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Abstract 

In this study, residual power series method, namely RPSM, is applied to solve time-fractional Kadomtsev-

Petviashvili (K-P) differential equation. In the solution procedure, the fractional derivatives are explained in the 

conformable sense. The model is solved approximately and the obtained results are compared with exact 

solutions obtained by the sub-equation method. The results reveal that the present method is accurate, 

dependable, simple to apply and a good alternative for seeking solutions of nonlinear fractional partial 

differential equations. 

Keywords: Fractional partial differential equations, Fractional Kadomtsev-Petviashvili equation, conformable 

fractional derivative, residual power series method 

 

Zaman-Kesirli Kadomtsev- Petviashvili Denkleminin Conformable Türev ile Yaklaşık Çözümleri 

Öz 

Bu çalışmada, zaman-kesirli Kadomtsev-Petviashvili (K-P) diferansiyel denklemini çözmek için Rezidual 

Kuvvet Serisi Metodu (RPSM) kullanılmıştır. Çözüm prosedüründe, kesirli türevler, conformable kesirli türev 

tanımına göre hesaplanmıştır. Bu model yaklaşık olarak çözülmüş ve elde edilen sonuçlar, sub-equation metodu 

ile elde edilen tam çözümlerle karşılaştırılmıştır. Sonuçlar, mevcut yöntemin doğru, güvenilir, uygulanmasının 

basit olduğunu ve doğrusal olmayan kısmi diferansiyel denklemlerin çözümü için iyi bir alternatif olduğunu 

ortaya koymaktadır. 
Anahtar Kelimeler:  Kesirli kısmi diferansiyel denklemler, Kesirli Kadomtsev-Petviashvili denklemi, 

conformable kesirli türev, residual kuvvet serisi metodu 

 

1. Introduction 

The history of the studies of fractional order 

calculus is nearly old as classical integer 

order analysis. However, it was not used in 

physical sciences for many years. But, at the 

last decades, applications of the fractional 

calculus in applied mathematics, 

viscoelasticity (Zhaosheng and Jianzhong 

1998), control (Yeroglu and Senol 2013), 

electrochemistry (Oldham 2010), 

electromagnetic (Heaviside 2008) have 

https://orcid.org/0000-0002-9297-6873


Approximate Solutions of the Time-Fractional Kadomtsev-Petviashvili Equationwith Conformable Derivative 

797 

 

become more and more evident. The 

development of the symbolic calculation 

programs also helped this improvement. 

Various interdisciplinary applications could 

be expressed by the help of fractional 

derivatives and integrals. Some 

fundamental descriptions and applications 

of fractional calculus are given in 

(Carpinteri and Mainardi 2014) and 

(Podlubny 1997). The existence of the 

fractional differential equations is also 

examined in (Yakar and Köksal 2012). 

In parallel to these studies, fractional order 

partial differential equations (FPDEs) also 

gave scientists the chance of describing and 

modeling many important and useful 

physical problems. 

Hereby, a considerable effort has been 

expended to construct numerical and 

analytical methods for solving FPDEs, in 

recent years. Some of them are, homotopy 

analysis method (Ghazanfari and Veisi 

2011;  Song and Zhang 2007), fractional 

variational iteration method [Guo and Mei 

2011; Wu and Lee 2010], Adomian 

decomposition method (Jafari and 

Daftardar 2006; Momani and Shawagfeh; 

Song and Wang 2013), fractional 

differential transform method (Arikoglu 

and Ozkol 2009; El-Sayed et al. 2014; 

Momani et al. 2007) and perturbation-

iteration algorithm (Şenol and Dolapci 

2016; Şenol et al. 2018). 

In this study, an earlier proposed method, 

RPSM is studied. This method is 

established by a Jordanian mathematician 

Omar Abu Arqub (Arqub 2013a and b). By 

choosing proper initial conditions, it can be 

applied through to problem without 

discretization, linearization, or any special 

transformation. 

The primary aim of this study is to achieve 

approximate solutions of time-fractional K-

P equation of the form 

                                   
𝜕

𝜕𝑥

𝜕𝛼

𝜕𝑡𝛼
𝑢 +

1

4

𝜕4𝑢

𝜕𝑥4
+

3

2

𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑥2
+

3

4

𝜕2𝑢

𝜕𝑦2
= 0,                             (1) 

where 𝑢 = 𝑢(𝑥, 𝑦, 𝑡), 𝑡 ≥ 0 and 0 < 𝛼 ≤ 1.  

