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Abstract 

Let 𝑅 be a commutative ring with identity and 𝐼𝑑(𝑅) denotes the set of all ideals of 𝑅. We will concerned in 

this study mainly with the generalizations of 𝑛-ideals in commutative rings via a function 𝜙: 𝐼𝑑(𝑅) →

𝐼𝑑(𝑅) ∪ {∅}.  Properties of this class of ideals will investigated in detail. 

 

Keywords: 𝑛-ideal; 𝜙 − 𝑛-ideal; 𝜙 −prime ideal; 𝜙 −primary ideal. 

 

Değişmeli Halkalarda 𝒏-ideallerin Genelleştirmeleri 

Öz 

𝑅 değişmeli, birimli bir halka olsun ve 𝐼𝑑(𝑅), 𝑅 nin tüm ideallerinin kümesini göstersin. Bu çalışmada, esas 

olarak değişmeli halkalarda 𝑛 −ideal kavramının bir 𝜙: 𝐼𝑑(𝑅) →  𝐼𝑑(𝑅) ∪ {∅} fonksiyonu aracıyla 

genelleştirmeleri üzerinde duracağız. Bu ideal sınıfının özellikleri detaylarıyla incelenecektir. 

 

Anahtar Kelimeler:  𝑛-ideal; 𝜙 − 𝑛-ideal; 𝜙 −asal ideal; 𝜙 −asalımsı ideal. 

 

1. Preliminaries and Background 

Throughout this paper, all rings are assumed 

to be commutative with nonzero identity and 

by 𝐼𝑑(𝑅), we mean the set of all ideals of a 

ring 𝑅. Let 𝐼 be a proper ideal of a ring 𝑅. 

The radical of 𝐼 is given by √𝐼 = {𝑟 ∈ 𝑅 : 

𝑟𝑘 ∈ 𝐼  for some 𝑘 ∈ ℕ}. In particular, the set 

of the nilpotent elements of 𝑅 is √0, that is 

{𝑟 ∈ 𝑅 ∶  𝑟𝑘 = 0 for some 𝑘 ∈ ℕ}. For an 

element 𝑟 ∈ 𝑅, the ideal {𝑠 ∈ 𝑅: 𝑟𝑠 ∈ 𝐼} is 

denoted by (𝐼: 𝑟). 

Since prime ideals have an important role in 

ring theory, several authours generalized 

these concept in different ways. Please see 

Anderson and Smith (2003), Bataineh 

(2006), Atani and Farzalipour (2005), 

Badawi (2007), Badawi and Darani (2013), 

Anderson and Badawi (2011) and Badawi et 

al. (2014).  Later, the concepts of 𝜙 −prime 

and 𝜙 −primary ideals are introduced in 

(Anderson and Batanieh 2008, Darani 2012). 

Let 𝜙 ∶  𝐼𝑑(𝑅) →  𝐼𝑑(𝑅) ∪ {∅} be a function 

and ∅ ≠ 𝐼 ∈ 𝐼𝑑(𝑅). Then 𝐼 is said to be a 

𝜙 −prime (resp. 𝜙 −primary) ideal of 𝑅 if 

whenever 𝑟, 𝑠 ∈ 𝑅 and 𝑟𝑠 ∈ 𝐼 − 𝜙(𝐼), then 

𝑟 ∈ 𝐼 or 𝑠 ∈ 𝐼 (resp. 𝑟 ∈ 𝐼 or 𝑠 ∈ √𝐼). Recall 

from Khaksari (2015) that 𝐼 is called a 𝜙 −

2-absorbing ideal of 𝑅 if whenever 𝑟, 𝑠, 𝑡 ∈

𝑅 and 𝑟𝑠𝑡 ∈ 𝐼 − 𝜙(𝐼), then either 𝑟𝑠 ∈ 𝐼 or 

𝑠𝑡 ∈ 𝐼 or 𝑟𝑡 ∈ 𝐼. The concept of 𝜙 −2-
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absorbing primary ideals is first introduced 

and studied in Badawi et al. (2016): 𝐼 is 

called a 𝜙 − 2-absorbing primary ideal of 𝑅 

if whenever 𝑟, 𝑠, 𝑡 ∈ 𝑅 and 𝑟𝑠𝑡 ∈ 𝐼 − 𝜙(𝐼),  

then either  𝑟𝑠 ∈ 𝐼 or 𝑠𝑡 ∈ √𝐼 or 𝑟𝑡 ∈ √𝐼.  In 

a recent study U. Tekir et al. (2017), 𝑛-ideals 

are defined as following: 𝐼 is an 𝑛-ideal if 

𝑟, 𝑠 ∈ 𝑅 and 𝑟𝑠 ∈ 𝐼 and 𝑟 ∉ √0, then 𝑠 ∈ 𝐼. 

In this study, we generalize the concept of 𝑛-

ideals in a commutative ring via a function 

𝜙: 𝐼𝑑(𝑅) → 𝐼𝑑(𝑅) ∪ {∅}. We investigate the 

properties of 𝜙 − 𝑛-ideals in detail. 

