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Abstract

Let R be a commutative ring with identity and Id(R) denotes the set of all ideals of R. We will concerned in
this study mainly with the generalizations of n-ideals in commutative rings via a function ¢: Id(R) —
Id(R) U {@}. Properties of this class of ideals will investigated in detail.

Keywords: n-ideal; ¢ — n-ideal; ¢ —prime ideal; ¢ —primary ideal.

Degismeli Halkalarda n-ideallerin Genellestirmeleri

Oz
R degismeli, birimli bir halka olsun ve Id(R), R nin tiim ideallerinin kiimesini gostersin. Bu ¢alismada, esas
olarak degismeli halkalarda n —ideal kavraminin bir ¢:Id(R) — Id(R) U {@} fonksiyonu aractyla

genellestirmeleri lizerinde duracagiz. Bu ideal sinifinin 6zellikleri detaylariyla incelenecektir.

Anahtar Kelimeler: n-ideal; ¢ — n-ideal; ¢ —asal ideal; ¢p —asalims: ideal.

1. Preliminaries and Background

Throughout this paper, all rings are assumed
to be commutative with nonzero identity and
by Id(R), we mean the set of all ideals of a
ring R. Let I be a proper ideal of a ring R.
The radical of I is given by VI = {r e R :
rk € I for some k € N}. In particular, the set
of the nilpotent elements of R is V0, that is
{reR: r¥=0forsomek € N}. For an
element r € R, the ideal {s € R:irs €[} is
denoted by (I:1).

Since prime ideals have an important role in
ring theory, several authours generalized
these concept in different ways. Please see
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Anderson and Smith (2003), Bataineh
(2006), Atani and Farzalipour (2005),
Badawi (2007), Badawi and Darani (2013),
Anderson and Badawi (2011) and Badawi et
al. (2014). Later, the concepts of ¢ —prime
and ¢ —primary ideals are introduced in
(Anderson and Batanieh 2008, Darani 2012).
Let ¢ : Id(R) —» Id(R) U {@} be a function
and @ # 1 € Id(R). Then [ is said to be a
¢ —prime (resp. ¢ —primary) ideal of R if
whenever r,s € R and rs € I — ¢ (1), then
relorsel (resp. r €1 or s € VI). Recall
from Khaksari (2015) that [ is called a ¢ —
2-absorbing ideal of R if whenever r,s,t €
R and rst € I — ¢(I), then either rs €I or
stel or rt€l. The concept of ¢ —2-
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absorbing primary ideals is first introduced
and studied in Badawi et al. (2016): I is
called a ¢ — 2-absorbing primary ideal of R
if whenever r,s,t e Rand rst € I — ¢(I),
then either rs € I or st eI orrt € V1. In
a recent study U. Tekir et al. (2017), n-ideals
are defined as following: I is an n-ideal if
r,seRand rs €l and r € VO, then s € I.
In this study, we generalize the concept of n-
ideals in a commutative ring via a function
¢:1d(R) - Id(R) U {®}. We investigate the
properties of ¢ — n-ideals in detail.

We give some notations and state the
necessary lemmas which will be used in the
sequel. Let R be a commutative ring and M
an R-module. Then the idealization,
R(+)M ={(rm): rERMEM} is a
commutative ring with componentwise
addition and multiplication (r,m)(s,n) =
(rs,rn + sm) for each r,s € R and m,n €
M. Moreover, J is an ideal of R(+)M if and
only if J=I(+)N where [={re
R: (r,m) € J for some m € M} an ideal of R,
and N = {n € M: (r,n) €] for some r € R}
a submodule of M satisfying IM S N
(Huckaba 1988). As usual, Z and Z,, denote
the ring of integers and the ring of integers
modulo n, respectively.

Lemma 1.1. Darani (2012) Let R be a
commutative ring, and let ¢:Id(R) —
Id(R) U {@} be a function. Then every ¢ -
prime ideal of R is ¢ -primary.