This equation is proposed by Soviet 

physicists, Boris Borisovich Kadomtsev 

and Vladimir Iosifovich Petviashvili 

(Kadomtsev and Petviashvili 1970). It is 

actually a generalized form of the KdV 

equation. However, while the waves are 

strictly one dimensional in KdV equation, 

in K-P equation this limitation is relaxed 

and it allowed scientists to study with higher 

dimensions. 

The K-P equation is a convenient tool to 

model water waves with frequency 

dispersion and weakly nonlinear restoring 

forces that travel in the positive x-direction 

with long wavelength. It is also used to 

model interaction of shallow or long water 

waves with two and three-dimensional 

cases. Moreover, it has numerous 

applications arise in ion-acoustic waves in 

dusty plasmas, ferromagnetics and 

dynamical systems of water waves. 

2. Preliminaries 

 

Several fractional or arbitrary order 

derivative definitions are exist in the 

literature. Riemann-Liouville and Caputo 

fractional derivatives are the most common 

used ones. In addition to these well-known 

definitions, we will also present the 

conformable fractional derivative that is 
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used to achieve approximate solutions in 

this study. 

 

 

2.1. Definition 

The Riemann-Liouville fractional 

derivative operator 𝐷α𝑓(𝑥) for 𝛼 > 0 and 

𝑞 − 1 < 𝛼 < 𝑞  defined as (Ahmad 2015; 

Das 2011; Diethelm 2010): 

                                     𝐷𝛼𝑓(𝑥) =
𝑑𝑞

𝑑𝑥𝑞
[

1

𝛤(𝑞−𝛼)
∫

𝑓(𝑡)

(𝑥−𝑡)𝛼+1−𝑞

𝑥

𝑎
𝑑𝑡].                                              (2) 

2.2. Definition 

The Caputo fractional derivative of order 

𝛼 > 0 that is 𝐷∗
𝛼 for ∈ ℕ, 𝑛 − 1 < 𝛼 < 𝑛, is 

defined as [Caputo 1967]: 

 

                𝐷∗
𝛼f(𝑥)  = 𝐽𝑛−𝛼𝐷𝑛 𝑓(𝑥) =

1

𝛤(𝑛−𝛼)
∫ (𝑥 − 𝑡)𝑛−𝛼−1 (

𝑑

𝑑𝑡
)

𝑛

𝑓(𝑡)𝑑𝑡.
𝑥

𝑎
                          (3)

2.3. Definition 

For all 𝑡 > 0 and 𝛼 ∈ (0,1) an 𝛼-th order 

“conformable fractional derivative” of a 

function is defined by (Khalil et al. 2014) as 

𝑇𝜶(𝑓)(𝑡) = lim
𝜀→0

𝑓(𝑡+𝜀𝑡1−𝜶)−𝑓(𝑡)

𝜀
,               (4) 

for 𝑓: [0, ∞) → ℝ. 

The following theorem gives the properties 

of the definition (Khalil et al.2014). 

2.4. Theorem 

If 𝑓, 𝑔 are 𝛼-differentiable functions at 

point 𝑡 > 0 for 𝛼 ∈ (0,1], then  

i. 𝑇𝜶(𝑚𝑓 + 𝑛𝑔) = 𝑚𝑇𝜶(𝑓) + 𝑛𝑇𝜶(𝑔) 

for 𝑚, 𝑛 ∈ ℝ. 

ii. 𝑇𝜶(𝑡𝑝) = 𝑝𝑡𝑡−𝛼 for all 𝑝 ∈ ℝ. 

iii. 𝑇𝜶(𝑓. 𝑔) = 𝑓𝑇𝜶(𝑔) + 𝑔𝑇𝜶(𝑓). 

iv. 𝑇𝜶(𝑓/𝑔) =
𝑇𝜶(𝑓)−𝑓𝑇𝜶(𝑔)

𝑔2 . 

v. 𝑇𝜶(𝑐) = 0 when 𝑐 is a constant. 

vi. Also, 𝑓 is differentiable, then 

𝑇𝜶(𝑓)(𝑡) = 𝑡1−𝜶 𝑑𝑓

𝑑𝑡
 . 

