
INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 3:2 (2019) 153-170 Araştırma Makalesi/Research Articles

153

DEVELOPMENT OF AUTHENTICATION CODES OF MESSAGES ON

THE BASIS OF UMAC WITH CRYPTO-CODE MCELIECE’S SCHEME

Serhii Yevseieva, Olha Korola, Alla Havrylovaa*

aSimon Kuznets Kharkiv National University of Economics, Department of Cyber Security and Information

Technology, UKRAINE

*Corresponding Author: Alla.Havrylova@hneu.net

(Received: 22.04.2019; Revised: 02.07.2019; Accepted: 15.07.2019)

ABSTRACT
The development of decentralized systems and blockchain technology have expanded the range of

cryptocurrency-based banking services. The main difference from the hierarchical structures of the

organizations of the banking sector (national and commercial banks) is the formation of valid nodes

ensuring the confirmation of transactions based on the checking and verification of digital signatures

and MAC codes. The Bitcoin protocols use the SHA-256 algorithm to form MAC codes, however, the

rapid growth of the system leads to significant time costs not only for mining, but also for validation of

the formed blocks. The further development of decentralized systems, increase the number of wall-

distributors and full nodes forces us to look for new ways to solve a temporary problem based on using

different approaches to providing authentication in decentralized systems. The paper discusses the

algorithm for generating UMAC message authentication codes using a McEliece’s crypto-code scheme

based on the use of universal hashing functions. A reduced UMAC model (mini-UMAC) and a method

for statistical analysis of the collision characteristics of the generated message authentication codes are

proposed. Using the reduced UMAC model, collisional characteristics of authentication codes are

investigated, it is shown that the use of cryptographic transformation (using the AES algorithm) at the

final stage of UMAC leads to a violation of the universal hashing characteristics.

Keywords: mini-UMAC with a McEliece’s crypto-code scheme, authentication, universal function,

authenticity codes, AES algorithm.

1. INTRODUCTION

The development of decentralized systems, blockchain technology develops a range of banking services

in which huge amounts of data are stored and circulated. To ensure the authenticity (identity) of the

formed blocks in the blockchain technology systems, as a rule, they use the MAC – Message

Authentication Code – (МDC – Manipulation Detection Code) codes used as an effective mechanism

for ensuring the integrity and authenticity of information [1–7]. However, used cryptographic

algorithms, including hashing functions in cryptocurrency systems, are increasingly becoming the target

of cyber-terrorists and hackers. The analysis showed that the UMAC (Message Authentication Code

using Universal Hashing) algorithm [5, 7] selected during the European NESSIE competition, has the

highest computational efficiency for generate authentication codes using the family of universal hash

functions [8, 9]. The number of collisions (collisions) of generated hash images for each entered

universal hash key does not exceed a predetermined value, and UMAC cryptographic strength is

provided at the level of the selected cryptoalgorithms (according to the specification, AES encryption

algorithm is recommended). However, researches [10–12] of using a cryptoalgorithms for collisional

mailto:Alla.Havrylova@hneu.net

Yevseiev vd., /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 3:2 (2019) 153-170

154

characteristics of UMAC message authentication codes showed that the provision of universal hashing

characteristics in such a multilayered structure is not justified.

2. LITERATURE REVIEW

In works[13, 14], an analysis of the cryptographic strength of competing algorithms for the American

standard SHA-3 showed that the winner of the competition, the Keccak algorithm does not provide the

required level of security and is not considered by the developers of authentication protocols in

decentralized systems as an alternative to the SHA-256 algorithm. However, the growth of users, wall

allocators and full nodes in the Bitcoin system, increased functionality based on the introduction of

smart contracts require fast and cryptographically stable hashing algorithms.

The analysis of the European competition NESSIE showed that the algorithms based on the use of

universal hash functions provide the maximum speed of transformations and allow to evenly distribute

collisions across the entire set of hash codes, which in turn can be applicable as authenticators in large

databases.

Generation of message authentication codes using the UMAC algorithm. One of the first versions of

the algorithm for generating message authentication codes using universal hashing (UMAC – Message

Authentication Code using Universal Hashing) was presented in work [1]. Later, after some refinement

[2 – 4], the UMAC algorithm was presented in the final report of the European competition NESSIE –

New European Schemes for Signatures, Integrity and Encryption [5]. One of the latest electronic

versions of the UMAC algorithm is available in electronic format [6]. The most detailed components of

the UMAC are presented in the dissertation [7].

Let us consider the general scheme for the formation of message authenticity codes using the UMAC

algorithm, analyze the main analytical relations that describe the internal structure and the

transformations used in the formation of message authenticity codes.

2.1. The general scheme of the formation of message authentication codes using the UMAC

algorithm

Tag the message authentication code (we denote it as) according to the specification of the UMAC

algorithm is formed by calculating the following function:

(), , , ,Tag UMAC K M Nonce Taglen Y Pad= = 

where: K – is the secret key whose length Keylen equal to the standard length of the secret key of the

used symmetric block cipher (the UMAC specification recommends using the AES encryption

algorithm (FIPS-197), in this case the length of the secret key {16, 24, 32}belongs to the set of valid

byte values M 672 an information message to be authenticated, presented in the format of a string array

with a dimension from one to 642 bits (Nonce bytes); M – non-repeating (for all input informational

messages Taglen) eight-byte number; {4, 8, 12, 16} – an integer number from the set of valid values

Tag, that specifies the length of the message authentication code ()TaglenMKHash ,, in bytes; M – key

universal hash function of an information message K using a secret key ()TaglenNonceKPDF ,, ; Pad – the

function of the formation of a pseudo-random pad (Nonce) on the entered value K and the secret key  ;

“ ()TaglenMKHashY ,,= ˮ – bitwise addition (XOR) of the result of the key message hash and the formed

pad

()TaglenNonceKPDFPad ,,= , i.e.

() ().,,,, TaglenNonceKPDFTaglenMKHashTag =

The length of the hash code Y, the pad Pad and the code Tag belong to the set of valid values of {32, 64,

96, 128} bits. These fixed values Taglen correspond to the case of the formation of codes of authenticity

of messages UMAC – 32, UMAC – 64, UMAC – 96 or UMAC – 128, respectively.

Consider the formation of hash codes and the pad ()NonceKPDFPad ,= .

2.2. The scheme of the formation of hash codes (), ,Y Hash K M Taglen=

Calculating the values ()TaglenMKHash ,, of key universal hashing functions of the information

message using M K the secret key is performed in three stages (three levels (layers) of key hashing are

used) 1LHash , HashL2 and HashL3, respectively. The second level of hashing 2LHash is performed only if

the length of the hashed message exceeds 1024 bytes.