Lemma 1.2. Tekir et. al. (2017) Let R be a
commutative ring and J < I be two ideals of
R. If I is an n-ideal of R, then I/] is an n-
ideal of R/J.

2. ¢ — n-ideals of Commutative Rings

In this section, we are going to intoduce ¢ —
n-ideals in commutative rings and present
many the properties of them.

Definition 2.1. Let R be a commutative ring,
[ a proper ideal of R. Let ¢: Id(R) —
Id(R) U {@} be a function. We call I a ¢ —
n-ideal of R if whenever r,s € Rand rs €
I — ¢ (I), then either r is nilpotent or s €
I.

Let I be a ¢ — n-ideal of R. Then define:

(1) If¢(J) = @ for all J € Id(R), then we
say that ¢ = ¢ and [ is called a ¢py-n-ideal,
and hence I is an n-ideal of R.

(2) If¢p(yJ) =0 for all J € Id(R), then we
say that ¢ = ¢, and I is called a ¢,-n-ideal
(weakly n-ideal) of R.

(3) Ifp(J) =] for all J € Id(R), then we
say that ¢ = ¢, and I is called a ¢,-n-ideal
(any ideal) of R.

(4) If k 22 and ¢() = J* for all J €
Id(R), then we say that ¢ = ¢, and I is
called a ¢,-n-ideal (k-almost n-ideal) of R.
In special, if k = 2, then we call I an almost
n-ideal of R.

(6) If p()) = N2, J* for all J € Id(R), then
we say that ¢ = ¢, and I is called a ¢, —
n-ideal (w — n —ideal) of R.

Let ¢ : Id(R) —» Id(R) U {@} be a function.
Observe that I —¢(l) =1 — (I n ¢(])).
So without loss of generality, assume
throughout that ¢(1) € I. If Y, and P, are
two functions 1, ,: Id(R) - Id(R) U {@},

then we say ¥, < ¢, if Y,(J) € y,(J) for
all ] € Id(R).
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We give the following examples which show
that the concept of ¢-n-ideals and n-ideals
are different:

Example 2.2.

(1) For every ring R, the zero ideal is a ¢, —
n-ideal of R for all k > 0. However, it may
not be an n-ideal. Consider the ring Z,. Since
23 € (0) but neither 2 € V0 nor 3 € (0).
So (0) is not an n-ideal (¢p4-n-ideal) of Z.

(2) Consider the ideal A = {0,9,18,27} of
Zio. Let R=7Zz(+)A and [=
{(0,0),(0,18)}. Then I is a ¢, — n-ideal of
R which is not an n-ideal. Indeed, since there
is no r,seR with rsel—¢,()=1-
12 =(0,18), I is clearly a ¢, — n-ideal.
However, since (4,0) - (9,0) € I but neither
(4,0) € V0 nor (9,0) €1, it is not an n-
ideal.

Theorem 2.3. For any [ €lId(R), the
following statements hold:

(1) Let y,; and 1, are two functions
Y1, Id(R) = Id(R) U {@} such that y; <
Y,. If Iisay, —n-ideal, then I is ay, — n-
ideal.

(2) I is a n-ideal = I is a weakly n-ideal = 1
is a ¢, —n-ideal = I is a ¢y, — n-ideal
for every k=2 = [ is a ¢, —n-ideal for
every n > 2 = [ is an almost ideal.

(3) I'isa ¢ —n-ideal = I is a ¢ —primary
ideal = I is a ¢ — 2-absorbing primary ideal.

(4) I'is an idempotent ideal of R = I is an
¢, — n-ideal of R for every k > 1.

(5)Ilisa ¢, —n-ideal forall k >2 < lisa
¢, — n-ideal.

Proof: (1) Straightforward.

(2) 1t is clear that there is a linear ordering:

P PSPy < SPpy1< P <
< ¢, < ¢ ;. Sowe obtain the result.

(3) Itis clear.

