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Abstract

In this paper, we discuss the existence of single and multiple positive solutions to the nonlinear second
order discrete three-point boundary value problems. To prove the main results, we will use the well-known
result of the fixed point theorems in cones.
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Ozet

Bu caligmada, lineer olmayan ikinci mertebe diskret tig-nokta sinir deger problemleri i¢in tek ve birden
fazla pozitif ¢6ziimlerin varlig1 incelenecek. Ana sonuglari ispatlamak i¢in konilerde sabit nokta teoremlerinin
iyi bilinen sonuglarimi kullanacagiz.

Anahtar Kelimeler: Sinir deger problemleri; Fark denklemleri; Sabit nokta teoremleri; Pozitif

¢Oziimler.

1. Introduction

There are many authors who studied the existence of solutions to second order two-
point boundary value problems on difference equations. For some recent results, we
refer the reader to [2], [3], [4], [5], [7], [9], [10]. However, to the best of the author’s
knowledge, there are few results for the existence of solutions to second order three-
point boundary value problems on difference equations.
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In paper [1], Agarwal, Thompson and Tisdell studied existence results for solutions to
second-order discrete boundary value problem
ANy =100, k=1,2,..,n—1
Gy Y, 14)=(0,0), dedl,...,n—1}
where fand G are continuous.
In paper [11], Zhang and Medina studied existence of positive solutions for the
nonlinear discrete three-point boundary value problem
Azxkf1 +f(x)=0, k=12,..,n
x, =0, x,,,
where ne{2,3,...}, [ €{l,2,...,n}, a and b are positive numbers and /€ C(R,,R,).

We are interested in the existence of one or two positive solutions of the following
three-point boundary value problem:

—ax, =b

{AZ y(n)+h(n) f(n, y(n+1)) =0, nela,c] "

Ay(a)=0, ay(c+1)+ fAy(c+1)= Ay(b)

where a<b<care distinct integers, >0, #>1 and A denotes the forward difference
operator defined by Ay(n)= y(n+1)—y(n). Additionally, throughout the paper we assume
h:[a,c]—>[0,0) is continuous such that A(n)>0 for at least one n,<[b,c],
f:[a,c]x[0,0) —[0,0) is continuous.

Problem (1) is equivalent to the problem

y(m+2)=2y(n+D)+y(n)+h(n)f(n,y(n+1))=0, nela,c]
ya+1)=y(a), By(c+2)+(a—-PB)y(c+1)=y(b+1)— y(b).

2. Preliminaries

Let G(n,s) be Green's function for the boundary value problem
A’y(n)=0, nela,c]cZ

Ay(a)=0, ay(c+1)+ Ay(c+1) = Ay(b).
A direct calculation gives

c+ﬂ+l—n , S+1<n
s €la,b] o
c—s+ -1 , n<s
Gn,s)= “ 2)
c+£+l—n , s+1<n
selb,c] @
c—s+£ s n<s
a
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To state and prove the main results of this paper, we need the following lemmas.

Lemma 1 Leta >0, #>1. Then the Green's function G(n,s) in (2) satisfies the following
inequality
G(n,s) = n-a
c—a+l
For (n,s) €[a,c+1]x[a,c].

G(c+1,s)

Proof. We proceed sequentially on the branches of the Green's function G(n,s) in (2).
(i) For s €[a,b] ands+1<n, we obtain

G(n,s):c+ﬁ+1—n
o

and
G(n,s) :c—n+1+1> n-a_
G(c+1l,s) pB-1 c—a+l
a
(ii) Let s €[a,b] and n<s. Then
G(n,s)zc—s+E
a
and

G(n,s) _|s -4
G(c+1,s) c—a+1
(iii) Take s €[b,c] and s+1<n. Then

G(n,s)=c+£+l—n
o

and
G(n,s) :c—n+1+12 n—a '
G(c+1,s) B c—a+l1
a
(iv) Fix s €[b,c] and n<s. Then
G(n,s)zc—s+£
a
and