Yevseiev vd., /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 3:2 (2019) 153-170

155

The length of the hash code Y is a multiple of 32 bits, its value for any length ()TaglenMKHashY ,,= is

formed by combining (concatenating) several (from one to four) sequences iLY 3

()
ItLLL YYYTaglenMKHashY 32313

...,, == , 4/TaglenIt = ,

where:
iLY 3 – is the result of multi-level hashing of the message M on the i-th iteration using the

appropriate keys, i=1, 2,…,It.

Consider the formation of a hash code
iLY 3 on the i-th iteration. To do this, we denote the result of

multi-level hashing on an arbitrary i-th iteration as follows:

()()()MKHashKHashKKHashYY LLLLLLLLiL ,,,, 11222313333 == ,

where: ()MKHash LL ,11 , ()122 , LLL YKHash and ()223133 ,, LLLL YKKHash – are key hashing functions of the

first, second, and third level that are controlled and dependent on the iteration number secret keys 1LK ,

2LK ,
13LK ,

23LK , respectively.

Key sequences 1LK , 2LK ,
13LK ,

23LK , are formed by the entered secret key of K length Keylen bytes

using a special function ()NumbyteIndexKKDF ,, (Key-Derivation Function – KDF), where Index and

Numbyte are two positive integers not exceeding 264.

The first level of hashing splits an array-string M of size up to 264 bytes into blocks Mi of 1024 bytes

with the subsequent conversion of each block by a function NH(KL1, Mi). The obtained results

()iLiL MKNHHash ,11 = concatenated (combined) into a string ()MKHashY LLL ,111 = , that is 128 times

shorter than the information sequence. This line is the result of the first level hashing:

() () () ()1 1 1 1 0 1 1 1 1, , , ... ,L L L L L L nY Hash K M NH K M NH K M NH K M −= = ,

where: 







=

1024

)(MLength
n ,  x – the integer part of number x,)(MLength – information message byte

length M.

The result of the function ()iLiL MKNHHash ,11 = is calculated according to the following rule. The

information block Mi is divided into four-byte sub-blocks so:

tiiii MMMM ...
21

= ,

where: 







=

4

)(iMLength
t . In this case 256

4

1024
=








=t .

Similarly, a key sequence 1LK is represented as four-byte subblock sequences:

tLLLL KKKK 121111 ...= .

After that (taking the initial state 01 =
iLHash) for all j=1,9,17,…,t-7 the following operations are

performed:

))()((
4132464013206411 ++++

+++=
jLjijLjiiLiL KMKMHashHash ,

))()((
5132564113216411 ++++

+++=
jLjijLjiiLiL KMKMHashHash ,

))()((
6132664213226411 ++++

+++=
jLjijLjiiLiL KMKMHashHash ,

))()((
7132764313236411 ++++

+++=
jLjijLjiiLiL KMKMHashHash ,

where: +64, +32 – are addition operations modulo 264 and 232, respectively ×64 – the operation of

multiplication modulo 264.

Papers [1 – 7] shows, that the considered key hashing function NH belongs to the class of universal

hashing functions.

The second level of hashing Poly, discussed in detail in papers [1 – 7]. The result of the work of this

level is the calculation of the hash code ()),,,(, 1222 PLLLL MkgeMaxwordranWordbitsPolyYKHashY == , i.e. the

second level hashing input is given a string ()MKHashY LLL ,111 = .

Yevseiev vd., /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 3:2 (2019) 153-170

156

The polynomial hash function uses as input data:

]128,64[Wordbits ; geMaxwordran – a positive integer less than Wordbits2 ; k – key-dependent 2LK

integer from the range]1)(,...,0[−Wordbitsprime , prime(x) – the largest prime number, the least 2x;

()MKHashYM LLLP ,111 == – data for polynomial hashing.

According to the specification of the UMAC algorithm, as)(xprime the following constants are used:

52)36(36 −=prime , 592)64(64 −=prime , 1592)128(128 −=prime . The bit length PM is denoted by

)(PMBytelength . Depending on the length PM the following features are used in the implementation of

the second level of hashing:

• if the length of the received data PM does not exceed 217 bytes, then the polynomial hashing,

Poly is performed with parameters 64=Wordbits ; 3264 22 −=geMaxwordran ; 64kk = – a string

formed by the first eight bytes of the key 2LK and a special eight-byte mask;

• if the length of the received data PM exceeds 217 bytes (but does not exceed 264 bytes), then the

first 2),64,22,64(3264
PMkPoly − bytes of data are processed by the polynomial hashing function

Poly , а and the remaining data bytes are processed by the function with

parameters 128=Wordbits ; 96128 22 −=geMaxwordran ; 128kk = – the string formed by the last

16 bytes of the key and the special 16 bytes mask.

Hashable data PM divided into blocks by 8/WordbitsWordbytes = bytes:

nPPPP MMMM ...
21

= ,

where: WordbytesMBytelengthn P /)(= .

The result of the hash is the value of the polynomial function

())mod(...
1

1
12 pkMkkMMY n

P
n

nPnPL ++++= −
−

,

which is calculated by an iterative procedure (for each ni ,...,2,1=):

 ())mod(1 pMkPolyPoly
iPii += − , 10 =Poly ,)(Wordbitsprimep =

Using Horner’s method

nPnPPP
n

P
n

nPnP MkMkMkMkkMkkMM +++++=++++
−

−
−

)...))(((...
1211

1
1

.

The calculated hash value nL PolyY =2 is an integer in range.]1)(,...,0[−Wordbitsprime .

Considered the polynomial key hashing function),,,(PMkgeMaxwordranWordbitsPoly belongs to the

class of universal hashing functions [1–7].

The third level of hashing ()223133 ,, LLLL YKKHash is performed on the result of a polynomial hash and

converts data up to 16 bytes sent to its input into a hash code Y of fixed length 32 bits.

The source data of the third level of hashing are two key sequences
13LK and 23LK that length are 64

and 4 bytes, respectively, as well as an input 16 bytes sequence 2LY .

Hashable data 2LY and key sequence
13LK are evenly divided into eight blocks, each of which is

represented as an integer
iLY 2 and

iLK
13

, 8,...,2,1=i .

The hash value 3LY is calculated as follows:

)()2mod())36(mod(
23

32

1
1323 L

m

i
iLiLL KxorprimeKYY










































= 

=

,

where:)()(yxorx – where is the operation of “exclusive OR” on the values x and y.

The considered key hashing function ()2231333 ,, LLLLL YKKHashY = belongs to the class of universal

hashing functions; its properties are studied in detail in [1–7].

Yevseiev vd., /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 3:2 (2019) 153-170

157

2.3. KDF: Key-Derivation Function

A special function ()NumbyteIndexKKDF ,, is designed to form sequences of pseudo-random data bits,

which are used at various levels of generating message authentication codes as key data of the

corresponding hashing functions.

As the source data for the generation of key pseudo-random sequences, the secret key K whose length is

Keylen bytes and two positive integers Index and Numbyte , whose value does not exceed. 642 .