(4) Since I is idempotent, clearly I* = J? =1
for all k > 2. Hence ¢ (1) =1 for all k >
1, we are done.

(5) Itis clear by (2).

Lemma 2.4. If I is an ideal of which
elements are nilpotent, then I is ¢ — n-ideal
if and only if I is ¢ —primary. Moreover, if
R is a ring of which elements are nilpotent,
then the concepts of a ¢ —primary and a ¢ —
n-ideal coincide.

Proof: Suppose that I is ¢ — n-ideal of R.
Then it is ¢ —primary by Theorem 2.3. (3).
Conversely, suppose that r,s € R with rs €
I —¢(D) and 7 is non-nilpotent. Since VI =
/0 and I is assumed to be ¢-primary, we
have s € I. Thus I is a ¢ — n-ideal of R. The
“moreover” part is obvious.

Theorem 2.5. If I =+/0, then all of the
following cases are equivalent:

(1) I'is ¢ — n-ideal.

(2) I'is ¢ —prime.

(3) I'is ¢ —primary.

(4) 1'is ¢ — 2-absorbing primary.

(5) I is ¢ — 2-absorbing.
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Proof: (1) = (2) Let r,se R withrs e —
¢(I) and r ¢ I =+/0. Since I is ¢ — n-ideal,
we conclude that s € I.

(2) = (3) From Lemma 1.1, it is clear.
(3) = (4) Itis obvious.

(4) = (5) Since I =+ =+/0, the result is
clear.

(5) = (1) Let r,s € R with rs el —¢(])
and r€1. Then r-1-sel—¢(l) and r-
1¢l and r-s¢l. Since [ is ¢ —2-
absorbing, we have s =s-1 €1 =+/0, we
are done.

Theorem 2.6. For any R # I € Id(R), the
following statements hold:

(1) If I 'is a ¢ —n-ideal of R, then I/¢p(I) is
a weakly ¢ — n-ideal of R/ (I).

(2) If 1/¢() is a weakly n-ideal of R/¢(I)

and \/¢(I) =+/0, then I is a ¢ — n-ideal of
R.

Proof: (1) Let 0 # (r+ ¢(D)(s+ ¢ (D)) €
I/¢(I) and (r+ ¢(I)) be a non-nilpotent
element of R/¢p(I). Hence rs el — ¢(I)
and r is a non-nilpotent element of R. Since [
is ¢ —n-ideal, we have s € I; sos + ¢p(I) €
1/¢ (1), as needed.

(2) Let r,s € R with rs € I — ¢(I). Hence
0% (r+¢M)(s+¢)el/p). Since
1/¢(1) is a weakly n-ideal, we conclude that
r+¢() € \[Or/py OF s+ dU) €1/p(D).
Therefore, re. Jp(I)=+v0 or sel.
Consequently, I is a ¢ —n-ideal of R.

Theorem 2.7. For any R # 1 € Id(R), the
following conditions are equivalent:

(1) I'isa ¢ — n-ideal of R.

(2) (I:r)y=1U(¢pU):r) for every non-
nilpotent element r of R.

() (ir)y=1Tor I:r) = (¢U):r) for every
non-nilpotent element r of R.

(4) For every ideals J and K of R, JK < I and
JK & ¢(D) implyJ € +0orK 1.

Proof: (1) = (2) Since I < (I:r) and
(¢():r)< (I:r), we need to show that
(I:r)yc 1U(¢():r). Let s€ (I:r). Then
rs €l. Ifrs € ¢(I),thens € (¢(I):1). Now
suppose that rs & ¢(I). Since I is ¢ —n-
ideal and r is non-nilpotent, we conclude that
s € 1. Thus we conclude s € TU (¢p(I):1),
as needed.

(2) = (3). Itisclear.

(3) = (4). Suppose that J and K are ideals of
Rwith JK € Tbut] 0, K €1 Letj€].
Then j is a nilpotent element or not.