2.5. Definition 

Let 𝑓 be a function with 𝑥1, 𝑥2, … , 𝑥𝑛 

variables. The conformable partial 

derivative of 𝑓 order 𝛼 ∈ (0,1] in 𝑥𝑖 is 

defined as (Atangana et al. 2015). 

𝑑𝛼

𝑑𝑥𝑖
𝛼 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = lim

𝜀→0

𝑓(𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖 + 𝜀𝑥𝑖
1−𝛼, … , 𝑥𝑛) − 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)

𝜀
.           (5) 

2.6. Definition 

Starting from 𝑎 ≥ 0, the conformable 

integral of an 𝑓 function is defined as 

(Taşbozan et al. 2016) 

𝐼𝛼
𝑎(𝑓)(𝑠) = ∫

𝑓(𝑡)

𝑡1−𝛼
𝑑𝑡.                               (6)

𝑠

𝑎

 



Approximate Solutions of the Time-Fractional Kadomtsev-Petviashvili Equationwith Conformable Derivative 

799 

 

Now we present some definitions and 

theorems that are crucial for residual power 

series. 

2.7. Theorem 

Let 𝑓 be an infinitely 𝛼-differentiable 

function at a neighborhood of a 𝑡0 point for 

some 0 < 𝛼 ≤ 1, then 𝑓 has the fractional 

power series expansion of the form: 

𝑓(𝑡) = ∑
(𝑇𝛼

𝑡0𝑓)
(𝑘)

(𝑡0)(𝑡 − 𝑡0)𝑘𝛼

𝛼𝑘𝑘!
, 𝑡0 < 𝑡 < 𝑡0 + 𝑅

1
𝛼 , 𝑅 > 0.                                  (7)

∞

𝑘=0

 

Here (𝑇𝛼
𝑡0𝑓)

(𝑘)
(𝑡0) expresses the 

implementation of the conformable 

derivative 𝑘-times (Abdeljawad 2015). 

2.8. Definition 

∑ 𝑓𝑛(𝑥)𝑡𝑛𝛼∞
𝑛=0   for 0 ≤ 𝑚 − 1 < 𝛼 < 𝑚, is 

called a multiple fractional power series 

(FPS) about 𝑡0 = 0, where 𝑓𝑛(𝑥) are the 

coefficients of the series and 𝑡 is a variable 

(Alabsi 2017; El-Ajou et al. 2013). 

2.9. Theorem 

Suppose that 

 

𝑢(𝑥, 𝑡) = ∑ 𝑓𝑛(𝑥)𝑡𝑛𝛼

∞

𝑛=0

, 0 < 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑥𝜖𝐼, 0 < 𝑡 < 𝑅
1
𝛼.                        (8) 

is the multiple FPS representation of 𝑢(𝑥, 𝑡) 

at 𝑡0 = 0  If 𝑢𝑡
(𝑛𝛼)(𝑥, 𝑡), 𝑛 = 0,1,2, … are 

continuous on 𝐼 × (0, 𝑅
1

𝛼), then 𝑓𝑛(𝑥) =
𝑢𝑡

(𝑛𝛼)(𝑥,0)

𝛼𝑛𝑛!
 (Alabsi 2017). 

 

3. Basic idea of the residual power series 

method 

 

To illustrate the basic idea of RPSM 

(Alquran 2015a and b; Arqub 2013a and b), 

consider the nonlinear fractional differential 

equation below (Kumar et al. 2016): 

𝑇𝛼𝑢(𝑥, 𝑦, 𝑡) + 𝑁[𝑥, 𝑦]𝑢(𝑥, 𝑦, 𝑡) + 𝐿[𝑥, 𝑦]𝑢(𝑥, 𝑦, 𝑡) = 𝑔(𝑥, 𝑦, 𝑡), 𝑡 > 0, 𝑥 ∈ ℝ,

𝑛 − 1 < 𝑛𝛼 ≤ 𝑛,                                                                                                          (9) 

expressed by the initial condition 

𝑓0(𝑥, 𝑦) = 𝑢(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦),          (10) 

where 𝑁[𝑥, 𝑦] and  𝐿[𝑥, 𝑦] are nonlinear and 

linear operators respectively and 𝑔(𝑥, 𝑦, 𝑡) 

are continuous functions. 