To generate pseudo-random key sequences, a block symmetric cipher is used. Let us denote the

procedure for encrypting a block of data T of length Blocklen using a secret key K of length Keylen

bytes in the form of a certain function ()TKEnchiper , . Then the procedure for the formation of a pseudo-

random key sequence ()NumbyteIndexKKDFK ,,'= can be represented as the following iterative (for

each ni ,...,2,1=) transformation:

iIndexTi = ,

()ii TKEnchiperK ,' = ,

nKKKK '...''' 21= ,

where: 







=

Blocklen

Numbyte
n ,  x – is the integer path of x , ba – concatenation of strings a and b.

The generated sequence of pseudo-random key data bits has 'K length of Numbyte bytes, that is a

multiple of the block byte length Blocklen .

2.4. Pseudo-random pad formation scheme (PDF: Pad-Derivation Function)

Function ()TaglenNonceKPDF ,, is intended for the formation of a pseudo-random pad Pad , used in the

final stage of the formation of the message authentication code.

As the source data, the secret key K whose length is Keylen bytes and a non-repeating (for each input

informational messages M) eight-byte number Nonce , as well as an integer Taglen , specifying the size

(length in bytes) of the generated authentication code Tag .

The procedure for forming a pseudo-random pad ()TaglenNonceKPDFPad ,,= is to form a subkey

()NumbyteIndexKKDFK ,,'= , 0=Index , KeylenNumbyte = ,

using the above procedure for the formation of sequences of pseudo-random key bits and the encryption

of values on the generated subkey 'K , i.e.:

() ()(), , ,0, ,Pad PDF K Nonce Taglen Enchiper KDF K Keylen Nonce= = .

The procedure for the formation of a pseudo-random pad Pad is constructed so that the resulting value

Pad has a length of Taglen bytes, regardless of the values Blocklen and Nonce .

Thus, the considered scheme for the formation of message authentication codes UMAC uses a multi-

level design of universal hashing ()TaglenMKHash ,, and the procedure for the formation of a pseudo-

random pad Pad . The use of universal hashing makes it possible to ensure equiprobability of the

formation of hash images for the entire set of key data used, which is the basis for the proof of the

security of the algorithm [1 – 7]. The formation of a pseudo-random pad with a cryptographically robust

algorithm (for example, using the AES block symmetric cipher) ensures the cryptographic strength of

the UMAC algorithm at the persistence level of the cryptographic algorithm used [5, 7]. Consequently,

the considered scheme of UMAC formation has potentially high efficiency indicators, in Figure 1

presents the results of studies of the performance of different versions of the UMAC algorithm in

comparison with the known practical algorithms.

Yevseiev vd., /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 3:2 (2019) 153-170

158

Figure 1. The results of the research performance algorithms UMAC.

At the same time, the algorithm of UMAC formation after applying the last layer of overlaying pseudo-

random pads loses the property of “universality” of hashing; its collision properties significantly

deteriorate.

3. MATERIAL AND METHOD

Minified model UMAC (mini-UMAC). The UMAC message authentication code generation algorithm

uses several transformation layers in its structure; including a block symmetric cipher, (the AES cipher

is recommended).

It was shown above that the scheme of forming UMAC codes consists of the following layers:

– three-level universal hashing for generating hash codes: ()TaglenMKHashY ,,= ;

– cryptographic transformations using a block symmetric cipher to form a pseudo-random pad

()TaglenNonceKPDFPad ,,= ;

– a final transformation to generate message authentication codes

() PadYTaglenNonceMKUMACTag == ,,, .

Consider each layer of the UMAC message authentication code generation scheme for their scaling.

3.1. Mini-version of the three-level universal hash

We construct a mini-version of the three-level universal hash without changing the structure of algebraic

transformations by simply reducing the dimension of the blocks and the processed data eight times.

The corresponding length of the hash-code iYmin of the reduced model of the first layer will be a

multiple of 4 bits; we will form its value by combining (concatenating) four sequences
iLiY 3min :

43min33min23min13minmin LiLiLiLii YYYYY = ,

where:
iLiY 3min – is the result of multi-level hashing of the message of the reduced model of the first

layer mini-UMAC.

Consider the process of forming a single block
iLiY 3min (we will not perform the second level of

hashing in the reduced model):

()()iLiLiLiLiLiLiiLi MKHashKKHashYY min1min1min23min13min3min3min3min ,,,== ,

where: 1min LiK ,
13min LiK ,

23min LiK – mini-UMAC key sequences, 1min LiHash and 3min LiHash –

minified versions of the first and third levels hashing, respectively.

At the first level, a 32-bit string array iMmin is transformed by a function ()iL MKNH ,1 . his string is the

result of the first level hash: ()iLiiLi MKNHY min1minmin1min ,= .

The result of the function ()iLii MKNH min1minmin , is calculated according to the following rule. The

information block iMmin is divided into eight four-bit sub-blocks:

8min2min1minmin ... iiii MMMM = .

Yevseiev vd., /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 3:2 (2019) 153-170

159

Similarly, a key sequence 1LK is represented as a sequence of eight four-bit sub-blocks:

81min21min11min1min ... LiLiLiLi KKKK = .

Then (taking the initial state 01 =LHash) the following operations are performed:

))()((
41min44min801min40min81min1min LiiLiiLiLi KMKMHashHash +++= ,

))()((
51min45min811min41min81min1min LiiLiiLiLi KMKMHashHash +++= ,

))()((
61min46min821min42min81min1min LiiLiiLiLi KMKMHashHash +++= ,

))()((
71min47min831min43min81min1min LiiLiiLiLi KMKMHashHash +++= ,

where: 8+ , 4+ – addition operations modulo 28 and 24, respectively; 8 – multiplication operation

modulo 28.

As a result of calculations, an eight-bit value 1min1min LiLi HashY = is formed.

The third level of hashing converts the eight-bit data 1min LiY submitted to its input into a hash code

3min LiY of length 4 bits. The key sequences are
13min LiK and

23min LiK which length are 16 and 4 bits,

respectively.

Hash able data 1min LiHash and key sequence
13min LiK are evenly divided into four blocks, each of

which is represented as an integer
iLiY 2min and

iLiK
13min , 4,...,2,1=i .

The hash value 3min LiY is calculated as follows:

)()2mod()17mod(
23min

4
4

1
13min2min3min Li

i iLiiLiLi KxorKYY









































= 

=

,

where:)()(yxorx – is the operation of “exclusive ORˮ on the values x and y.

3.2. The mini-version of the block symmetric AES

The mini-version of the block symmetric AES cipher for the formation of a pseudo-random pad is

discussed in detail in papers [14–18]. The simplest to implement is the mini version of the AES (Baby-

Rijndael) cipher, which was proposed by K. Bergman [16]. We briefly consider this reduced cipher

model and justify its use for the formation of a pseudo-random pad in mini-UMAC.