We give some notations and state the 

necessary lemmas which will be used in the 

sequel. Let 𝑅 be a commutative ring and 𝑀 

an 𝑅-module. Then the idealization, 

𝑅(+)𝑀 = {(𝑟, 𝑚) ∶  𝑟 ∈ 𝑅, 𝑚 ∈ 𝑀} is a 

commutative ring with componentwise 

addition and multiplication (𝑟, 𝑚)(𝑠, 𝑛)  =

 (𝑟𝑠, 𝑟𝑛 + 𝑠𝑚) for each 𝑟, 𝑠 ∈ 𝑅 and 𝑚, 𝑛 ∈

𝑀. Moreover, 𝐽 is an ideal of 𝑅(+)𝑀 if and 

only if  𝐽 = 𝐼(+)𝑁 where 𝐼 = {𝑟 ∈

𝑅: (𝑟, 𝑚) ∈ 𝐽 for some 𝑚 ∈ 𝑀} an ideal of 𝑅, 

and 𝑁 = {𝑛 ∈ 𝑀: (𝑟, 𝑛) ∈ 𝐽 for some 𝑟 ∈ 𝑅} 

a submodule of 𝑀 satisfying  𝐼𝑀 ⊆ 𝑁 

(Huckaba 1988). As usual, ℤ and ℤ𝑛 denote 

the ring of integers and the ring of integers 

modulo 𝑛, respectively. 

Lemma 1.1. Darani (2012) Let 𝑅 be a 

commutative ring, and let 𝜙: 𝐼𝑑(𝑅) →

 𝐼𝑑(𝑅) ∪ {∅}  be a function. Then every 𝜙 -

prime ideal of 𝑅 is 𝜙 -primary. 

Lemma 1.2. Tekir et. al. (2017) Let 𝑅 be a 

commutative ring and 𝐽 ⊆ 𝐼 be two ideals of 

𝑅. If  𝐼 is an 𝑛-ideal of 𝑅, then 𝐼/𝐽 is an 𝑛-

ideal of 𝑅/𝐽. 

2. 𝝓 − 𝒏-ideals of Commutative Rings 

In this section, we are going to intoduce 𝜙 −

𝑛-ideals in commutative rings and present 

many the properties of them. 

Definition 2.1. Let 𝑅 be a commutative ring, 

𝐼 a proper ideal of 𝑅. Let 𝜙 ∶  𝐼𝑑(𝑅) →

 𝐼𝑑(𝑅) ∪ {∅} be a function. We call 𝐼 a 𝜙 −

𝑛-ideal of 𝑅 if whenever 𝑟, 𝑠 ∈  𝑅 and 𝑟𝑠 ∈

 𝐼 −  𝜙 (𝐼), then either 𝑟 is nilpotent or 𝑠 ∈

 𝐼. 

Let 𝐼 be a 𝜙 − 𝑛-ideal of 𝑅. Then define:  

(1) If 𝜙(𝐽)  =  ∅  for all 𝐽 ∈ 𝐼𝑑(𝑅), then we 

say that 𝜙 = 𝜙∅ and 𝐼 is called a 𝜙∅-n-ideal, 

and hence 𝐼 is an 𝑛-ideal of 𝑅. 

(2) If 𝜙(𝐽)  = 0 for all 𝐽 ∈ 𝐼𝑑(𝑅), then we 

say that 𝜙 = 𝜙0 and 𝐼 is called a 𝜙0-n-ideal 

(weakly 𝑛-ideal) of 𝑅. 

 (3) If 𝜙(𝐽)  = 𝐽 for all 𝐽 ∈ 𝐼𝑑(𝑅), then we 

say that 𝜙 = 𝜙1 and 𝐼 is called a 𝜙1-n-ideal 

(any ideal) of 𝑅. 

(4) If 𝑘 ≥ 2 and  𝜙(𝐽)  =  𝐽𝑘 for all 𝐽 ∈

𝐼𝑑(𝑅), then we say that 𝜙 = 𝜙𝑘 and 𝐼 is 

called a 𝜙𝑘-n-ideal (𝑘-almost 𝑛-ideal) of 𝑅. 

In special, if 𝑘 =  2, then we call 𝐼 an almost 

𝑛-ideal of 𝑅.   

(5) If 𝜙(𝐽)  = ⋂ 𝐽𝑖∞
𝑖=1  for all 𝐽 ∈ 𝐼𝑑(𝑅), then 

we say that 𝜙 = 𝜙𝜔 and 𝐼 is called a 𝜙𝜔 −

𝑛-ideal (𝜔 − 𝑛 −ideal) of 𝑅. 

Let 𝜙 ∶  𝐼𝑑(𝑅) →  𝐼𝑑(𝑅) ∪ {∅} be a function. 

Observe that 𝐼 − 𝜙(𝐼)  =  𝐼 − (𝐼 ∩  𝜙(𝐼)). 

So without loss of generality, assume 

throughout that  𝜙(𝐼) ⊆  𝐼 . If 𝜓1 and 𝜓2 are 

two functions 𝜓1,2:  𝐼𝑑(𝑅) →  𝐼𝑑(𝑅) ∪ {∅}, 

then we say 𝜓1 ≤ 𝜓2 if  𝜓1(𝐽) ⊆ 𝜓2(𝐽)  for 

all 𝐽 ∈ 𝐼𝑑(𝑅).  
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We give the following examples which show 

that the concept of 𝜙-𝑛-ideals and 𝑛-ideals 

are different: 

 

 

Example 2.2. 

(1) For every ring 𝑅, the zero ideal is a 𝜙𝑘 −

𝑛-ideal of 𝑅 for all 𝑘 ≥ 0. However, it may 

not be an 𝑛-ideal. Consider the ring ℤ6. Since 

2̅ ∙ 3̅ ∈ (0̅) but neither 2̅ ∈ √0  nor 3̅ ∈ (0̅). 

So (0̅) is not an 𝑛-ideal (𝜙∅-𝑛-ideal) of ℤ6. 