In RPS method, the solution of the equation 

(9) subject to (10), is constituted of stating 

it as a FPS expansion around 𝑡 = 0. 

 

                                          𝑓𝑛−1(𝑥, 𝑦) = 𝑇𝑡
(𝑛−1)𝛼𝑢(𝑥, 𝑦, 0) = ℎ(𝑥, 𝑦).                                           (11) 

The FPS expansion of the solution is given 

by 
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                              𝑢(𝑥, 𝑦, 𝑡) = 𝑓(𝑥, 𝑦) + ∑ 𝑓𝑛(𝑥, 𝑦)
𝑡𝑛𝛼

𝛼𝑛𝑛!

∞

𝑛=0

.                                                         (12) 

Next, the 𝑘-th truncated series of 𝑢(𝑥, 𝑡), 

that is 𝑢𝑘(𝑥, 𝑡) can be written as: 

 

                             𝑢𝑘(𝑥, 𝑦, 𝑡) = 𝑓(𝑥, 𝑦) + ∑ 𝑓𝑛(𝑥, 𝑦)
𝑡𝑛𝛼

𝛼𝑛𝑛!

𝑘

𝑛=0

.                                                        (13) 

If the first RPSM approximate solution 

𝑢1(𝑥, 𝑦, 𝑡) is written as 𝑢1(𝑥, 𝑦, 𝑡) =

𝑓(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦)
𝑡𝛼

𝛼𝑛
 then we can write 

 

                      𝑢𝑘(𝑥, 𝑦, 𝑡) = 𝑓(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦)
𝑡𝛼

𝛼𝑛
+ ∑ 𝑓𝑛(𝑥, 𝑦)

𝑡𝑛𝛼

𝛼𝑛𝑛!
, 𝑘 = 2,3,4, …             (14)

𝑘

𝑛=2

 

for 0 < 𝛼 ≤ 1, 𝑥 ∈ 𝐼, 0 ≤ 𝑡 < 𝑅. Initially we express the residual function 

𝑅𝑒𝑠𝑢(𝑥, 𝑦, 𝑡) = 𝑇𝛼𝑢(𝑥, 𝑦, 𝑡) + 𝑁[𝑥, 𝑦]𝑢(𝑥, 𝑦, 𝑡) + 𝐿[𝑥, 𝑦]𝑢(𝑥, 𝑦, 𝑡) − 𝑐(𝑥, 𝑦, 𝑡),                 (15) 

and the 𝑘-th residual function 

𝑅𝑒𝑠𝑢𝑘(𝑥, 𝑦, 𝑡) = 𝑇𝛼𝑢𝑘(𝑥, 𝑦, 𝑡) + 𝑁[𝑥, 𝑦]𝑢𝑘(𝑥, 𝑦, 𝑡) + 𝐿[𝑥, 𝑦]𝑢𝑘(𝑥, 𝑦, 𝑡) − 𝑐(𝑥, 𝑦, 𝑡),

𝑘 = 1,2,3, …                                                                                                               (16) 

respectively. Obviously, 𝑅𝑒𝑠(𝑥, 𝑦, 0) = 0 and 

lim
𝑘→∞

𝑅𝑒𝑠𝑢𝑘(𝑥, 𝑦, 𝑡) = 𝑅𝑒𝑠𝑢(𝑥, 𝑦, 𝑡)for each 

𝑥 ∈ 𝐼 and 𝑡 ≥ 0. As long as the fractional 

derivative of a constant is zero (Arqub 2013a 

and b; Jaradat et al. 2016) in conformable 

sense,  

𝜕(𝑛−1)𝛼

𝜕𝑡(𝑛−1)𝛼 𝑅𝑒𝑠𝑢𝑘(𝑥, 𝑦, 𝑡) = 0 for  

𝑛 = 1,2,3, … , 𝑘. Solving this equation 

produces the required 𝑓𝑛(𝑥, 𝑦) coefficients. 

Actually in our case we will have differential 

equations. Thus, the 𝑢𝑛(𝑥, 𝑦, 𝑡) RPSM 

approximate solutions can be calculated in 

this manner respectively. 