The size of the plaintext block is 16 bits, which we denote by four hexadecimal numbers h0, h1, h2, h3.

Note that ℎ0h0 consists of the first four bits of the input stream. However, when ℎ0 h0 is treated as a

hexadecimal digit, the first bit is treated as a higher order bit. For example, the input block 1000 1100

0111 0001 will be represented by h0 = 8, h1 = c, h2 = 7, h3 = 1.

The key size is also 16 bits. Denote it as 4 hexadecimal numbers k0, k1, k2, k3.

Cipher steps are applied to a state – an array of 2×2 hexadecimal digits. However, for the operation ~

considered below, the state will be represented as an array of 8×2 bits, i.e. each hexadecimal digit will

be treated as a column of 4 bits with a higher order bit on top.

The input block is loaded into the state by displaying h0, h1, h2, h3 in 








31

20

hh

hh
. For example, the input

block 1000 1100 0111 0001 will be loaded as:










1

78

c
, where: 8×2 matrix will be































1

0

0

0

0

0

1

1

1

1

1

0

0

0

0

1

.

Yevseiev vd., /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 3:2 (2019) 153-170

160

Baby-Rijndael includes several rounds identical in structure (there are 4 by default). Before encryption,

the input block is loaded into the state as described above and round keys are calculated. Encryption has

a general structure:

)()(01234 karrrraE =  ,

where a denotes the state, k0, k1, k2, k3, k4 – round keys and ii kaStar =)))((~()( except 4r , where the

multiplication is omitted by t. At the end of the cipher, the state is loaded into a 16-bit block in the same

order in which it was loaded.

Now we will describe the individual components of the cipher.

SubBytes: Operation S is a sample table that is applied to each hexadecimal state number:









⎯→⎯









)()(

)()(

31

20

31

20

hShS

hShS

hh

hh S
?

where: the function S is given by the following table 1.

Table 1. Sample table that implements the Baby-Rijndael S-box.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) a 4 3 b 8 e 2 c 5 7 6 f 0 1 9 d

ShiftRows: The operation ~ simply changes the entries in the second status bar:









⎯→⎯









13

20~

31

20

hh

hh

hh

hh 

MixColumns: The t matrix is the next 8 × 8 bit matrix:

 .

10101110

01110001

10111000

01011100

11101010

00010111

10001011

11000101

































For this transformation, the state is considered as an 8×2 bit matrix. The state is multiplied on the left by

t, using matrix multiplication modulo 2: taa = .

KeySchedule: At the beginning of the cipher and at the end of each round, the state is bit-wise (i.e.,

modulo 2) with a round key. The columns of the round keys are defined recursively as follows:









=

1

0
0

k

k
w , 








=

3

2
1

k

k
w ,

iiii rwreverseSww = −−))((22222 ,

iii www 21212 = −+

for each 4,3,2,1=i , where













=

−

0

2 1i

ir , and reverse function replaces the two entries in the column.

Function S is the same as described above.

It should be noted that all additions are performed bitwise modulo 2. Finally, for 4,3,2,1=i the round key

ik is the matrix whose columns are iw2 and iw2 .

The use of the considered reduced model of the AES block symmetric cipher makes it possible to carry

out experimental studies of the collisional characteristics of the pseudo-random pads being formed over

the entire set of secret keys. Thus, a pseudo-random mini-UMAC pad iPadmin is formed by encrypting

a number Nonce that does not repeat for each information message iMmin . The resulting value iPadmin

has a length of 16 bits, as well as the corresponding length of the hash code iYmin .

Yevseiev vd., /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 3:2 (2019) 153-170

161

3.3. The mini-version of the final transform

The mini-version of the final transform for generating the mini-UMAC message authentication codes

consists of modulo 2 values iYmin and iPadmin : iii PadYTag minminmin = .

Thus, the scaling of the applied transformations on the respective layers of the formation of the message

authentication codes makes it possible to construct a reduced model of UMAC, experimentally

investigate the collision properties of the generated images (codes). When developing a mini-model of

UMAC, the scaling factor was chosen so that the length of generated hash codes Y, pseudo-random pads

Pad and message authentication codes PadYTag = was equal to the length of the mini-block block

of the AES symmetric block cipher [16, 19], i.e. 16 bits The choice of such a scaling factor allows, on

the one hand, preserving the algebraic structure of the basic transformations of the UMAC algorithm,

including the AES algorithm included in its scheme, on the other hand, it makes it possible to conduct

experimental studies using the methods of statistical testing of hypotheses and mathematical statistics,

considering a limited set of elements Y , Pad and PadYTag = , and the corresponding results for

estimating the number of collisions as a sample from the general population.

We justify the method of statistical estimation of the collision properties of the formed elements (we

denote them for simplicity)(xh), consider the main conditions and limitations when conducting

experiments.

3.4. Methods of statistical studies of collision properties

Experimental studies of the collision properties of UMAC message authentication codes will be carried

out along the appropriate transformation layers:

1. At the first stage, we investigate the collision properties of the mini-version of universal hashing. To

do this, it is necessary to confirm in the course of the experiment theoretical estimates of the number of

collisions arising from the generated hash codes iYmin ;

2. At the second stage, we will conduct experimental studies of the collisional characteristics of

pseudorandom pads min iPad based on the analysis of the properties of the reduced Baby-Rijndael cipher

model. Such studies in the available literature are not described and, apparently, conducted by us for the

first time;

3. At the third stage, we will conduct experimental studies of the collisional characteristics of message

authentication codes iii PadYTag minminmin = generated using mini-UMAC. This is the most important

part of the research, since it will allow us to answer the question of preserving the properties of

universal hashing after applying the layer of cryptographic transformation of information.

We will estimate the number of collisions of the formed elements, focusing on the collision properties

of universal hashing. As a matter of fact, we need to confirm or refute the hypothesis about the

preservation of the collision properties of universal hashing at all stages of the formation of message

authentication codes mini-UMAC.

The idea of universal hashing is to define such a set of elements of a finite set H of hash functions

BAh →: , aA = , bB = , so that the random choice of the function 1x and 2x probability that

)()(21 xhxh = (probability of collision, collision) must not exceed some predetermined value  :

1 2(() ())collP P h x h x = =  ,

and the probability of a collision can be calculated as

1 2(,)H
coll

x x
P

H


= ,

where:),(21 xxH – is the number of such hash functions in H for which the values Axx 21, , 21 xx 

cause a collision, i.e.)()(21 xhxh = .

We give two definitions of universal hashing [8, 9].

1. Let 10   . H is  – is a universal hash class (abbreviated),,(BAHU−), if for two different

elements Axx 21, there are no more than H functions Hf  such that,)()(21 xhxh = , if

HxxH  ),(21 for each Axx 21, , 21 xx  .