(2) Consider the ideal 𝐴 = {0̅, 9̅, 18̅̅̅̅ , 27̅̅̅̅ } of 

ℤ36. Let 𝑅 = ℤ36(+)𝐴 and 𝐼 =

{(0̅, 0̅), (0̅ , 18̅̅̅̅ )}. Then 𝐼 is a 𝜙2 − 𝑛-ideal of 

𝑅 which is not an 𝑛-ideal. Indeed, since there 

is no 𝑟, 𝑠 ∈ 𝑅 with 𝑟𝑠 ∈ 𝐼 − 𝜙2 (𝐼) = 𝐼 −

𝐼2 = (0̅ , 18̅̅̅̅ ), 𝐼 is clearly a 𝜙2 − 𝑛-ideal. 

However, since (4̅, 0̅) ∙ (9̅, 0̅) ∈ 𝐼 but neither 

(4̅, 0̅) ∈ √0 nor (9̅, 0̅) ∈ 𝐼, it is not an 𝑛-

ideal. 

Theorem 2.3. For any 𝐼 ∈ 𝐼𝑑(𝑅), the 

following statements hold: 

(1) Let 𝜓1 and 𝜓2 are two functions 

𝜓1,2:  𝐼𝑑(𝑅) →  𝐼𝑑(𝑅) ∪ {∅} such that 𝜓1 ≤ 

𝜓2. If 𝐼 is a 𝜓1 − 𝑛-ideal, then 𝐼 is a 𝜓2 − 𝑛-

ideal. 

(2) 𝐼 is a 𝑛-ideal ⇒ 𝐼 is a weakly 𝑛-ideal ⇒ I 

is a 𝜙𝜔 − 𝑛-ideal ⇒  𝐼 is a 𝜙𝑘+1 − 𝑛-ideal 

for every 𝑘 ≥ 2 ⇒ 𝐼 is a 𝜙𝑘 − 𝑛-ideal for 

every 𝑛 ≥ 2 ⇒ 𝐼 is an almost ideal. 

(3) 𝐼 is a 𝜙 − 𝑛-ideal ⇒ 𝐼 is a 𝜙 −primary 

ideal ⇒ 𝐼 is a 𝜙 − 2-absorbing primary ideal. 

(4) 𝐼 is an idempotent ideal of 𝑅 ⇒  𝐼 is an 

𝜙𝑘 − 𝑛-ideal of 𝑅 for every 𝑘 ≥ 1. 

(5) 𝐼 is a 𝜙𝑘 − 𝑛-ideal for all 𝑘 ≥ 2 ⇔ 𝐼 is a  

𝜙𝜔 − 𝑛-ideal. 

Proof: (1) Straightforward. 

(2) It is clear that there is a linear ordering: 

𝜙 ∅ ≤  𝜙 0 ≤ 𝜙𝜔 ≤ ⋯ ≤ 𝜙 𝑘+1 ≤  𝜙 𝑘 ≤

⋯ ≤ 𝜙 2 ≤ 𝜙 1.  So we obtain the result. 

(3) It is clear. 

(4) Since 𝐼 is idempotent, clearly 𝐼𝑘 = 𝐼2 = 𝐼 

for all 𝑘 ≥ 2. Hence 𝜙 𝑘(𝐼) = 𝐼 for all 𝑘 ≥

1, we are done. 

(5) It is clear by (2). 

Lemma 2.4. If 𝐼 is an ideal of which 

elements are nilpotent, then 𝐼 is 𝜙 − 𝑛-ideal 

if and only if 𝐼 is 𝜙 −primary. Moreover, if 

𝑅 is a ring of which elements are nilpotent, 

then the concepts of a 𝜙 −primary and a 𝜙 −

𝑛-ideal coincide. 

Proof: Suppose that 𝐼 is 𝜙 − 𝑛-ideal of 𝑅. 

Then it is 𝜙 −primary by Theorem 2.3. (3). 

Conversely, suppose that 𝑟, 𝑠 ∈ 𝑅 with 𝑟𝑠 ∈

𝐼 − 𝜙(𝐼) and 𝑟 is non-nilpotent. Since √𝐼 =

√0 and 𝐼 is assumed to be 𝜙-primary, we 

have 𝑠 ∈ 𝐼. Thus 𝐼 is a 𝜙 − 𝑛-ideal of 𝑅. The 

“moreover” part is obvious. 

Theorem 2.5. If 𝐼 = √0, then all of the 

following cases are equivalent: 

(1) 𝐼 is 𝜙 − 𝑛-ideal.  

(2) 𝐼 is 𝜙 −prime. 

(3) 𝐼 is 𝜙 −primary. 

(4) 𝐼 is 𝜙 − 2-absorbing primary. 

(5) 𝐼 is 𝜙 − 2-absorbing. 



Generalizations of n-ideals of Commutative Rings 

653 

 

Proof: (1) ⇒ (2) Let 𝑟, 𝑠 ∈ 𝑅 with 𝑟𝑠 ∈ 𝐼 −

𝜙(𝐼) and 𝑟 ∉ 𝐼 = √0. Since 𝐼 is 𝜙 − 𝑛-ideal, 

we conclude that 𝑠 ∈ 𝐼. 

(2) ⇒ (3) From Lemma 1.1, it is clear. 

(3) ⇒ (4) It is obvious. 

(4) ⇒ (5) Since 𝐼 = √𝐼 = √0, the result is 

clear. 

