Perrin Octonions and Perrin Sedenions

Yasemin Taşyurdu ${ }^{1 *}$ and Ayşe Akpınar ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences and Art, Erzincan Binali Yildirım University, Erzincan 24000, Turkey.
*Corresponding author

Abstract

In this study, we introduce new classes of octonion and sedenion numbers associated with Perrin numbers. We define Perrin octonions and Perrin sedenions by using the Perrin numbers. We give some relationship between Perrin octonions, Perrin sedenions and Perrin numbers. Moreover we obtain the generating functions, Binet formulas and sums formulas of them.

Keywords: Perrin numbers, Perrin octonions, Perrin sedenions.
2010 Mathematics Subject Classification: 05A15; 11B83; 11R52.

1. Introduction

Octonion algebra is 8 -dimensional, non-commutative, non-associative and normed division algebra over the real numbers. Sedenions are obtained by applying the Cayley-Dickson construction to the octonions and form a 16-dimensional non-associative and non-commutative algebra over the set of real numbers.
Many different classes of octonion and sedenion number sequences such as Fibonacci octonion and sedenion, Lucas octonion and sedenion, Pell octonion and sedenion have been obtained by a number of authors in many different ways. In addition, generating functions, Binet formulas and some identities for these octonions and sedenions have been presented ([1, 2, 3, 4, 7, 10]).

Let O be the octonion algebra over the real number field \mathbb{R}. It is known, by the Cayley-Dickson process that any $p \in O$ can be written as

$$
p=p^{\prime}+p^{\prime \prime} e
$$

where $p^{\prime}, p^{\prime \prime} \in H=\left\{a_{0}+a_{1} i+a_{2} j+a_{3} k: i^{2}=j^{2}=k^{2}=-1, i j k=-1, a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{R}\right\}$, the real quaternion division algebra. The addition and multiplication of any two octonions, $p=p^{\prime}+p^{\prime \prime} e, q=q^{\prime}+q^{\prime \prime} e$ are defined by

$$
p+q=\left(p^{\prime}+q^{\prime}\right)+\left(p^{\prime \prime}+q^{\prime \prime}\right) e
$$

and

$$
p q=\left(p^{\prime} q^{\prime}-\overline{q^{\prime \prime}} p^{\prime \prime}\right)+\left(q^{\prime \prime} p^{\prime}+p^{\prime \prime} \overline{q^{\prime}}\right) e
$$

where $\overline{q^{\prime}}, \overline{q^{\prime \prime}}$ denote the conjugates of the quaternions $q^{\prime}, q^{\prime \prime}$ respectively. Thus, O is an eight-dimensional non-associative division algebra over the real numbers \mathbb{R}. A natural basis of this algebra as a space over \mathbb{R} is formed by the elements

$$
e_{0}=1, e_{1}=i, e_{2}=j, e_{3}=k, e_{4}=e, e_{5}=i e, e_{6}=j e, e_{7}=k e
$$

The multiplication table for the basis of O is

\cdot	1	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}
1	1	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}
e_{1}	e_{1}	-1	e_{3}	$-e_{2}$	e_{5}	$-e_{4}$	$-e_{7}$	e_{6}
e_{2}	e_{2}	$-e_{3}$	-1	e_{1}	e_{6}	e_{7}	$-e_{4}$	$-e_{5}$
e_{3}	e_{3}	e_{2}	$-e_{1}$	-1	e_{7}	$-e_{6}$	e_{5}	$-e_{4}$
e_{4}	e_{4}	$-e_{5}$	$-e_{6}$	$-e_{7}$	-1	e_{1}	e_{2}	e_{3}
e_{5}	e_{5}	e_{4}	$-e_{7}$	e_{6}	$-e_{1}$	-1	$-e_{3}$	e_{2}
e_{6}	e_{6}	e_{7}	e_{4}	$-e_{5}$	$-e_{2}$	e_{3}	-1	$-e_{1}$
e_{7}	e_{7}	$-e_{6}$	e_{5}	e_{4}	$-e_{3}$	$-e_{2}$	e_{1}	-1