Yevseiev vd., /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 3:2 (2019) 153-170

162

2. Let 10   . H is  – is a strictly universal hash class (abbreviated),,(BAHSU−) if the

following conditions are true:

– for each Ax 1 and for each By 1 ,

  BHyxhHh /)(: 11 == ;

– for each Axx 21, , 21 xx  and for each Byy 21, ,

  HyxhyxhHh == 2211)(,)(: .

The definition of a universal class of hash functions is equivalent to the definition of an authentication

code generation algorithm, in which the number of different authentication code generation rules

(number of keys) for which there is a collision (matching authentication codes) for two arbitrary input

sequences is limited. The number of such keys cannot exceed the value collР H , where collP – is the

probability of a collision, H – is the number of all rules (keys).

The definition of a strictly universal class of hash functions is equivalent to the definition of such an

algorithm for the formation of authentication codes, in which the following rules will be executed:

1. The number of rules for the formation of the authentication code (the number of keys) for which the

value of the authentication code does not change for an arbitrary input sequence is limited. The number

of such keys cannot exceed the value BH / , where H – is the number of all keys, B – is the number

of possible states of the authentication code;

2. The number of rules for the formation of an authentication code (the number of keys) for which the

corresponding values of the authentication code for two arbitrary input sequences do not change is

limited. The number of such keys cannot exceed the value collР H , where collP – is the probability of a

collision, H – is the number of all keys.

The probability of collision of authentication codes in a scheme with strictly universal hashing is

defined as collP  .

The basis of the proposed methodology for the statistical study of collisional characteristics of formed

elements)(xh is an empirical estimate of the maxima of the number of keys (hashing rules) for which:

1. For arbitrary Axx 21, , 21 xx  equality holds:

)()(21 xhxh = ; (1)

2. For arbitrary Ax 1 and By 1 equality holds:

11)(yxh = ; (2)

3. For arbitrary Axx 21, , 21 xx  and Byy 21, equality holds:

2211)(,)(yxhyxh == . (3)

The evaluation by the first criterion corresponds to the verification of the fulfillment of the condition for

the universal class of hash functions, the evaluation by the second and third criterion – the conditions for

the strictly universal class of hash functions.

We introduce the following notation:

 )()(:),(21211 xhxhHhxxn == , Axx 21, , 21 xx  ;

 11112)(:),(yxhHhyxn == , Ax 1 , By 1 ;

 221121213)(,)(:),,,(yxhyxhHhyyxxn === , Axx 21, , 21 xx  , Byy 21, .

The first value),(211 xxn characterizes the number of hashing rules for which equality (1) holds for the

given Axx 21, , 21 xx  , i.e. the number of keys for which there is a collision (coincidence of hash

codes) for two input sequences 1x and 2x .

The second value),(112 yxn characterizes the number of hashing rules for which equality (2) holds for

the given Ax 1 , By 1 , i.e. the number of keys for which the hash code value 1y does not change for

the input sequence 1x .

Yevseiev vd., /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 3:2 (2019) 153-170

163

The third value),,,(21213 yyxxn characterizes the number of hashing rules for which equality (3) is

fulfilled for given Axx 21, , 21 xx  , Byy 21, , i.e. the number of keys for which the two input

sequences 1x and 2x and the corresponding values 2x and 2y of the hash codes do not change.

Since the number of keys for which equalities (1), (2) and (3) can hold, should not exceed the

corresponding value collР H , BH / and /collP H B we will estimate the maximum number of such

keys for each of the considered sets of elements.

We confine ourselves to studying the statistical characteristics of the maxima of these quantities, and

then compare the results obtained with collР H (for the first criterion), with BH / (for the second

criterion) and with collР H (for the third criterion).

Thus, it is proposed to use as statistical values for evaluating the collision properties for which we will

conduct experimental studies:

– mathematical expectations)(1nm ,)(2nm and)(3nm of maxima’s of the number of hashing rules for

which equalities (1), (2) and (3) are satisfied, respectively;

– variances)(1nD ,)(2nD and)(3nD characterizing the dispersion of the values of the number of

hashing rules for which equalities (1), (2) and (3) are satisfied, relative to their mathematical

expectations)(1nm ,)(2nm and)(3nm respectively.

We will evaluate the collision properties by the above criteria in the average statistical sense. In other

words, when setting up an experiment, we will use a limited set of elements Axx 21, , 21 xx  and

corresponding hash images Byy 21, , considering the corresponding results as a sample from the

general population.

The natural estimate for the mathematical expectation m of a random variable Х is the arithmetic

average of its observed values (or statistical average) [15]


=

=
N

i
iX

N
m

1

1~ ,

where: N – is the number of realizations of the random variable Х.

The variance estimate of the random variable X is determined by the expression:


=

−
−

=
N

i
i mX

N
D

1

2)~(
1

1~
.

By virtue of the central limit theorem of probability theory, for large values of the number of

realizations N, the arithmetic average will have a distribution close to the normal law with the

mathematical expectation

  mmm ~~ 

and standard deviation

 
N

m


 ~ ,

where:  – is the standard deviation of the estimated parameter.

In this case, the probability that the estimate deviates from its mathematical expectation by less than
 by (confidence probability) is equal to [15]:

 








−

m
ФmmP ~2)~(




 ,)

where:)(xФ – is the Laplace function, determined by the expression:


−

=
x t

dtexФ

0

2

2

2

1
)(



Thus, when conducting experimental studies of collisional characteristics, we will use statistical

methods for testing hypotheses and mathematical statistics.

1. From the general population of the random variable X, we form the sample as follows:

Yevseiev vd., /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 3:2 (2019) 153-170

164

• for the average estimate of the mathematical expectation)(1nm and variance)(1nD as a random

variable, the maximum is the maximum),(211 xxn at which equality)()(21 xhxh = , takes place,

therefore, a sample size N: X1, X2, ..., XN is formed by selecting N sets, each of which contains

M pairs of elements Axx 21, , 21 xx  and evaluates Axx 21, , 21 xx  , i.e. the total volume of

the formed pairs of elements, Axx 21, , 21 xx  will be NM;

• for the average estimate)(2nm and)(2nD as a random variable, the maximum),(112 yxn

appears when the equalities are fulfilled and, therefore, the sample that size is N: X1, X2, ..., XN

is formed by selecting N sets, each of which contains M pairs of elements Ax 1 , By 1 and is

estimated as),(112 yxn . The total volume of the formed pairs of elements Ax 1 , By 1 will be

NM;

• for the average estimate)(3nm and)(3nD as a random variable, the maximum appears

),,,(21213 yyxxn when the equalities)(11 xhy = and)(22 xhy = are fulfilled, therefore, the

sample that size is N: X1, X2, ..., XN is formed by selecting N sets, each of which contains M

quadruple elements Axx 21, , 21 xx  , Byy 21, and is estimated as),,,(21213 yyxxn , the total

volume of the formed fours will be NM.