G(n,s) s -4
G(c+1,s) c—a+1

Lemma 2 Assume « >0, > 1. Then the Green's function G(n,s) in (2) satisfies
0<G(n,s)<G(s+1,s)
for (n,s) €la,c+1]x[a,c].
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Proof. Since for s €[a,b]
G(c+1,s) =E> 0
o
and for s € (b,c+1]
G(c+1,s) =£ >0,
a

we obtain G(n,s)>0 from Lemma 1. To show that G(n,s) < G(s +1,s), we again deal with
the branches of the Green's function G(n,s) in (2).
(i) For s €[a,b] ands+1<n<c+1, G(n,s) is decreasing in n and G(n,s) < G(s +1,s).
(if) Let s €[a,b] and a <n<s. Then it is obvious that G(n,s) = G(s +1,s).
(iii) Take s € (b,c] and s+1<n<c+1. Since G(n,s) is decreasing in n,
G(n,s) < G(s+1,s).
(iv) Fix s € (b,c] and a<n<s. Then it is clear that G(n,s) = G(s +1,5).

Lemma 3 Suppose >0, f>1 and se€[a,c]. Then the Green's function G(n,s) in (2)
satisfies
min]G(n,s)2k||G(.,s)|,

nelb,e+l

where

_ B-1
Calc—a)+ B-1 ®)

and ||H is defined by Hx” = max |x(n)‘.

nela,c+1]

Proof. Since the Green's function G(n,s) in (2) is nonincreasing in n, we get
minl]G(n,s)ZG(cH,s). Moreover, it is obvious that ||G(.,s)||:G(s+1,s) for s e[a,c] by

nelb,c+
Lemma 2. Then we have from the branches in (2) that
G(c+1,8) 2 kG(s +1,s).

Let the Banach space B={y:[a,c+1]—> R} with the norm ||y||: rPaX]|y(n)| and

ela,c+1

define the cone P c B by
P:{yeB:y(n)zo, min y(n)Zk"y”} )

e[b,c+1]

where £ is given in (3).

(1) is equivalent to the nonlinear integral equation

y(n) = Z G(n,5)h(s) f (s, y(s +1)). )
We can define the operator 4: P — B by
Ay(n) = Z G(n,$)h(s)f (s, y(s +1)), (6)
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where y € P. If y € P, then by Lemma 3 we have

min_ Ay(r) = gng’i&] G(n,$)h(s) £ (s, y(s +1))

nelb,c+1

:kg@%]w(n,sﬂ h(s) f (s, v(s + 1))

= k4]
Thus Ay € Pand therefore AP — P. In addition, 4: P — P is completely continuous by a

standard application of the Arzela-Ascoli Theorem.
We will apply the following well-known result of the fixed point theorems to prove
the existence of one or two positive solutions to the (1).

Lemma 4 [6],[8] Let P be a cone in a Banach space B, and let D be an open, bounded subset

of Bwith D,:=DNP#@ and D, # P. Assume that 4:D, — P is a compact map such that

y# Ay for y € D, . The following results hold.

@ If ||Ay|| < ||y|| forye D, ,then i,(4,D,)=1.

(ii) If there exists an g € P\ {0} such that y# Ay+Aq forall ye D, and all 4> 0, then
i,(4,D,)=0.

(iii) Let U be open in P such thatU, < D,. If i,(4,D,)=1 and i,(4,U,) =0, then A has a

fixed point in D, \U,. The same result holds if i,(4,D,)=0 and i,(4,U,)=1.

3. Single and Multiple Positive Solutions

For the cone P given in (4) and any positive real number 7, define the convex set
P={yeP:|y|<r}
and the set

Q = {yeP: min y(n)<kr}.

nelb,c+]

The following results are proved in [3].

Lemma 5 The set Q, has the following properties.
(i) Q, is open relative to P.
(il) B, cQ, CP.

(iii) y € 0Q, if and only if r[rginl]y(n) =kr.
() If yeoQ,,then kr < y(n)<r for ne[b,c+1].
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For convenience, we introduce the following notations. Let

fo= min{ min Sny) (ye [kr,r]}
r

nel[b,c+l]

fi= max{niﬁ%ﬁ]@ 1ye [O,r]}
S =limsup max /()
y—a nela,c+1] y

f, =liminf min Sn.y) (a:: 0*,00).

y—a  nelb,c+l] ¥y

In the next two lemmas, we give conditions on f guaranteeing that i,(4,P.)=1or
i,(4,9,)=0.