4. Approximate Solutions for Fractional 

Kadomtsev-Petviashvili Equation 

Now we present nonlinear time-fractional K-

P equation (Kaya 2003) as  

                  
𝜕

𝜕𝑥

𝜕𝛼

𝜕𝑡𝛼 𝑢 +
1

4

𝜕4𝑢

𝜕𝑥4 +
3

2

𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑥2 +
3

4

𝜕2𝑢

𝜕𝑦2 = 0,                                     (17) 

where 𝑢 = 𝑢(𝑥, 𝑦, 𝑡), 𝑡 ≥ 0 and 0 < 𝛼 ≤ 1. 

The initial condition obtained from the exact 

solution that is obtained by the sub-equation 

method (Durur 2019) is 

𝑢(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦) = 1 +
2

3+𝑥+𝑦
.            (18) 

For residual power series 
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𝑢(𝑥, 𝑦, 𝑡) = 𝑓(𝑥, 𝑦) + ∑ 𝑓𝑛(𝑥, 𝑦)∞
𝑛=1

𝑡𝑛𝛼

𝛼𝑛𝑛!
,(19) the 𝑘 −th truncated series of it is defined as 

𝑢𝑘(𝑥, 𝑦, 𝑡) = 𝑓(𝑥, 𝑦) + ∑ 𝑓𝑛(𝑥, 𝑦)

𝑘

𝑛=1

𝑡𝑛𝛼

𝛼𝑛𝑛!
, 𝑘 = 1,2,3, …                                                    (20) 

Therefore, the 𝑘 −th residual function of time-

fractional K-P equation can be written as 

𝑅𝑒𝑠𝑢𝑘(𝑥, 𝑦, 𝑡) = (𝜕𝑡
𝛼𝑢𝑘)𝑥 +

1

4
(𝑢𝑘)𝑥𝑥𝑥𝑥 +

3

2
(𝑢𝑘)𝑥 (𝑢𝑘)𝑥𝑥 +

3

4
(𝑢𝑘)𝑦𝑦,                                (21) 

To determine the 𝑓1(𝑥, 𝑦) coefficient, in 

𝑢1(𝑥, 𝑦, 𝑡), we should replace the first 

truncated series  

𝑢1(𝑥, 𝑦, 𝑡)  = 𝑓(𝑥, 𝑦)  +  𝑓1(𝑥, 𝑦)
𝑡𝛼

𝛼
 into the 

first truncated residual function as 

𝑅𝑒𝑠𝑢1(𝑥, 𝑦, 𝑡) = (𝑓1 (𝑥, 𝑦))
𝑥

+
3

4
(

4

(3 + 𝑥 + 𝑦)3
+

𝑡𝛼(𝑓1(𝑥, 𝑦))
𝑦𝑦

𝛼
)

+
3

2
(−

2

(3 + 𝑥 + 𝑦)2
+

𝑡𝛼(𝑓1(𝑥, 𝑦))
𝑥

𝛼
) (

4

(3 + 𝑥 + 𝑦)3
+

𝑡𝛼(𝑓1(𝑥, 𝑦))
𝑥𝑥

𝛼
)

+
1

4
(

48

(3 + 𝑥 + 𝑦)5
+

𝑡𝛼(𝑓1(𝑥, 𝑦))
𝑥𝑥𝑥𝑥

𝛼
).                                                            (22) 

Substitution of 𝑡 = 0 into the equation 

𝑅𝑒𝑠𝑢1(𝑥, 𝑦, 𝑡) gives 

(𝑓1(𝑥, 𝑦))
𝑥

=
1

4
(−3𝑓(𝑥, 𝑦))

𝑦𝑦
− 6(𝑓(𝑥, 𝑦))

𝑥
(𝑓(𝑥, 𝑦))

𝑥𝑥
− (𝑓(𝑥, 𝑦))

𝑥𝑥𝑥𝑥
.                         (23) 

Solving this differential equation gives the 

first unknown parameter as 

               𝑓1(𝑥, 𝑦) =
3

2(3+𝑥+𝑦)2.                  (24) 

Thus, the first RPSM approximate solutions 

of time-fractional K-P equation is calculated 

as 

                           𝑢1(𝑥, 𝑦, 𝑡) = 1 +
2

3 + 𝑥 + 𝑦
+

3𝑡𝛼

2𝛼(3 + 𝑥 + 𝑦)2
.                                               (25) 