Table 1

Under this notation, all octonions take the form

$$
p=\sum_{s=0}^{7} p_{s} e_{s}
$$

where the coefficients p_{s} are real. Also, every $p \in O$ can be simply written as $p=\operatorname{Re}(p)+\operatorname{Im}(p)$, where $\operatorname{Re}(p)=p_{0}$ and $\operatorname{Im}(p)=\sum_{s=1}^{7} p_{s} e_{s}$ are called the real and imaginary parts, respectively. The conjugate of p is defined to be

$$
\bar{p}=\overline{p^{\prime}}-p^{\prime \prime} e=\operatorname{Re}(p)-\operatorname{Im}(p)
$$

This operation satisfies

$$
\overline{\bar{p}}=p, \quad \overline{(p+q)}=\bar{p}+\bar{q}, \quad \overline{p q}=\bar{q} \bar{p}
$$

for all $p, q \in O$. The norm of p is defined to be

$$
N_{p}=p \bar{p}=\bar{p} p=\sum_{s=0}^{7} p_{s}^{2}
$$

The inverse of non-zero octonion $p \in O$ is

$$
p^{-1}=\frac{p}{N_{p}}
$$

For all $p, q \in O$

$$
\begin{gathered}
N_{p q}=N_{p} N_{q} \\
(p q)^{-1}=q^{-1} p^{-1}
\end{gathered}
$$

O is non-commutative, non-associative but it is alternative

$$
p(p q)=p^{2} q, \quad(q p) p=q p^{2}, \quad(p q) p=p(q p):=p q p
$$

([11],[8]) On the other hand, a sedenion S can be written as

$$
S=\sum_{i=0}^{15} a_{i} e_{i}
$$

where $a_{0}, a_{1}, \ldots, a_{15}$ are real numbers. Imaeda and Imaeda ([6]) defined a sedenion by

$$
S=\left(O_{1} ; O_{2}\right) \in S, \quad O_{1}, O_{2} \in O
$$

where O is the octonion algebra over the reals. As a sedenion is an ordered pair of two octonions, the conjugate of a sedenion $S=\left(O_{1} ; O_{2}\right)$ is defined by $\bar{S}=\left(O_{1} ;-O_{2}\right)$. Under the Cayley-Dickson process, the product of two sedenions $S_{1}=\left(O_{1} ; O_{2}\right)$ and $S_{2}=\left(O_{3} ; O_{4}\right)$ is

$$
S_{1} S_{2}=\left(O_{1} O_{3}+\rho \overline{O_{4}} O_{2} ; O_{2} \overline{O_{3}}+O_{4} O_{1}\right)
$$

After choosing the field parameter $\rho=-1$ and the generator e_{8}, Imaeda and Imaeda examined the sedenions. By setting $i \equiv e_{i}$, where $i=0,1, \ldots, 15$, Cawagas ([5]) constructed the following multiplication table for the basis of S.
Multiplication table for the basis of S is

\cdot	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	0	3	-2	5	-4	-7	6	9	-8	-11	10	-13	12	15	-14
2	2	-3	0	1	6	7	-4	-5	10	11	-8	-9	-14	-15	12	13
3	3	2	-1	0	7	-6	5	-4	11	-10	9	-8	-15	14	-13	12
4	4	-5	-6	-7	0	1	2	3	12	13	14	15	-8	-9	-10	-11
5	5	4	-7	6	-1	0	-3	2	13	-12	15	-14	9	-8	11	-10
6	6	7	4	-5	-2	3	0	-1	14	-15	-12	13	10	-11	-8	9
7	7	-6	5	4	-3	-2	1	0	15	14	-13	-12	11	10	-9	-8
8	8	-9	-10	-11	-12	-13	-14	-15	0	1	2	3	4	5	6	7
9	9	8	-11	-10	-13	12	15	-14	-1	0	-3	2	-5	4	7	-6
10	10	11	8	-9	-14	-15	12	13	-2	3	0	-1	-6	-7	4	5
11	11	-10	9	8	-15	14	-13	12	-3	-2	1	0	-7	6	-5	4
12	12	13	14	15	8	-9	-10	-11	-4	5	6	7	0	-1	-2	-3
13	13	-12	15	-14	9	8	11	-10	-5	-4	7	-6	1	0	3	-2
14	14	-15	-12	13	10	-11	8	9	-6	-7	-4	5	2	-3	0	1
15	15	14	-13	-12	11	10	-9	8	-7	6	-5	-4	3	2	-1	0