Lemma 6 Let

L= Z G(s +1,5)h(s). (7
If the condit;(:)ils

fo S% and y# Ay for yeoP,
hold, then i,(4,P)=1.

Proof. If y € 0P, then using Lemma 2, we have

Ap(n) = Gl )h(s) f (5, y(s + 1))

<|l7C y)||iG(s 1,5)h(s)

<r=|y
It follows that |[Ay||<|y| fory € 8P, . By Lemma 4(i), we get i,(4,P)=1.

Lemma 7 Let

-1
N = [Zc: G(c+ l,s)h(s)) ®)
s=b
If the conditions
Jfo. 2Nk and y# Ay for ye0Q,,

hold, then i,(4,Q,)=0.
Proof. Let g(n)=1 for nela,c+1], then q €OF,. Assume there exist y,€0Q, and A4, >0
such that y, = Ay, + A,q. Then for ne[b,c+1] we have

Yo(n) = Ay, (n) + Ayq(n)
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> Z:G(n,s)h(s) S,y (s+1)+ 4,

> NkrS Gle+1,5)h(s) + Ay

=kr+4,
But this implies that kr>kr+4,, a contradiction. Hence, for y,€0Q, and A4,>0, so by
Lemma 4(ii), we get i,(4,Q,)=0.

Theorem 8 Let &, L, and N be as in (3), (7), and (8), respectively. Suppose that one of the
following conditions holds.

(C1) There exist constants c,c,,c; € R with 0 <¢, <kec, and ¢, <c, such that
L <_ s fre 2Nk, and y # Ay for yeoQ, .
(C2) There exist constants ¢,¢,,¢; € R with 0 < ¢, <c, < ke, such that

JsJro 2 Nk, 1 S%, and y# Ay for yeoP,.
Then (1) has two positive solutions. Additionally, if in (C1) the condition f;’ S% is replaced

1 . .. .
by f;' < I then (1) has a third positive solution in P, .

Proof. Assume that (C1) holds. We show that either 4 has a fixed point in JF, or in

Q. \Fc,- If y# Ay for yedl,, then by Lemma 6, we have i,(4,F,)=1. Since [ > Nk
and y# Ay for yedQ, , from Lemma 7 we get i,(4,Q,)=0. By Lemma 5(ii) and ¢, <kc,,
we have P, 1’3,“,2 < Q, . From Lemma 4(iii), A has a fixed point in Q,_ \}_’Cl. If y# Ay for

a

Yy €0F, , then from Lemma 6 i,(4,F, )=1. By Lemma 5(ii) and Lemma 4(iii), 4 has a fixed
pointin P, \(_262. The proof is similar when (C2) holds and we omit it here.

Corollary 9 If there exist a constant ¢ >0 such that one of the following conditions holds:
HD o< f° f~ <l, fo2Nk,and y# Ay for yeoQ,.

H2) N< f;, f, <o, fo_ ,and y # Ay for yeoP.
Then (1) has two positive solutlons.

Proof. We show that (H1) implies (C1). It is easy to verify that 0< f° <% implies that there

exists ¢, €(0,kc) such that f; <— Let me ( e Lj Then there exists ¢, >c¢ such that
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max]f(n,y)sky for y €[c,,») because 0< [~ <%. Let

nela,c+l

1
n:max{maxlf(n,y):OSyS(:2 and ¢, > max I =1 -

nela,c+1] LI L
L
Then we have

1
max f(n,y)Smy+n£mc4+n<zc4 for y€[0,c,].

nela,c+l]

This implies that f* <% and (C1) holds. Similarly, (H2) implies (C2).

As a special case of Theorem 8 and Corollary 9, we have the following two results.

Theorem 10 Assume that one of the following conditions holds.

(C3) There exist constants ¢;,c, € R with 0<¢, <kc, such that

Ny S% and f;2 = Nk.
(C4) There exist constants ¢,,c, € R with 0<¢, <c¢, such that
Je, = Nk and f;” S%.

Then (1) has a positive solution.

Corollary 11 Assume that one of the following conditions holds:

(H3) 0sf°<% and N< f, <oo.

(H4) Osf‘”<% and N< f, <o

Then (1) has a positive solution.
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