(5) ⇒ (1) Let 𝑟, 𝑠 ∈ 𝑅 with 𝑟𝑠 ∈ 𝐼 − 𝜙(𝐼)  

and 𝑟 ∉ 𝐼. Then 𝑟 ∙ 1 ∙ 𝑠 ∈ 𝐼 − 𝜙(𝐼) and 𝑟 ∙

1 ∉ 𝐼 and 𝑟 ∙ 𝑠 ∉ 𝐼. Since 𝐼 is 𝜙 − 2-

absorbing, we have 𝑠 = 𝑠 ∙ 1 ∈ 𝐼 = √0, we 

are done. 

 Theorem 2.6.  For any 𝑅 ≠ 𝐼 ∈ 𝐼𝑑(𝑅) , the 

following statements hold: 

(1) If 𝐼 is a 𝜙 − 𝑛-ideal of 𝑅, then 𝐼/𝜙(𝐼) is 

a weakly 𝜙 − 𝑛-ideal of 𝑅/𝜙(𝐼). 

(2) If  𝐼/𝜙(𝐼) is a weakly 𝑛-ideal of 𝑅/𝜙(𝐼) 

and √𝜙(𝐼) = √0, then 𝐼 is a 𝜙 − 𝑛-ideal of 

𝑅. 

Proof: (1) Let 0 ≠ (𝑟 + 𝜙(𝐼))(𝑠 + 𝜙(𝐼)) ∈

𝐼/𝜙(𝐼) and (𝑟 + 𝜙(𝐼)) be a non-nilpotent 

element of 𝑅/𝜙(𝐼). Hence 𝑟𝑠 ∈ 𝐼 −  𝜙(𝐼) 

and 𝑟 is a non-nilpotent element of 𝑅. Since 𝐼 

is 𝜙 − 𝑛-ideal, we have 𝑠 ∈ 𝐼;  so 𝑠 + 𝜙(𝐼) ∈

𝐼/𝜙(𝐼), as needed. 

(2) Let 𝑟, 𝑠 ∈ 𝑅 with 𝑟𝑠 ∈ 𝐼 −  𝜙(𝐼). Hence 

0 ≠ (𝑟 + 𝜙(𝐼))(𝑠 + 𝜙(𝐼)) ∈ 𝐼/𝜙(𝐼). Since 

𝐼/𝜙(𝐼) is a weakly 𝑛-ideal, we conclude that 

𝑟 + 𝜙(𝐼) ∈ √0𝑅/𝜙(𝐼) or 𝑠 + 𝜙(𝐼) ∈ 𝐼/𝜙(𝐼). 

Therefore, 𝑟 ∈ √𝜙(𝐼) = √0 or 𝑠 ∈ 𝐼. 

Consequently, 𝐼 is a 𝜙 –𝑛-ideal of 𝑅. 

Theorem 2.7.  For any 𝑅 ≠ 𝐼 ∈ 𝐼𝑑(𝑅), the 

following conditions are equivalent: 

(1) 𝐼 is a 𝜙 − 𝑛-ideal of 𝑅. 

(2) (𝐼: 𝑟) = 𝐼 ∪ ( 𝜙(𝐼): 𝑟) for every non-

nilpotent element 𝑟 of 𝑅. 

(3) (𝐼: 𝑟) = 𝐼 or (𝐼: 𝑟) = ( 𝜙(𝐼): 𝑟) for every 

non-nilpotent element 𝑟 of 𝑅. 

(4) For every ideals 𝐽 and 𝐾 of 𝑅, 𝐽𝐾 ⊆ 𝐼 and 

𝐽𝐾 ⊈ 𝜙(𝐼) imply 𝐽 ⊆ √0 or 𝐾 ⊆ 𝐼. 

Proof: (1) ⇒ (2) Since 𝐼 ⊆ (𝐼: 𝑟) and 

( 𝜙(𝐼): 𝑟) ⊆ (𝐼: 𝑟), we need to show that 

(𝐼: 𝑟) ⊆  𝐼 ∪ ( 𝜙(𝐼): 𝑟). Let 𝑠 ∈ (𝐼: 𝑟). Then 

𝑟𝑠 ∈ 𝐼. If 𝑟𝑠 ∈ 𝜙(𝐼), then 𝑠 ∈ (𝜙(𝐼): 𝑟). Now 

suppose that 𝑟𝑠 ∉ 𝜙(𝐼). Since 𝐼 is 𝜙 − 𝑛-

ideal and 𝑟 is non-nilpotent, we conclude that 

𝑠 ∈ 𝐼. Thus we conclude 𝑠 ∈  𝐼 ∪ ( 𝜙(𝐼): 𝑟), 

as needed. 

(2) ⇒ (3). It is clear. 

(3) ⇒ (4). Suppose that 𝐽 and 𝐾 are ideals of 

𝑅 with 𝐽𝐾 ⊆ 𝐼 but 𝐽 ⊈ √0, 𝐾 ⊈ 𝐼. Let 𝑗 ∈ 𝐽. 

Then 𝑗 is a nilpotent element or not.  

Case I. Suppose that 𝑗 is non-nilpotent. 

Hence 𝑗𝐾 ⊆ 𝐼 which means 𝐾 ⊆ (𝐼: 𝑗). On 

the other hand, we have (𝐼: 𝑗) = 𝐼 or (𝐼: 𝑗) =

( 𝜙(𝐼): 𝑗) by (3). Since our assumption 𝐾 ⊈

𝐼, we conclude 𝐾 ⊆ ( 𝜙(𝐼): 𝑗),  i.e. 𝑗𝐾 ⊆

 𝜙(𝐼). 