Case |. Suppose that j is non-nilpotent.
Hence jK <1 which means K < (I:j). On
the other hand, we have (I:j) =1or (I:j) =
(@ (I):)) by (3). Since our assumption K &

I, we conclude K € (¢(I):j), ie jKC
().
Case Il. Suppose that j is a nilpotent

element. Since J & V0, there exists a non-
nilpotent element x in J. Then it is clear that
(j + x) is a non-nilpotent element of /. From
(3), we have K< (¢():x) and K <
(¢p):(j+x)). Let keK. Now we
conclude jk= (+x)k—xke ¢().
Consequently, JK < ¢(I), we are done.

(4 =>().Letr,s € Randrse I — ¢ ().
Put /] = (r), K = (s) in (4). Then the result
is clear.
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Definition 2.8. Let R be a commutative ring,
I a proper ideal of R. Let ¢: Id(R) —
Id(R) U {@} be a function. We call I a
strongly ¢—n-ideal of R if whenever JK < |
and JK £ ¢ (I) for some ideals J, K of R,
then] € V0 orK < 1.

So we conclude the following corollary:

Corollary 2.9. For a proper ideal I of R, I is
a ¢ —n-ideal of R if and only if I is a
strongly ¢ — n-ideal of R.

Theorem 2.10. Let I be a ¢ — n-ideal of R.
Then I — ¢(I) < 0.

Proof: Assume that I — ¢(I) & V0. Then
there is a non-nilpotent element withr € I —
¢(). Since r=r-1€ - ¢)and I is
¢ —n-ideal, this implies that 1€, a
contadiction. Thus I — ¢(I) € V0.

Remark 2.11. (1) If (R,M) is a local ring
with unique prime ideal, then every ideal is a
¢ — n-ideal for all ¢.

(2) Let R be an integral domain. Then zero
ideal is a ¢ — n-ideal for all ¢.

There are some rings which have no ¢ —n-
ideal for ¢ # ¢;.

Example 2.12. Consider the ring R =
Ly, p,..p, Tor some distinct prime integers
D1, -, P¢. Then there is no ¢ — n-ideal for

¢ * b1

A ring R is called a reduced ring if there is no
nonzero nilpotent element of R.

Theorem 2.13. Let R be a reduced ring
which is not an integral domain. Then R has
no ¢ — n-ideal for ¢ # ¢,.

Proof: Assume on the contary that | is a
¢-n-ideal of R. From Theorem 2.10, we

conclude J — ¢(J) €0 =0. Thus ¢(J) =
J,and so ¢ = ¢;. Thus R hasno ¢ — n-ideal

for ¢ # ¢4.

Corollary 2.14. Let R be a reduced ring and
¢: Id(R) » Id(R)U {@} be a function
such that ¢ # ¢,. Then the following
statements are equivalent:

(1) R is a integral domain.
(2) 0 isa ¢ — n-ideal of R.

Proof: (1) = (2). Since R is an integral
domain, ¥O =0 is a prime ideal, so it is
¢ —prime. Thus 0 is a ¢ — n-ideal of R by
Theorem 2.5.

(2) = (). Itis clear by Theorem 2.13.

Theorem 2.14. Let ¢ : Id(R) » Id(R) U
{@} a function and I — ¢(I) is a prime ideal
of R. Then the following two conditions are
equivalent:

(1) I'is ¢ — n-ideal.
()1 — ¢(I) = 0.

Proof: (1) = (2) From Theorem 2.10, we

have I — ¢(I) € /0 as I is assumed to be a
¢ — n-ideal of R. The inverse inclusion is
clear as I — ¢(I) is prime, so we have the
equality.

(2) > (1) Letr,se Rwithrs el —¢() =
V0O and r is non-nilpotent. Thus we
conclude b € I — ¢(I) <€ I, as needed.

The next two theorems give the conditions
for a ¢ — n-ideal to be an n-ideal of R.
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Theorem 2.16. If IO & ¢(I) for a ¢ — n-
ideal of I of R, then I is an n-ideal of R.