•

2. In experimental studies of the collision properties of hashing, we will estimate the arithmetic average

)(~
inm of the observed values of the maxima in and variance)(

~
inD , 3,2,1=i .

3. The reliability of the average estimates obtained is justified as follows. Let us fix the accuracy ε and

calculate the values of the Laplace function, which, in accordance with expression (4), will give the

corresponding confidence probabilities:

 












−

)(~2))()(~(
i

ii
nm

ФnmnmP



 ,  

N

nD
nm

i
i

)(
~

)(~  .

When reversing the problem, i.e. for a fixed confidence probability дP with a sample size of N with a

sample size of

   )(~)(~)()(~)(~
iiiii nmtnmnmnmtnm   +− ,

where: t – solution of an equation () дPtФ =2 .

Thus, the proposed method, using reduced models of individual transformation layers, based on an

estimate of the collision distribution of the images being formed, allows us to experimentally investigate

the collision properties of message authentication codes.

4. EXPERIMENTAL RESULTS

Using the developed miniature UMAC model (mini-UMAC) and the method of statistical study of the

collision properties of message authentication codes, we will experimentally estimate the distribution of

the number of collisions of the images being formed.

Since the UMAC scheme discussed above uses the family of universal hashing functions that were

studied in detail in [1–7] on the first layer (when generating the hash code iYmin), we will conduct

statistical studies only on the second layer (when forming a pseudo-random pad iPadmin) and at the

final stage of formation authentication codes (after performing the summation iii PadYTag minminmin =

). It is at these stages, according to our assumption, that the universality properties of the generated

authentication codes are violated.

To form a minified UMAC model (mini-UMAC), we use:

1st layer:

Let us denote the procedure for encrypting a block of data T of length Blocklen bytes using a secret key K of

length Keylen bytes in the form of a certain function Keylen . Then the procedure for the formation of a pseudo-

Yevseiev vd., /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 3:2 (2019) 153-170

165

random key sequence ()' , ,K KDF K Index Numbyte= can be represented as the following iterative (for each

1,2,...,i n=) transformation:

iIndexTi = ,

()' ,i iK Enchiper K T= ,

1 2' ' ' ... 'nK K K K= ,

where:
Numbyte

n
Blocklen

 
=  
 

.

The generated sequence of pseudo-random key data bits 'K has length Numbyte bytes, that is a multiple of the

block length Blocklen bytes.

1024 16 3 1072
33,5 33

32 32

Numbyte
n

Blocklen

+  
= = = =  
 

1,2,...,33i= =

iT Index i=

For the first layer Index=1, => iT :

T1 = 1 || 1 = 00000001

T2 = 1 || 2 = 00000001 00000010

T3 = 1 || 3 = 00000001 00000011

T4 = 1 || 4 = 00000001 00000100

T5 = 1 || 5 = 00000001 00000101

T6 = 1 || 6 = 00000001 00000110

T7 = 1 || 7 = 00000001 00000111

T8 = 1 || 8 = 00000001 00001000

T9 = 1 || 9 = 00000001 00001001

T10 = 1 || 10 = 00000001 00001010

T11 = 1 || 11 = 00000001 00001011

T12 = 1 || 12 = 00000001 00001100

T13 = 1 || 13 = 00000001 00001101

T14 = 1 || 14 = 00000001 00001110

T15 = 1 || 15 = 00000001 00001111

T16 = 1 || 16 = 00000001 00010000

T17 = 1 || 17 = 00000001 00010001

T18 = 1 || 18 = 00000001 00010010

T19 = 1 || 19 = 00000001 00010011

T20 = 1 || 20 = 00000001 00010100

T21 = 1 || 21 = 00000001 00010101

T22 = 1 || 22 = 00000001 0010110

T23 = 1 || 23 = 00000001 0010111

T24 = 1 || 24 = 00000001 0011000

T25 = 1 || 25 = 00000001 0011001

T26 = 1 || 26 = 00000001 0011010

T27 = 1 || 27 = 00000001 0011011

T28 = 1 || 28 = 00000001 0011100

T29 = 1 || 29 = 00000001 0011101

T30 = 1 || 30 = 00000001 0011110

T31 = 1 || 31 = 00000001 0011111

T32 = 1 || 32 = 00000001 00100000

T33 = 1 || 33 = 00000001 00100001

1 2' ' ' ... 'nK K K K=

2-nd layer:

24 4 96
3

32 32

Numbyte
n

Blocklen

 
= = = = 
 

1,2,3i= =

iT Index i=

For the second layer Index=2, => iT :

T1 = 2 || 1 = 00000010 00000001 =>K1

T2 = 2 || 2 = 00000010 00000010 =>K2

T3 = 2 || 3 = 00000010 00000011 =>K3

KL2 = K1 || K2 || K3

3-rd layer:

64 4
2

32*4

Numbyte
n

Blocklen

 
= = = 
 

1,2i= =

iT Index i=

For the third layer =3, => : Index =3, => iT :

T1 = 3 || 1 = 00000010 00000001 =>K1

T2 = 3 || 2 = 00000010 00000010 =>K2

KL31 = K1 || K2

Yevseiev vd., /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 3:2 (2019) 153-170

166

When conducting statistical studies of the collision properties of the values iPadmin and iTagmin for

each experiment, the mathematical expectations)(1nm ,)(2nm and)(3nm , variances ,)(1nD ,)(2nD

and)(3nD , and, as well as for fixed accuracy  = 0,1 the corresponding confidence probability

))()(~(− ii nmnmP was calculated. Researches were conducted on the sample, size of N = 100, for the

formation of each element of the sample was calculated by a maximum of a set of M = 1000 tuples of

elements. Thus, the total volume of the formed sets was NM = 105.

The results of experimental studies are summarized in Table 2.

Table 2. The results of experimental researches of the collision properties of authentication codes generated using

mini-AES and mini-UMAC, mini MASH-1, MASH-2 and mini-UMAC

mini-AES,

iPadmin

mini-UMAC,

iTagmin
MASH-1 MASH-2

)(~
1nm - 4,23 41,42 0

)(
~

1nD - 0,18 42,74 0

))()(~(11 −= nmnmPPд - 0,98 0,98  1

)(~
2nm 6,68 4,78 3,99 1

)(
~

2nD 0,42 0,42 0,01 0

))()(~(22 −= nmnmPPд

0,88 0,88 0,99  1

)(~
3nm 0,19 5,31 0,26 0,31

)(
~

3nD 0,15 0,24 0,21 0,22

))()(~(33 −= nmnmPPд 0,99 0,96 0,97 0,97

When examining the collision properties of authentication codes generated using the mini version of

the AES cipher, the number of keys for which equality)()(21 xhxh = is performed was zero for all tests,

i.e. 0),(211 =xxn in all N = 100 experiments. This result is explained by the following property. The

AES cipher (like its mini version) implements a bijective mapping of a set of plaintexts into a set of

cipher programs, i.e. for a fixed key, the generated ciphertexts corresponding to different plaintext will

be different. The experimental research conducted by the first criterion entered was precisely to count

the number of keys in which there is a collision (collision) of two ciphertexts corresponding to two

different plaintexts, which is impossible by definition of a bijective cipher. In this regard, the statistical

data on the first criterion for the mini version of the AES cipher in the table. 2 are not listed as non-

informative.