Case II. Suppose that 𝑗 is a nilpotent 

element. Since 𝐽 ⊈ √0, there exists a non-

nilpotent element 𝑥 in 𝐽. Then it is clear that 

(𝑗 + 𝑥) is a non-nilpotent element of 𝐽. From 

(3), we have 𝐾 ⊆ ( 𝜙(𝐼): 𝑥) and 𝐾 ⊆

( 𝜙(𝐼): (𝑗 + 𝑥)). Let 𝑘 ∈ 𝐾. Now we 

conclude 𝑗𝑘 = (𝑗 + 𝑥)𝑘 − 𝑥𝑘 ∈  𝜙(𝐼). 

Consequently, 𝐽𝐾 ⊆  𝜙(𝐼),  we are done. 

(4) ⇒ (1). Let 𝑟, 𝑠 ∈  𝑅 and 𝑟𝑠 ∈  𝐼 −  𝜙 (𝐼). 

Put 𝐽 = (𝑟),  𝐾 = (𝑠) in (4). Then the result 

is clear. 
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Definition 2.8. Let 𝑅 be a commutative ring, 

𝐼 a proper ideal of 𝑅. Let 𝜙 ∶  𝐼𝑑(𝑅) →

𝐼𝑑(𝑅) ∪ {∅} be a function. We call 𝐼 a 

strongly 𝜙–𝑛-ideal of 𝑅 if whenever 𝐽𝐾 ⊆  𝐼 

and 𝐽𝐾 ⊈  𝜙 (𝐼) for some ideals 𝐽, 𝐾 of 𝑅, 

then 𝐼 ⊆  √0  or 𝐾 ⊆  𝐼.  

So we conclude the following corollary: 

Corollary 2.9.  For a proper ideal 𝐼 of 𝑅, 𝐼 is 

a 𝜙 − 𝑛-ideal of 𝑅 if and only if 𝐼 is a 

strongly 𝜙 − 𝑛-ideal of R. 

Theorem 2.10. Let 𝐼 be a 𝜙 − 𝑛-ideal of 𝑅. 

Then 𝐼 − 𝜙(𝐼) ⊆ √0. 

Proof:  Assume that 𝐼 −  𝜙(𝐼) ⊈ √0. Then 

there is a non-nilpotent element with 𝑟 ∈  𝐼 −

 𝜙(𝐼). Since 𝑟 = 𝑟 ∙ 1 ∈  𝐼 −  𝜙(𝐼) and 𝐼 is 

𝜙 − 𝑛-ideal, this implies that 1 ∈ 𝐼, a 

contadiction. Thus 𝐼 −  𝜙(𝐼) ⊆ √0. 

Remark 2.11. (1) If (𝑅, 𝑀) is a local ring 

with unique prime ideal, then every ideal is a 

𝜙 − 𝑛-ideal for all 𝜙. 

(2) Let 𝑅 be an integral domain. Then zero 

ideal is a 𝜙 − 𝑛-ideal for all 𝜙. 

There are some rings which have no 𝜙 − 𝑛-

ideal for 𝜙 ≠ 𝜙1. 

Example 2.12. Consider the ring 𝑅 =

ℤ𝑝1𝑝2⋯𝑝𝑡
 for some distinct prime integers 

𝑝1, … , 𝑝𝑡. Then there is no 𝜙 − 𝑛-ideal for 

𝜙 ≠ 𝜙1.  

A ring 𝑅 is called a reduced ring if there is no 

nonzero nilpotent element of 𝑅.  

Theorem 2.13. Let 𝑅 be a reduced ring 

which is not an integral domain. Then 𝑅 has 

no  𝜙 − 𝑛-ideal for 𝜙 ≠ 𝜙1.  

Proof:  Assume on the contary that 𝐽 is a 

𝜙– 𝑛-ideal of 𝑅. From Theorem 2.10, we 

conclude 𝐽 −  𝜙(𝐽) ⊆ √0 = 0. Thus 𝜙(𝐽) =

𝐽, and so 𝜙 = 𝜙1. Thus 𝑅 has no  𝜙 − 𝑛-ideal 

for 𝜙 ≠ 𝜙1.  

Corollary 2.14. Let 𝑅 be a reduced ring and 

𝜙 ∶  𝐼𝑑(𝑅) →  𝐼𝑑(𝑅) ∪ {∅} be a function 

such that 𝜙 ≠ 𝜙1. Then the following 

statements are equivalent: 

(1) 𝑅 is a integral domain. 

(2) 0 is a 𝜙 − 𝑛-ideal of 𝑅. 

Proof: (1) ⇒ (2). Since 𝑅 is an integral 

domain, √0 = 0 is a prime ideal, so it is 

𝜙 −prime. Thus 0 is a 𝜙 − 𝑛-ideal of 𝑅 by 

Theorem 2.5.  

(2) ⇒ (1). It is clear by Theorem 2.13. 

Theorem 2.14. Let 𝜙 ∶  𝐼𝑑(𝑅) →  𝐼𝑑(𝑅) ∪

{∅} a function and 𝐼 −  𝜙(𝐼) is a prime ideal 

of 𝑅. Then the following two conditions are 

equivalent: 

(1) 𝐼 is 𝜙 − 𝑛-ideal. 

(2) 𝐼 −  𝜙(𝐼) = √0. 

Proof: (1) ⇒ (2) From Theorem 2.10, we 

have 𝐼 −  𝜙(𝐼) ⊆ √0 as 𝐼 is assumed to be a 

𝜙 − 𝑛-ideal of 𝑅. The inverse inclusion is 

clear as 𝐼 −  𝜙(𝐼) is prime, so we have the 

equality.  

(2) ⇒ (1) Let 𝑟, 𝑠 ∈ 𝑅 with 𝑟𝑠 ∈ 𝐼 − 𝜙(𝐼) =

√0   and 𝑟 is non-nilpotent. Thus we 

conclude 𝑏 ∈ 𝐼 − 𝜙(𝐼) ⊆ 𝐼, as needed. 