Table 2

The Perrin sequence is the sequence of integers P_{n} defined by the initial values $P_{0}=3, P_{1}=0, P_{2}=2$ and the recurrence relation

$$
\begin{equation*}
P_{n}=P_{n-2}+P_{n-3} \tag{1.1}
\end{equation*}
$$

for all $n \geq 3$. The first few values of P_{n} are

$$
3,0,2,3,2,5,5,7,10,12,17,22,29,39,51, \ldots
$$

The characteristic equation associated with Perrin sequence is $x^{3}-x-1=0$ with r_{1}, r_{2}, r_{3}, in which $r_{1}=\alpha \simeq 1,324718$ is called plastic number and

$$
\lim _{n \rightarrow \infty} \frac{P_{n+1}}{P_{n}}=\alpha
$$

The Binet's formula of Perrin sequence is

$$
P_{n}=r_{1}^{n}+r_{2}^{n}+r_{3}^{n}
$$

where r_{1}, r_{2} and r_{3} are the roots of the equation $x^{3}-x-1=0$. ([9])
In this paper, we introduce new classes of octonion and sedenion numbers associated with the Perrin numbers. We define Perrin octonions and sedenions numbers by using recurrence relation $P_{n}=P_{n-2}+P_{n-3}$ of the Perrin sequence is defined by the initial values $P_{0}=3, P_{1}=0$, $P_{2}=2$ for all $n \geq 3$. We give the Binet formulas given nth general term of these octonions and sedenions are found by using recurrence relation of the new defined Perrin octonions and Perrin sedenions. Also, we obtain the generating functions, sums formulas and some basic identities for these octonions and sedenions.

2. Main Results

Firstly we give the Perrin octonions.

2.1. Perrin Octonions

Definition 2.1. For $n \geq 0$, the nth Perrin octonion is defined by

$$
O P_{n}=\sum_{i=0}^{7} P_{n+i} e_{i}
$$

where P_{n} is the nth Perrin number and ($e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}$) is the standard octonion basis. We get the following theorem for the Perrin octonions from equation (1.1) and Definition 2.1

Theorem 2.2. Let $O P_{n}$ be the nth Perrin octonion. Then we give the following recurrence relation:

$$
O P_{n}=O P_{n-2}+O P_{n-3}
$$

with inital conditions $O P_{0}=\sum_{i=0}^{7} P_{i} e_{i}, O P_{1}=\sum_{i=0}^{7} P_{1+i} e_{i}, O P_{2}=\sum_{i=0}^{7} P_{2+i} e_{i}$.

Proof. By the equation (1.1) and Definiton 2.1 we have

$$
\begin{aligned}
O P_{n-2}+O P_{n-3} & =\sum_{i=0}^{7} P_{n-2+i} e_{i}+\sum_{i=0}^{7} P_{n-3+i} e_{i} \\
& =\sum_{i=0}^{7}\left(P_{n-2+i}+P_{n-3+i}\right) e_{i} \\
& =\sum_{i=0}^{7} P_{n+i} e_{i} \\
& =O P_{n} .
\end{aligned}
$$

So proof is completed.
The following theorem is related with the generating function of the Perrin octonions.
Theorem 2.3. The generating function for the Perrin octonions $O P_{n}$ is

$$
f(x)=\frac{O P_{0}+O P_{1} x+\left(O P_{2}-O P_{0}\right) x^{2}}{1-x^{2}-x^{3}}
$$

