 2. MSE and Bias against  for  and 

Table 3. Upper record values from February and March
1 2 3 4 5

 (February)
-2.2 0.6 2.4 2.9 3.3

 (March)
-1.7 1.3 2.1 3.7 3.9

Table 4. Real data analysis
Kolmogorov-Smirnov test results Parameter and reliability estimates
Data set K-S ( -value) Parameter MLE Bayes (MCMC)

0.5578(>0.05) (0.9364,0.6906,0.5076) -

0.5371(>0.05) 0.4244 0.4301
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Figure 3. MSE and Bias against  for  and 

Figure 4. MSE and Bias against  for  and 

Figure 5. MSE and Bias against  for  and 
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Figure 6. MSE and Bias against  for  and 

V. CONCLUSION
In this study, the stress-strength reliability estimation for 
the type I extreme-value distribution is considered based on 
upper records. As expected, the MSEs and ERs of estima-
tes and average length of the intervals decrease when the 
sample size increases. The performance of the Bayes esti-
mates is superior to the ML and UMVU (when it is avai-
lable) estimates in all cases. MCMC method is a good al-
ternative to obtain the Bayes estimates when it cannot be 
obtained analytically.
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