Proof: Letr,s e Randrs € I. Ifrs & ¢(1),
then we are done. So suppose that rs €
¢ (I). Here there are three cases:

Case I. LetrI € ¢(I). Then there exists x €
I such that rx ¢ ¢(I). Since r(x+s) =
rx +rs € I — ¢(I), we conclude that either

r is nilpotent or x +s €1, ie. r €0 or
SEIl

Case Il. Let sv/0 &€ ¢(I). Then there is a
nilpotent element y € R satisfying sy ¢
¢(). Since (y+r)s=ys+rsel—
¢ (1), we conclude that either y +r € V0 or
s€l, thatis,rev0orsel.

Case IIl. Let I S ¢(I) and sv0 S ¢(I).
Since IV0 & ¢(I), there exists i € [ and z €
V0 such that iz ¢ ¢(I). Hence (r + z)(s +
)=rs+ri+zs+ziel— ¢() which
implies that (r+2z) € VO or (s+1i) €.
Therefore, r € V0 or s € I. Thus [ is an n-
ideal of R.

Corollary 2.17. Let I be a ¢ — n-ideal
which is not an n-ideal of R. Then I\/0 €
o (D).

Theorem 2.18. Let I be a ¢ — n-ideal of R.
If ¢ (1) is n-ideal, then I is an n-ideal of R.

Proof: Suppose that rs € I for some r,s € R
and r is non-nilpotent. If rs € ¢(I), then
se€ ¢(I)<S 1 as ¢p(I) is n-ideal. If rs ¢
¢(I), we conclude s € I as I is ¢ — n-ideal.

Proposition 2.19. If [ is a ¢ — n-ideal of R
with /¢ (1) = ¢p(VI), then so is VI .

Proof: Assume that rs € VI — ¢(\/T) for
some r,s € R and r is non-nilpotent. Then

(rs)™ =rn"s™ € I for some positive integer
n. Since rs & ¢(VI) = /o), clearly it
follows r™s™ & ¢(I). Now r™ is non-
nilpotent and I is ¢-n-ideal gives s™ € I.
Thus s € V1, as required.

R

Let / be an ideal of R. Define ¢, : S(j) -

S(2)u ey by ¢,U/) = (6 +1)/) for
every ideal J 2 1 and ¢;,(I/]) = @ if p(I) =
@. Observe that ¢;(I/]) €1/] and (¢p); =
¢ for xe {@} U {0} UN. As it is stated in
Lemma 1.2 that if / € Id(R) and I is an n-
ideal containing J, then I/] is also an n-ideal
of R/J. The next theorem shows that if I is
a ¢ — n-ideal of R, then I/] is a ¢p; — n-ideal
of R/].

Theorem 2.20. Let I be ¢ —n-ideal of R,
and I €] €Id(R). Then I/] is a ¢, —n-
ideal of R/].

Proof: Suppose that (r+/)(s+J) €l/] —
¢,/ =1/] — (@D +))/] and (r+]) is
non-nilpotent element of R/J. Then rs € I —
(¢() +]) and clearly r is a non-nilpotent
element of R. Hence rs € I — ¢(I). Since I
is ¢ — n-ideal, it follows r € I. Thus r + ] €
1/], we are done.

Let T be a multiplicatively closed subset of a
ring R. Then T™'R = {=: 7 € R, ¢t € T}. This
localization is often written as Ry; we call it
the localization of R at the multiplicatively
closed set T. Let ¢ : Id(R) — Id(R) U {@}
be a function. Then define ¢4 : Id(Ry) —
Id(Rr) U{@} by ¢r(J) =¢(UNR)r for
every ideal J of Ry and¢,(J) =0 |if
¢(JNR)=@. Note that ¢-(J) € J. The
following theorem shows that If I isa ¢ — n-
ideal of R with (¢ (1)) S ¢+ (I7), then I is
a ¢ — n-ideal of Ry.
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Theorem 2.21. Let ¢ : Id(R) - Id(R) U
{@} be a function, T a multiplicatively closed
subset of R and INT =@ for some I €
Id(R). If I is a ¢ —n-ideal of R and
(p(D)r < ¢pr(Uy), then the following
conditions are satisfied:

(1) Iy isa ¢ — n-ideal of Ry.
() If Iy # ¢(I)7, then Iy N R = V0.