The analysis of the data in Table 2 suggests that the results obtained are adequate and that they

correspond to the statistical properties of the entire population of data. For a fixed accuracy  = 0,1,

high confidence values were obtained, which indicates the validity and reliability of the experimental

results obtained.

Let us analyze the results of statistical studies of the collision properties of message authentication

codes, compare the obtained results of the average estimates of mathematical expectations,)(1nm ,

)(2nm and)(3nm the number of hashing rules for which equalities (1), (2) and (3) are satisfied,

respectively, with theoretical estimates: with collР H (for the first criteria), with BH / (for the

second criterion) and with collР H (for the third criterion).

Consider the first criterion by which we estimate the number of hash rules for which there is a

collision (coincidence of authentication codes) for two arbitrary input sequences. In accordance with

Yevseiev vd., /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 3:2 (2019) 153-170

167

theoretical estimates, this value is bounded above collР H by a number. Let us specify this

(theoretical) estimate for authentication codes generated using mini-AES and mini-UMAC.

The power of the key set for mini-AES and mini-UMAC is 162=H , the power of the set of generated

authentication codes is also 162=B . If we use the upper estimate of the probability of collisions as the

inverse of the power of the generated authentication codes 162collР −= , we get 1),(211 = HРxxn кол .

For the mini version of the AES cipher, this condition is met (justified by the bijectivity of the

encryption transform), but the collisional characteristics of mini-UMAC are significantly inferior to

this upper theoretical estimate. In fact, the number of collisions is more than four times higher than the

theoretical limit and this position is confirmed with a high confidence level

98,0)1,0)()(~(11 −= nmnmPPд .

Consider the second criterion by which the hash rules are evaluated, for which for an arbitrary input

sequence the value of the authentication code does not change. According to theoretical estimates, this

value for authentication codes generated using mini-AES and mini-UMAC is bounded above by

1/ =BH . The experimental results obtained indicate that the collisional characteristics of

authentication codes generated using mini-AES and mini-UMAC do not satisfy the second criterion,

the number of keys that do not change the authentication code several times for an arbitrary input

sequence than the theoretical estimate for universal hashing.

In accordance with the third criterion, the number of hashing rules is estimated, for which, for two

arbitrary input sequences, the corresponding values of the authentication code do not change. The

theoretical estimate of this value for universal hashing is bounded above by collР H , which, using the

upper estimate of the probability of collisions 162collР −= gives 3 1 2 1 2(, , ,) 1colln x x y y Р H  = . The

values given in Table 2 indicate that the collisional characteristics of authentication codes generated

using mini-AES satisfy the third criterion. At the same time, the number of mini-UMAC keys, for

which the corresponding authentication code values do not change for two arbitrary input sequences,

is more than five times higher than the upper theoretical estimate.

Thus, to ensure the universality of the UMAC hash code, it is necessary to “replace” the pad based on

the AES blocks symmetric cipher with a crypto-resistant sequence, which ensures the crypto-

resistance of the entire hashing system. In [10, 11, 20], as a “replacement”, it is proposed to use the

MASH-1 and MASH-2 hashing algorithms, which provide the required level of cryptographic

strength. Evaluation of cryptographic strength is given in Table 3.

However, the results presented in Table 2 shows that the implementation of the key hashing scheme

based on the MASH-1 algorithm, while changing the values of the initialization vector by the secret

key, does not allow for high collision properties. The number of collisions occurring significantly

higher than the upper theoretical boundaries, both in the first and in the second criteria, therefore, this

construction is not a universal and, moreover, strictly universal hashing scheme. This result was

obtained with a high confidence level for high accuracy. Thus, for the first criterion, the confidence

interval was (confidence level 0.98), for the second criterion (confidence level 0.99), for the third

Table 3. Results of experimental researches of the statistical security of hashing algorithms using the NIST STS

package

Generator
The number of tests where testing has

passed > 99%

The number of tests where testing has

passed > 96%

MASH-1 101 (53%) 188 (99%)

MASH-2 126 (67%) 189 (100%)

MASH(EC) 141 (74%) 189 (100%)

HMAC-SHA-256 134 (71%) 187 (98%)

ЕMAC 138 (73%) 189 (100%)

RIPEMD-160 129 (68%) 189 (100%)

Yevseiev vd., /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 3:2 (2019) 153-170

168

UMAC+MASH-2 173 (91%) 189 (100%)

(confidence level 0.97). The considered key hashing scheme based on the MASH-1 algorithm, when

the initialization vector values change with a secret key, satisfies only the third criterion.

Using key hashing based on the MASH-2 algorithm when changing the values of the initialization

vector with a secret key, on the contrary, provides high collision characteristics of universal hashing.

However, their use as a “pad” significantly reduces the rate of conversion and the formation of a hash

code. A promising direction is the use of crypto-code structures proposed in [21–24]. In Figure 2

shows a block diagram of a hashing algorithm, taking into account the use, as a pad, of a McEliece’s

crypto-code scheme on elliptic (EC) modified elliptic (shortened / extended) codes.

 UMAC+McEliece’s CCS on the ES (MES)

Universal scheme based on universal hash functions

High collision characteristics, high speed, cryptographically weak
Providing provable durability, speed of crypto-transformations at the level of block-

symmetric cyphers, ensuring reliability

Multi-layer scheme of forming MAC using universal hashing and noise-resistant coding on the EC (MEC) of provable security

layer
st

1

NH-hash

Universal hashing scheme

layer
nd

2

Poly-hash

Polynomial universal hashing scheme

layer
rd

3

NH-hash

Carter-Vergman universal hashing scheme

McEliece’s crypto-code scheme on elliptical (EC), modified (MEC) codes

SUBSCRIBER А

Generates a

cryptogram

eGiс X
*
X +=

SUBSCRIBER B

Builds a vector

Decodes vector

 (calculates i')

Calculates
informational vector

i = i' · X-1

MALEFACTOR

Random code decoding is an

interactable task

11 −− = PDсс *
X

*

,'eG'iс
*

+=

*
Xс

public key

GХ=X*G*P*D

Cryptogram transmission

(private key -

matrices G, X, P, D)

Figure 2. Block diagram of the UMAC algorithm with the McEliece’s CCS on the EC (MEC)

This approach ensures the preservation of the properties of the universal hash algorithm, as well as the

required level of security, efficiency and reliability in the formation of the hash code.