Similarly, to obtain𝑓2(𝑥, 𝑦) coefficient, we 

replace  
𝑢2(𝑥, 𝑦, 𝑡)  = 𝑓(𝑥, 𝑦) +  𝑓1(𝑥, 𝑦)

𝑡𝛼

𝛼
+

𝑓2(𝑥, 𝑦)
𝑡2𝛼

2𝛼2 into the 2nd residual function and 

get 
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𝑅𝑒𝑠𝑢2(𝑥, 𝑦, 𝑡) = (𝑓1 (𝑥, 𝑦))
𝑥

+
𝑡𝛼(𝑓2(𝑥, 𝑦))

𝑥

𝛼

+
3

4
(

4

(3 + 𝑥 + 𝑦)3
+

𝑡𝛼(𝑓1(𝑥, 𝑦))
𝑦𝑦

𝛼
+

𝑡2𝛼(𝑓2(𝑥, 𝑦))
𝑦𝑦

2𝛼2
)

+
3

2
(−

2

(3 + 𝑥 + 𝑦)2
+

𝑡𝛼(𝑓1(𝑥, 𝑦))
𝑥

𝛼
+

𝑡2𝛼(𝑓2(𝑥, 𝑦))
𝑥

2𝛼2
)

× (
4

(3 + 𝑥 + 𝑦)3
+

𝑡𝛼(𝑓1(𝑥, 𝑦))
𝑥𝑥

𝛼
+

𝑡2𝛼(𝑓2(𝑥, 𝑦))
𝑥𝑥

2𝛼2
)

+
1

4
(

48

(3 + 𝑥 + 𝑦)5
+

𝑡𝛼(𝑓1(𝑥, 𝑦))
𝑥𝑥𝑥𝑥

𝛼

+
𝑡2𝛼(𝑓2(𝑥, 𝑦))

𝑥𝑥𝑥𝑥

2𝛼2
).                                                                                             (26) 

Taking 𝑇𝛼 conformable derivative of both 

sides of 𝑅𝑒𝑠𝑢2(𝑥, 𝑦, 𝑡) and evaluating it for 

𝑡 =  0 gives 

(𝑓2(𝑥, 𝑦))
𝑥

=
1

4
(−3𝑓1(𝑥, 𝑦))

𝑦𝑦
− 6(𝑓1(𝑥, 𝑦))

𝑥
(𝑓(𝑥, 𝑦))

𝑥𝑥
− 6(𝑓(𝑥, 𝑦))

𝑥
(𝑓1(𝑥, 𝑦))

𝑥𝑥

− (𝑓1(𝑥, 𝑦))
𝑥𝑥𝑥𝑥

.                                                                                                       (27) 

Solving this differential equation gives 

           𝑓2(𝑥, 𝑦) =
9

4(3+𝑥+𝑦)3.                       (28) 

So the 2nd RPSM approximate solution of 

time-fractional K-P equation is: 

                     𝑢2(𝑥, 𝑦, 𝑡) = 1 +
2

3 + 𝑥 + 𝑦
+

3𝑡𝛼

2𝛼(3 + 𝑥 + 𝑦)2
+

9𝑡2𝛼

8𝛼2(3 + 𝑥 + 𝑦)3
.                (29) 

Similarly, applying the same scheme for 

  𝑛 =  3, the following results are obtained. 
           𝑓3(𝑥, 𝑦) =

81

16(3+𝑥+𝑦)4,                   (30) 

𝑢3(𝑥, 𝑦, 𝑡) = 1 +
2

3 + 𝑥 + 𝑦
+

3𝑡𝛼

2𝛼(3 + 𝑥 + 𝑦)2
+

9𝑡2𝛼

8𝛼2(3 + 𝑥 + 𝑦)3

+
27𝑡3𝛼

32𝛼3(3 + 𝑥 + 𝑦)4
.                                                                                               (31) 

 

 

 

 

 

Table 1. Numerical results of the third approximate solutions for 𝑦 = 1 and 𝑡 = 0.1. 
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 𝜶 = 𝟎. 𝟐𝟓 𝜶 = 𝟎. 𝟓𝟎 𝜶 = 𝟎. 𝟕𝟓 