The next two theorems give the conditions 

for a 𝜙 − 𝑛-ideal to be an 𝑛-ideal of 𝑅. 
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Theorem 2.16. If 𝐼√0 ⊈  𝜙(𝐼) for a 𝜙 − 𝑛-

ideal of  𝐼 of 𝑅,  then 𝐼 is an 𝑛-ideal of 𝑅. 

Proof: Let 𝑟, 𝑠 ∈ 𝑅 and 𝑟𝑠 ∈ 𝐼. If 𝑟𝑠 ∉  𝜙(𝐼), 

then we are done. So suppose that 𝑟𝑠 ∈

 𝜙(𝐼). Here there are three cases: 

Case I. Let 𝑟𝐼 ⊈  𝜙(𝐼). Then there exists 𝑥 ∈

𝐼 such that 𝑟𝑥 ∉  𝜙(𝐼). Since 𝑟(𝑥 + 𝑠) =

𝑟𝑥 + 𝑟𝑠 ∈ 𝐼 −  𝜙(𝐼), we conclude that either 

𝑟 is nilpotent or 𝑥 + 𝑠 ∈ 𝐼,  i.e. 𝑟 ∈ √0  or  

𝑠 ∈ 𝐼. 

Case II. Let 𝑠√0 ⊈  𝜙(𝐼). Then there is a 

nilpotent element 𝑦 ∈ 𝑅 satisfying 𝑠𝑦 ∉

 𝜙(𝐼). Since (𝑦 + 𝑟)𝑠 = 𝑦𝑠 + 𝑟𝑠 ∈ 𝐼 −

 𝜙(𝐼), we conclude that either 𝑦 + 𝑟 ∈ √0 or 

𝑠 ∈ 𝐼, that is, 𝑟 ∈ √0 or 𝑠 ∈ 𝐼. 

Case III. Let 𝑟𝐼 ⊆ 𝜙(𝐼) and 𝑠√0 ⊆ 𝜙(𝐼). 

Since 𝐼√0 ⊈  𝜙(𝐼), there exists 𝑖 ∈ 𝐼 and 𝑧 ∈

√0 such that 𝑖𝑧 ∉  𝜙(𝐼). Hence (𝑟 + 𝑧)(𝑠 +

𝑖) = 𝑟𝑠 + 𝑟𝑖 + 𝑧𝑠 + 𝑧𝑖 ∈ 𝐼 −  𝜙(𝐼) which 

implies that (𝑟 + 𝑧) ∈  √0 or (𝑠 + 𝑖) ∈ 𝐼. 

Therefore, 𝑟 ∈  √0 or 𝑠 ∈ 𝐼. Thus 𝐼 is an 𝑛-

ideal of 𝑅. 

Corollary 2.17. Let 𝐼 be a 𝜙 − 𝑛-ideal 

which is not an 𝑛-ideal of 𝑅. Then 𝐼√0 ⊆

 𝜙(𝐼). 

Theorem 2.18. Let 𝐼 be a 𝜙 − 𝑛-ideal of 𝑅. 

If 𝜙(𝐼) is 𝑛-ideal, then 𝐼 is an 𝑛-ideal of 𝑅. 

Proof: Suppose that 𝑟𝑠 ∈ 𝐼 for some 𝑟, 𝑠 ∈ 𝑅 

and 𝑟 is non-nilpotent. If 𝑟𝑠 ∈ 𝜙(𝐼), then  

𝑠 ∈  𝜙(𝐼) ⊆ 𝐼 as 𝜙(𝐼) is 𝑛-ideal. If 𝑟𝑠 ∉

 𝜙(𝐼), we conclude 𝑠 ∈ 𝐼 as 𝐼 is 𝜙 − 𝑛-ideal. 

Proposition 2.19. If 𝐼 is a 𝜙 − 𝑛-ideal of 𝑅 

with √𝜙(𝐼) = 𝜙(√𝐼), then so is √𝐼 . 

Proof: Assume that 𝑟𝑠 ∈ √𝐼 −  𝜙(√𝐼) for 

some 𝑟, 𝑠 ∈ 𝑅 and 𝑟 is non-nilpotent. Then 

(𝑟𝑠)𝑛 = 𝑟𝑛𝑠𝑛 ∈ 𝐼 for some positive integer 

𝑛. Since 𝑟𝑠 ∉ 𝜙(√𝐼) = √𝜙(𝐼), clearly it 

follows 𝑟𝑛𝑠𝑛 ∉ 𝜙(𝐼). Now 𝑟𝑛 is non-

nilpotent and 𝐼 is 𝜙–𝑛-ideal gives 𝑠𝑛 ∈ 𝐼. 

Thus 𝑠 ∈ √𝐼, as required. 

Let 𝐽 be an ideal of 𝑅. Define 𝜙𝐽 ∶  𝑆 (
𝑅

𝐽
) →

 𝑆 (
𝑅

𝐽
) ∪ {∅}  by 𝜙𝐽(𝐼/𝐽) = (𝜙(𝐼) + 𝐽)/𝐽 for 

every ideal 𝐽 ⊇ 𝐼 and 𝜙𝐽(𝐼/𝐽) = ∅ if 𝜙(𝐼) =

∅. Observe that 𝜙𝐽(𝐼/𝐽) ⊆ 𝐼/𝐽 and (𝜙∝)𝐽 =

𝜙∝ for ∝∈ {∅} ∪ {0} ∪ ℕ. As it is stated in 

Lemma 1.2 that if 𝐽 ∈ 𝐼𝑑(𝑅) and 𝐼 is an 𝑛-

ideal containing 𝐽, then 𝐼/𝐽 is also an 𝑛-ideal 

of 𝑅/𝐽. The next theorem shows that if 𝐼 is 

a 𝜙 − 𝑛-ideal of 𝑅, then 𝐼/𝐽 is a 𝜙𝐽 − 𝑛-ideal 

of 𝑅/𝐽. 