Proof. Let

$$
f(x)=\sum_{n=0}^{\infty} O P_{n} x^{n}=O P_{0}+O P_{1} x+O P_{2} x^{2}+\cdots+O P_{n} x^{n}+\cdots
$$

be generating function of the Perrin octonions. On the other hand, since the orders of $O P_{n-2}$ and $O P_{n-3}$ are 2 and 3 less than the order of $O P_{n}$ we can obtain $x^{2} f(x)$ and $x^{3} f(x)$:

$$
\begin{aligned}
& x^{2} f(x)=O P_{0} x^{2}+O P_{1} x^{3}+O P_{2} x^{4}+O P_{3} t^{5}+\cdots+O P_{n-2} x^{n}+\cdots \\
& x^{3} f(x)=O P_{0} x^{3}+O P_{1} x^{4}+O P_{2} x^{5}+O P_{3} x^{6}+\cdots+O P_{n-3} x^{n}+\cdots
\end{aligned}
$$

Then we write

$$
\left(1-x^{2}-x^{3}\right) f(x)=O P_{0}+O P_{1} x+\left(O P_{2}-O P_{0}\right) x^{2}+\left(O P_{3}-O P_{1}-O P_{0}\right) x^{3}+\ldots+\left(O P_{n}-O P_{n-2}-O P_{n-3}\right) x^{n}+\ldots
$$

Note that the sequence $\left\{O P_{n}\right\}$ of Perrin octonions satisfies following second-order recurrence relation

$$
O P_{n}=O P_{n-2}+O P_{n-3}
$$

with inital conditions $O P_{0}=\sum_{i=0}^{7} P_{i} e_{i}, O P_{1}=\sum_{i=0}^{7} P_{1+i} e_{i}, O P_{2}=\sum_{i=0}^{7} P_{2+i} e_{i}$. Then we obtain

$$
f(x)=\frac{O P_{0}+O P_{1} x+\left(O P_{2}-O P_{0}\right) x^{2}}{1-x^{2}-x^{3}}
$$

So proof is completed.
The Binet's formula known as the general formula allows us to easily find any Perrin octonions without having to know all the terms before it. That is, Binet formula give us to find the nth Perrin octonion without using Definition 2.1. Now, we produce the Binet formula for the Perrin octonions.

Theorem 2.4. For $n \geq 0$, the Binet's formula for the Perrin octonions is as follows

$$
O P_{n}=\alpha r_{1}^{n}+\beta r_{2}^{n}+\gamma r_{3}^{n}
$$

where r_{1}, r_{2} and r_{3} are the roots of the equation $x^{3}-x-1=0$ and

$$
\alpha=\sum_{i=0}^{7} r_{1}^{i} e_{i}, \beta=\sum_{i=0}^{7} r_{2}^{i} e_{i}, \gamma=\sum_{i=0}^{7} r_{3}^{i} e_{i} .
$$

Proof. Using Binet's formula of Perrin sequence, we have

$$
P_{n}=r_{1}^{n}+r_{2}^{n}+r_{3}^{n}
$$

where r_{1}, r_{2} and r_{3} are the roots of the equation $x^{3}-x-1=0$. On the other hand, from Definition 2.1 we obtain

$$
\begin{aligned}
O P_{n} & =\sum_{i=0}^{7} P_{n+i} e_{i} \\
& =P_{n}+P_{n+1} e_{1}+P_{n+2} e_{2}+P_{n+3} e_{3}+P_{n+4} e_{4}+P_{n+5} e_{5}+P_{n+6} e_{6}+P_{n+7} e_{7}
\end{aligned}
$$

Then we get

$$
\begin{aligned}
O P_{n} & =\sum_{i=0}^{7} P_{n+i} e_{i} \\
& =\sum_{i=0}^{7}\left[r_{1}^{n+i}+r_{2}^{n+i}+r_{3}^{n+i}\right] e_{i} \\
& =\alpha r_{1}^{n}+\beta r_{2}^{n}+\gamma r_{3}^{n}
\end{aligned}
$$

where $\alpha=\sum_{i=0}^{7} r_{1}^{i} e_{i}, \beta=\sum_{i=0}^{7} r_{2}^{i} e_{i}, \gamma=\sum_{i=0}^{7} r_{3}^{i} e_{i}$. So, we obtain the desired result.
Theorem 2.5. Let $O P_{n}$ be the nth Perrin octonion. Then we get the following sums formulas
i. $\sum_{m=0}^{n} O P_{m}=O P_{n+3}+O P_{n+2}-O P_{4}$
ii. $\sum_{m=0}^{n} O P_{2 m}=O P_{2 n+3}-O P_{1}$
iii. $\sum_{m=0}^{n} O P_{2 m+1}=O P_{2 n+4}-O P_{2}$.