𝒙 𝑹𝑷𝑺𝑴 𝑬𝒙𝒂𝒄𝒕 𝑨𝒃𝒔. 𝑬𝒓𝒓𝒐𝒓 𝑹𝑷𝑺𝑴 𝑬𝒙𝒂𝒄𝒕 𝑨𝒃𝒔. 𝑬𝒓𝒓𝒐𝒓 𝑹𝑷𝑺𝑴 𝑬𝒙𝒂𝒄𝒕 𝑨𝒃𝒔. 𝑬𝒓𝒓𝒐𝒓 

𝟎. 𝟎 1.83733 1.86469 2.7359E-2 1.56716 1.56727 1.1218E-4 1.52326 1.52326 2.0439E-6 

𝟎. 𝟏 1.59586 1.60369 7.8237E-3 1.44189 1.44192 3.5795E-5 1.41475 1.41475 6.6360E-7 

𝟎. 𝟐 1.46082 1.46372 2.8982E-3 1.36193 1.36195 1.4138E-5 1.34351 1.34351 2.6505E-7 

𝟎. 𝟑 1.37517 1.37644 1.2699E-3 1.30648 1.30648 6.4621E-6 1.29316 1.29316 1.2210E-7 

𝟎. 𝟒 1.31618 1.31681 6.2650E-4 1.26575 1.26576 3.2846E-6 1.25568 1.25568 6.2422E-8 

𝟎. 𝟓 1.27315 1.27349 3.3763E-4 1.23458 1.23459 1.8100E-6 1.22670 1.22670 3.4552E-8 

𝟎. 𝟔 1.24039 1.24059 1.9487E-4 1.20996 1.20996 1.0629E-6 1.20362 1.20362 2.0362E-8 

𝟎. 𝟕 1.21464 1.21475 1.1881E-4 1.19001 1.19001 6.5701E-7 1.18481 1.18481 1.2622E-8 

𝟎. 𝟖 1.19385 1.19393 7.5754E-5 1.17353 1.17353 4.2364E-7 1.16917 1.16917 8.1584E-9 

𝟎. 𝟗 1.17674 1.17679 5.0137E-5 1.15967 1.15967 2.8302E-7 1.15598 1.15598 5.4612E-9 

𝟏. 𝟎 1.16240 1.16243 3.4248E-5 1.14787 1.14787 1.9486E-7 1.14470 1.14470 3.7665E-9 

 

Table 1 represents the approximate RPSM 

solutions of time-fractional K-P equation of 

third-order that are compared with the exact 

solution 

𝑢(𝑥, 𝑦, 𝑡) = 1 +
2

3 + 𝑥 + 𝑦 −
3
4

𝑡𝛼

𝛼

.  (32) 

For 𝛼 = 0.25, 𝛼 = 0.50 and 𝛼 = 0.75 values, 

the absolute errors are demonstrated. As seen, 

the absolute errors decrease while the 𝑥 values 

increase. Likewise, the absolute errors 

decrease while the 𝛼 values increase. Besides, 

Table 1 indicates RPSM solutions are in great 

agreement with the exact solutions. Also, in 

Figure 1, the 3-dimensional illustrations of the 

RPSM solutions are presented for 𝛼 = 0.25,  

𝛼 = 0.50, 𝛼 = 0.75 and 𝛼 = 0.95. 

 

a.)                                                             b.) 
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c.)                                                             d.) 

                          

Figure 1. Surface plots of the third approximate solutions for 𝑦 = 1 and 𝑡 = 0.1 and  

                 a.) 𝛼 = 0.25, b.) 𝛼 = 0.50, c.) 𝛼 = 0.75 and d.) 𝛼 = 0.95. 

 

5. Results 

In this study, the residual power series method 

(RPSM) has been applied to time-fractional 

Kadomtsev-Petviashvili equation with 

conformable derivative. The main advantage 

of the present method is that the necessity of 

special assumptions or transformations is 

eliminated. 

In application part, K-P equation is solved by 

RPSM approximately and some solutions are 

obtained. In Table 1, the RPSM results are 

shown with the exact solutions for the values 

of 𝛼 = 0.25, 𝛼 = 0.50 and 𝛼 = 0.75. It is 

clearly seen that RPSM gives very near 

results. Also in Figure 1, the obtained results 

are illustrated graphically. All these results 

indicate that RPSM is a very simple, reliable 

and convenient method. 
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