Theorem 2.20. Let 𝐼 be 𝜙 − 𝑛-ideal of 𝑅, 

and 𝐼 ⊆ 𝐽 ∈ 𝐼𝑑(𝑅). Then 𝐼/𝐽 is a 𝜙𝐽 − 𝑛-

ideal of 𝑅/𝐽. 

Proof: Suppose that (𝑟 + 𝐽)(𝑠 + 𝐽) ∈ 𝐼/𝐽 −

𝜙𝐽(𝐼/𝐽) = 𝐼/𝐽 − (𝜙(𝐼) + 𝐽)/𝐽 and (𝑟 + 𝐽) is 

non-nilpotent element of 𝑅/𝐽. Then 𝑟𝑠 ∈ 𝐼 −

( 𝜙(𝐼) + 𝐽) and clearly 𝑟 is a non-nilpotent 

element of 𝑅. Hence 𝑟𝑠 ∈ 𝐼 −  𝜙(𝐼). Since 𝐼 

is 𝜙 − 𝑛-ideal, it follows 𝑟 ∈ 𝐼. Thus 𝑟 + 𝐽 ∈

𝐼/𝐽, we are done. 

Let 𝑇 be a multiplicatively closed subset of a 

ring 𝑅. Then 𝑇−1𝑅 = {
𝑟

𝑡
: 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇}. This 

localization is often written as 𝑅𝑇; we call it 

the localization of 𝑅 at the multiplicatively 

closed set 𝑇. Let 𝜙 ∶  𝐼𝑑(𝑅) →  𝐼𝑑(𝑅) ∪ {∅} 

be a function. Then define 𝜙𝑇 ∶  𝐼𝑑(𝑅𝑇) →

 𝐼𝑑(𝑅𝑇) ∪ {∅} by 𝜙𝑇(𝐽) = 𝜙(𝐽 ∩ 𝑅)𝑇 for 

every ideal 𝐽 of 𝑅𝑇 and 𝜙𝑇(𝐽) = ∅ if 

𝜙(𝐽 ∩ 𝑅) = ∅. Note that 𝜙𝑇(𝐽) ⊆ 𝐽. The 

following theorem shows that If 𝐼 is a 𝜙 − 𝑛-

ideal of 𝑅 with (𝜙(𝐼))𝑇 ⊆ 𝜙𝑇(𝐼𝑇), then 𝐼𝑇   is 

a 𝜙𝑇 − 𝑛-ideal of 𝑅𝑇. 
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Theorem 2.21. Let 𝜙 ∶  𝐼𝑑(𝑅) →  𝐼𝑑(𝑅) ∪

{∅} be a function, 𝑇 a multiplicatively closed 

subset of 𝑅 and 𝐼 ∩ 𝑇 = ∅ for some 𝐼 ∈

𝐼𝑑(𝑅). If 𝐼 is a 𝜙 − 𝑛-ideal of 𝑅 and 

 (𝜙(𝐼))𝑇 ⊆ 𝜙𝑇(𝐼𝑇), then the following 

conditions are satisfied:  

(1) 𝐼𝑇  is a 𝜙𝑇 − 𝑛-ideal of 𝑅𝑇. 

(2) If  𝐼𝑇 ≠  𝜙(𝐼)𝑇, then 𝐼𝑇 ∩ 𝑅 ⊆ √0. 

Proof: (1) Suppose that 
𝑟

ℎ

𝑠

𝑡
∈ 𝐼𝑇 − 𝜙𝑇(𝐼𝑇) 

and 
𝑟

ℎ
 is a non-nilpotent element of 𝑅𝑇. Then 

𝑢𝑟𝑠 ∈ 𝐼 for some 𝑢 ∈ 𝑇 and clearly 𝑟 is a 

non-nilpotent element of 𝑅. Since 
𝑟𝑠

ℎ𝑡
∉

𝜙𝑇(𝐼𝑇), 𝑟𝑠𝑣 ∉ 𝜙𝑇(𝐼𝑇) ∩ 𝑅 for all 𝑣 ∈ 𝑇. 

From our assumption  𝜙(𝐼)𝑇 ⊆ 𝜙𝑇(𝐼𝑇), we 

conclude that  𝑟𝑠𝑣 ∉ 𝜙(𝐼) for all 𝑣 ∈ 𝑇. Thus 

𝑟(𝑠𝑣) ∈ 𝐼 −  𝜙(𝐼). Since 𝐼 is assumed to be a 

𝜙 − 𝑛-ideal  and 𝑟 is non-nilpotent, it implies 

that 𝑠𝑢 ∈ 𝐼, and so 
𝑠

𝑡
∈ 𝐼𝑇. Therefore 𝐼𝑇 is a 

𝜙𝑇 − 𝑛-ideal of 𝑅𝑇. 