Proof: (1) Suppose that %f €lr — pr(y)
and % is a non-nilpotent element of R;. Then

urs € 1 for some uw €T and clearly ris a
non-nilpotent element of R. Since % ¢
¢r(y), rsvé dpr(Ip)NR for all veT.
From our assumption ¢(I)r S ¢ (), we
conclude that rsv ¢ ¢(I) forall v € T. Thus
r(sv) € I — ¢(I). Since I is assumed to be a
¢ — n-ideal and r is non-nilpotent, it implies
that su € I, and so %e Ir. Therefore I, is a
¢ — n-ideal of Rr.

(2) Let r € Ir N R. Then there is an element
u € T such that au € I. Now, if ru & ¢(I),
then r is nilpotent as u & I. If ru € ¢(I),
then re¢()rNR. Thus I[;NRC
VO U(¢(I)r NR). From hypothesis I #

(D)7, we conclude that I n R € +/0.

Let ¢ : Id(R) - Id(R) U {@} be a function.
It is said that ¢ preserves the order if I € J
for ideals I, J of R implies that ¢(I) <

¢().

Proposition 2.22. Let {I;};cp be a directed
collection of ¢ —n-ideals of R where ¢
preserves the order. Then I =U;ep I iSa ¢ —
n-ideal of R.

Proof: Suppose that rs € I — ¢ (1) for some
r,s € R where r is non-nilpotent. Then rs €
I, for some k € A but rs & ¢(I;) for all i €

A as ¢ preserves the order. Since I, is
assumed to be a ¢ — n-ideal, we get s € [}, <
1, as needed.

Proposition 2.23. Let A be a nonempty
subset of R and ¢ : Id(R) » Id(R) U {@}
be a function which preserves order. If I is a
¢ —n-ideal of R with A £ I, then so is
(I: 4).

Proof: Let rs € (I: A) — ¢(I:A) and r is a
non-nilpotent element of R. Since ¢
preserves order, we have ¢(I) € ¢(I: A).
Hence rsA € I — ¢(I). It follows sA € I by
Theorem 2.7. Thus s € (I: A), we are done.

Theorem 2.24. Let M an R-module. Let
Yq: I1d(R) » Id(R) U {0} and
Yy Id(R(+)M ) - Id(R(+)M ) U {@} be
two functions satisfying Y,(I(+)M) =
Y, (I)(+)N for a proper ideal I of R. If
I(+)M is ay, — n-ideal of R(+)M, then I is
a i, — n-ideal of R.

Proof: Let r,s € R with rs € I —y;(I) and
r be a non-nilpotent. Then (r,0)(s,0) €
()M = P, (I(+H)M)  as P (I(+H)M) =
Y, (I)(+)N. Itis not hard to see that (r,0) is
non-nilpotent element of R(+)M . Therefore,
it implies that (s,0) € I(+)M; and so s € I.
Thus I is a, — n-ideal of R.

Remark 2.25. Let R, and R, be two
commutative rings with nonzero identity and
R=R; xR, Let y;:1d(R,) - Id(R;) U
{0}, Y,:1d(R,) — Id(R,) U{®} be two
functions and ¢ =y, X ¥,. Then R has no
¢ — n-ideal. Indeed, if I is ¢ —n-ideal, then
I =1, X I, for some ideals I;,I, of R, R,
respectively. On the other hand, since (1,0) -
(0,1) € I but neither (1,0) nor (0,1)is a
nilpotent element of R. It implies that
(0,1),(1,0) € I. Thus we conclude 1 €1,
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and 1€, so
contradiction.

I=R;XR,=R, a
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