Proof. i. From Theorem 2.2, we can get the following relations:

$$
\begin{aligned}
O P_{0}= & O P_{3}-O P_{1} \\
O P_{1}= & O P_{4}-O P_{2} \\
O P_{2}= & O P_{5}-O P_{3} \\
& \vdots \\
O P_{n-2}= & O P_{n+1}-O P_{n-1} \\
O P_{n-1}= & O P_{n+2}-O P_{n} \\
O P_{n}= & O P_{n+3}-O P_{n+1}
\end{aligned}
$$

we write

$$
\begin{aligned}
O P_{0}+O P_{1}+O P_{2}+\ldots+O P_{n} & =O P_{n+3}+O P_{n+2}-O P_{2}-O P_{1} \\
\sum_{m=0}^{n} O P_{m} & =O P_{n+3}+O P_{n+2}-O P_{4} .
\end{aligned}
$$

ii. From Theorem 2.2, we can get the following relations:

$$
\begin{aligned}
O P_{0}= & O P_{3}-O P_{1} \\
O P_{2}= & O P_{5}-O P_{3} \\
O P_{4}= & O P_{7}-O P_{5} \\
& \vdots \\
O P_{2 n-4}= & O P_{2 n-1}-O P_{2 n-3} \\
O P_{2 n-2}= & O P_{2 n+1}-O P_{2 n-1} \\
O P_{2 n}= & O P_{2 n+3}-O P_{2 n+1}
\end{aligned}
$$

we write

$$
\begin{aligned}
O P_{0}+O P_{2}+\ldots+O P_{2 n} & =O P_{2 n+3}-O P_{1} \\
\sum_{m=0}^{n} O P_{2 m} & =O P_{2 n+3}-O P_{1} .
\end{aligned}
$$

iii. From Theorem 2.2, we can get the following relations:

$$
\begin{aligned}
O P_{1}= & O P_{4}-O P_{2} \\
O P_{3}= & O P_{6}-O P_{4} \\
O P_{5}= & O P_{8}-O P_{6} \\
& \vdots \\
O P_{2 n-3}= & O P_{2 n}-O P_{2 n-2} \\
O P_{2 n-1}= & O P_{2 n+2}-O P_{2 n} \\
O P_{2 n+1}= & O P_{2 n+4}-O P_{2 n+2}
\end{aligned}
$$

we write

$$
\begin{aligned}
O P_{1}+O P_{3}+\ldots+O P_{2 n+1} & =O P_{2 n+4}-O P_{2} \\
\sum_{m=0}^{n} O P_{2 m+1} & =O P_{2 n+4}-O P_{2}
\end{aligned}
$$

So the proof is completed.

2.2. Perrin Sedenions

Definition 2.6. For $n \geq 0$, the nth Perrin sedenion is defined by

$$
S P_{n}=\sum_{i=0}^{15} P_{n+i} e_{i}
$$

where P_{n} is the nth Perrin number and $\left(e_{0}, e_{1}, e_{2}, \ldots, e_{15}\right)$ is the standard sedenion basis.
We get the following theorem for the Perrin sedenions from equation (1.1) and Definition 2.6.
Theorem 2.7. Let $S P_{n}$ be the nth Perrin sedenion. Then we give the following recurrence relation:

$$
S P_{n}=S P_{n-2}+O P_{n-3}
$$

with initial conditions $S P_{0}=\sum_{i=0}^{15} P_{i} e_{i}, S P_{1}=\sum_{i=0}^{15} P_{i+1} e_{i}, S P_{2}=\sum_{i=0}^{15} P_{i+2} e_{i}$.
Proof. By the equation (1.1) and Definiton 2.6, we have