(2) Let 𝑟 ∈ 𝐼𝑇 ∩ 𝑅. Then there is an element  

𝑢 ∈ 𝑇 such that 𝑎𝑢 ∈ 𝐼. Now, if 𝑟𝑢 ∉  𝜙(𝐼), 

then 𝑟 is nilpotent as 𝑢 ∉ 𝐼. If 𝑟𝑢 ∈ 𝜙(𝐼),  

then 𝑟 ∈ 𝜙(𝐼)𝑇 ∩ 𝑅. Thus 𝐼𝑇 ∩ 𝑅 ⊆

√0 ∪(𝜙(𝐼)𝑇 ∩ 𝑅). From hypothesis 𝐼𝑇 ≠

 𝜙(𝐼)𝑇 ,  we conclude that  𝐼𝑇 ∩ 𝑅 ⊆ √0. 

Let 𝜙 ∶  𝐼𝑑(𝑅) →  𝐼𝑑(𝑅) ∪ {∅} be a function.  

It is said that 𝜙 preserves the order if 𝐼 ⊆ 𝐽 

for ideals 𝐼, 𝐽 of 𝑅 implies that 𝜙(𝐼)  ⊆

𝜙(𝐽). 

Proposition 2.22. Let {𝐼𝑖}𝑖∈Λ be a directed 

collection of 𝜙 − 𝑛-ideals of 𝑅 where 𝜙 

preserves the order. Then 𝐼 =∪𝑖∈Λ 𝐼𝑖 is a 𝜙 −

𝑛-ideal of 𝑅. 

Proof: Suppose that 𝑟𝑠 ∈ 𝐼 −  𝜙(𝐼) for some 

𝑟, 𝑠 ∈ 𝑅 where 𝑟 is non-nilpotent. Then 𝑟𝑠 ∈

𝐼𝑘 for some 𝑘 ∈ Λ but 𝑟𝑠 ∉ 𝜙(𝐼𝑖) for all 𝑖 ∈

Λ as 𝜙 preserves the order. Since 𝐼𝑘 is 

assumed to be a 𝜙 − 𝑛-ideal, we get 𝑠 ∈ 𝐼𝑘 ⊆

𝐼, as needed. 

Proposition 2.23. Let 𝐴 be a nonempty 

subset of 𝑅 and 𝜙 ∶  𝐼𝑑(𝑅) →  𝐼𝑑(𝑅) ∪ {∅} 

be a function which preserves order. If 𝐼 is a 

𝜙 − 𝑛-ideal of 𝑅 with 𝐴 ⊈ 𝐼, then so is  

(𝐼: 𝐴). 

Proof: Let 𝑟𝑠 ∈ (𝐼: 𝐴) −  𝜙(𝐼: 𝐴) and 𝑟 is a 

non-nilpotent element of 𝑅. Since 𝜙 

preserves order, we have 𝜙(𝐼) ⊆ 𝜙(𝐼: 𝐴). 

Hence 𝑟𝑠𝐴 ⊆ 𝐼 −  𝜙(𝐼). It follows 𝑠𝐴 ⊆ 𝐼 by 

Theorem 2.7. Thus 𝑠 ∈ (𝐼: 𝐴), we are done. 

Theorem 2.24. Let 𝑀 an 𝑅-module. Let 

𝜓1: 𝐼𝑑(𝑅) →  𝐼𝑑(𝑅) ∪ {∅} and 

𝜓2: 𝐼𝑑(𝑅(+)𝑀 ) → 𝐼𝑑(𝑅(+)𝑀 ) ∪ {∅} be 

two functions satisfying 𝜓2(𝐼(+)𝑀) =

 𝜓1(𝐼)(+)𝑁 for a proper ideal 𝐼 of 𝑅.  If 

𝐼(+)𝑀 is a 𝜓2 − 𝑛-ideal of 𝑅(+)𝑀, then 𝐼 is 

a 𝜓1 − 𝑛-ideal of 𝑅. 

Proof: Let 𝑟, 𝑠 ∈ 𝑅 with 𝑟𝑠 ∈ 𝐼 − 𝜓1(𝐼) and 

𝑟 be a non-nilpotent. Then (𝑟, 0)(𝑠, 0) ∈

 𝐼(+)𝑀 − 𝜓2(𝐼(+)𝑀) as 𝜓2(𝐼(+)𝑀) =

𝜓1(𝐼)(+)𝑁. It is not hard to see that  (𝑟, 0) is 

non-nilpotent element of 𝑅(+)𝑀 . Therefore, 

it implies that (𝑠, 0) ∈  𝐼(+)𝑀; and so 𝑠 ∈ 𝐼. 

Thus 𝐼 is a 𝜓1 − 𝑛-ideal of 𝑅. 

Remark 2.25. Let 𝑅1 and 𝑅2 be two 

commutative rings with nonzero identity and 

𝑅 = 𝑅1 × 𝑅2.  Let 𝜓1: 𝐼𝑑(𝑅1) → 𝐼𝑑(𝑅1) ∪

{∅}, 𝜓2: 𝐼𝑑(𝑅2 ) → 𝐼𝑑(𝑅2) ∪ {∅} be two 

functions and 𝜙 =𝜓1 × 𝜓2. Then 𝑅 has no 

𝜙 − 𝑛-ideal. Indeed, if 𝐼 is 𝜙 –𝑛-ideal, then 

𝐼 = 𝐼1 × 𝐼2 for some ideals 𝐼1, 𝐼2 of 𝑅1, 𝑅2 

respectively. On the other hand, since (1,0) ∙

(0,1) ∈ 𝐼 but neither (1,0)  nor (0,1) is a 

nilpotent element of 𝑅. It implies that 

(0,1), (1,0) ∈ 𝐼. Thus we conclude 1 ∈ 𝐼2 
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and 1 ∈ 𝐼1, so 𝐼 = 𝑅1 × 𝑅2 = 𝑅, a 

contradiction. 
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