5. CONCLUSION

Thus, the results of statistical studies of the collision properties of hash codes based on mini-AES and

mini-UMAC, as well as MASH-1 and MASH-2, allow us to state:

• the cryptographic layer of the formation of message authentication codes (mini-AES) satisfies

the properties of universal hashing, the probability of a collision of generated hash images

does not exceed a predetermined value. However, this transformation layer does not satisfy the

properties of strictly universal hashing;

• the result of the formation of message authentication codes using the mini-UMAC scheme

does not satisfy the properties of both universal hashing and, all the more, the properties of

strictly universal hashing. This is because that the scheme with simple sum modulo two

(XOR) of the two universal hash results does not always preserve the properties of the

universal hash;

• the use of the MASH-1 algorithm as a hash-code does not meet the requirements for security

and speed, the MASH-2 algorithm does not satisfy the speed of transformations, which does

not allow their practical use in decentralized cryptocurrency systems.

The proposed application of the McEliece’s crypto-code scheme on elliptical (EU), modified elliptical

(shortened / elongated) codes retain the universality property on the first two layers of the UMAC

algorithm, provides the required level of security, efficiency and reliability when generating the

Yevseiev vd., /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 3:2 (2019) 153-170

169

message hash code. Thus, this algorithm allows to increase the levels of basic hashing functions in the

blockchain technology in Bitcoin protocols.

REFERENCES

1. Black, J., Halevi, S., Krawczyk, H., Krovetz, T. and P. Rogaway, “UMAC: Fast and provably

secure message authenticationˮ, Advances in Cryptology, CRYPTO '99, LNCS, Vol. 1666, Pages

216-233, 1999.

2. Krovetz, T. and Rogaway, P., “Fast universal hashing with small keys and no preprocessing,

work in progressˮ, http://www.cs.ucdavis.edu/~rogaway/umac, October 12, 2000.

3. Krovetz, T., Black, J., Halevi, S., Hevia, A., Krawczyk, H. and Rogaway, P., “UMAC -Message

authentication code using universal hashing. IETF Internet Draft, draft-krovetz-umac-01.txt.ˮ,

http://www.cs.ucdavis.edu/~rogaway/umac, November 15, 2000.

4. Krovetz T., “UMAC-Message authentication code using universal hashing. IETF Internet Draft,

draft-krovetz-umac-02.txt.ˮ, http://www.cs.ucdavis.edu/~rogaway/umac, February 2, 2004.

5. “Final report of European project number IST-1999-12324, named New European Schemes for

Signatures, Integrity and Encryptionˮ, Version 0.15 (beta), Springer-Verlag, April 19, 2004.

6. Krovetz T., “UMAC-Message authentication code using universal hashingˮ,

http://www.cs.ucdavis.edu/~rogaway/umac, June 23, 2006.

7. Krovetz T., “Software-Optimized Universal Hashing and Message Authentication. Dissertation

submitted in partial satisfaction of the requirements for the degree of doctor of philosophyˮ,

University Of California Davis, California, September 2000.

8. Carter, J. L. and Wegman, M. N., “Universal classes of hash functionsˮ, Computer and System

Scince, No. 18, Pages 143–154, 1979.

9. Wegman, M. N. and Carter, J. L., “New hash functions and their use in authentication and set

equalityˮ, Computer and System Scince, No. 22, Pages 265–279, 1981.

10. Korol, O. G., Parhuts, L. T. and Yevseiev, S. P., “Investigation of properties of modular

transformations and methods of hashing information on their basisˮ, Information Processing

Systems, No. 4(111), Pages 106–110, 2013.

11. Korol, O. G. and Yevseiev, S. P., “The method of universal hashing on the basis of modular

transformations, Information processing systemsˮ, Information Technology and Computer

Engineering, No. 7(97), Pages 131–132, 2011.

12. Korol, O. G., Yevseiev, S. P. and Dorokhov, A. V., “Mechanisms and protocols for protecting

information in computer networks and systemsˮ, Scientific Journal of the Ministry of Defense of

Republic of Serbia. Military Technical Gazette, Belgrade, No. 4, Pages 15–30, 2011.

13. Korol, O.G. and Yevseiev, S. P., “Results of the statistical test security hash algorithms-

candidates tender to select standard hash algorithm SHA-3ˮ, News of higher technical educational

institutions of Azerbaijan, No. 2, Pages 73–78, 2012.

14. Regenscheid, Andrew, Perlner, Ray, Chang, Shu-jen, Kelsey, John, Nandi, Mridul and Paul,

Souradyuti, “Status Report on the First Round of the SHA-3 Cryptographic Hash Algorithm

Competitionˮ, http://www.nist.gov/index.html, March 3, 2005.

http://www.cs.ucdavis.edu/~rogaway/umac
http://www.cs.ucdavis.edu/~rogaway/umac
http://www.cs.ucdavis.edu/~rogaway/umac
http://www.nist.gov/index.html

Yevseiev vd., /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 3:2 (2019) 153-170

170

15. Chung-Wei Phan Raphael, “Mini Advanced Encryption Standard (Mini-AES): A testbed for

Cryptanalysis Studentsˮ, Cryptologia, XXVI (4), Pages 283–306, 2002.

16. A Description of Baby Rijndael, ISU CprE/Math 533; NTU ST765-U, 2003.

17. Lisitskaya, I. V., Grinenko, T. A. and Bessonov, S. Yu., “Analysis of the differential and linear

properties of ciphers rijndael, serpent, threefish with 16-bit inputs and outputs”, East European

Journal of Advanced Technologies, Pages 50-54, 2015.

18. Yevseiev, S. P., Ostapov, S. E. and Korolev, R. V., “Use of mini-versions for evaluation of the

stability of block-symmetric ciphersˮ, Scientific and Technical Journal “Information Securityˮ,

Vol.23, No. 2, Pages 100–108, 2017.

19. Yevseiev, S. P., Yokhov, O. Y. and Korol, O. G., “Data Gaining in Information Systems:

monographˮ. pub. KhNUE, Kharkiv, 2013.

20. Yevseiev, S., Rzayev, H. and Tsyganenko, A., “Analysis of the software implementation of direct

and inverse transformations using the non-binary balanced coding method”, Science and

Technology Journal “Security Without Information”, Vol. 22, No. 2, Pages 196–203, 2016.

21. Yeseiev, S., “The use of flawed codes in crypto-code systems”, Information processing systems,

No. 5 (151), Pages 109–121, 2017.

22. Yevseiev, S. and Bilodid, I., “The use of unprofitable codes in hybrid crypto-code designsˮ, Fifth

International Scientific and Technical Conference “Problems of Informatizationˮ, Cherkasy –

Baku – Bielsko-Biala – Poltava, Page 11, 2017.

23. Hryshchuk, R., Yevseiev, S. and Shmatko, A., “Construction methodology of information

security system of banking information in automated banking systems: monographˮ, Pages 134–

156, Premier Publishing s. r. o., Vienna, 2018.