$$
\begin{aligned}
S P_{n-2}+S P_{n-3} & =\sum_{i=0}^{15} P_{n-2+i} e_{i}+\sum_{i=0}^{15} P_{n-3+i} e_{i} \\
& =\sum_{i=0}^{15}\left(P_{n-2+i}+P_{n-3+i}\right) e_{i} \\
& =\sum_{i=0}^{15} P_{n+i} e_{i} \\
& =S P_{n} .
\end{aligned}
$$

So proof is completed.
Generating function for the Perrin sedenions is given in the next theorem.
Theorem 2.8. The generating function for the Perrin sedenions $S P_{n}$ is

$$
g(x)=\frac{S P_{0}+S P_{1} x+\left(S P_{2}-S P_{0}\right) x^{2}}{1-x^{2}-x^{3}}
$$

Proof. Let

$$
g(x)=\sum_{n=0}^{\infty} S P_{n} x^{n}=S P_{0}+S P_{1} x+S P_{2} x^{2}+\cdots+S P_{n} x^{n}+\cdots
$$

be generating function of the Perrin sedenions. On the other hand, since the orders of $S P_{n-2}$ and $S P_{n-3}$ are 2 and 3 less than the order of $S P_{n}$ we can obtain $x^{2} g(x)$ and $x^{3} g(x)$

$$
\begin{aligned}
& x^{2} g(x)=S P_{0} x^{2}+S P_{1} x^{3}+S P_{2} x^{4}+\cdots+S P_{n-2} x^{n}+\cdots \\
& x^{3} g(x)=S P_{0} x^{3}+S P_{1} x^{4}+S P_{2} x^{5}+\cdots+S P_{n-3} x^{n}+\cdots
\end{aligned}
$$

Then we write

$$
\left(1-x^{2}-x^{3}\right) g(x)=S P_{0}+S P_{1} x+\left(S P_{2}-S P_{0}\right) x^{2}+\left(S P_{3}-S P_{1}-S P_{0}\right) x^{3}+\ldots+\left(S P_{n}-S P_{n-2}-S P_{n-3}\right) x^{n}+\ldots
$$

Note that the sequence $\left\{S P_{n}\right\}$ of the Perrin sedenions satisfies following second-order recurrence relation

$$
S P_{n}=S P_{n-2}+S P_{n-3}
$$

with inital conditions $S P_{0}=\sum_{i=0}^{15} P_{i} e_{i}, S P_{1}=\sum_{i=0}^{15} P_{1+i} e_{i}, S P_{2}=\sum_{i=0}^{15} P_{2+i} e_{i}$. Then we obtain

$$
g(x)=\frac{S P_{0}+S P_{1} x+\left(S P_{2}-S P_{0}\right) x^{2}}{\left(1-x^{2}-x^{3}\right)}
$$

So proof is completed.
The next theorem gives the Binet's formula for the Perrin sedenions.
Theorem 2.9. For $n \geq 0$, the Binet's formula for the Perrin sedenions is as follows

$$
S P_{n}=\alpha r_{1}^{n}+\beta r_{2}^{n}+\gamma r_{3}^{n}
$$

where r_{1}, r_{2} and r_{3} are the roots of the equation $x^{3}-x-1=0$ and

$$
\alpha=\sum_{i=0}^{15} r_{1}^{i} e_{i}, \beta=\sum_{i=0}^{15} r_{2}^{i} e_{i}, \gamma=\sum_{i=0}^{15} r_{3}^{i} e_{i} .
$$

Proof. Using Binet's formula of Perrin sequence, we have

$$
P_{n}=r_{1}^{n}+r_{2}^{n}+r_{3}^{n}
$$

where r_{1}, r_{2} and r_{3} are the roots of the equation $x^{3}-x-1=0$. On the other hand, from Definition 2.6 we obtain

$$
S P_{n}=\sum_{i=0}^{15} P_{n+i} e_{i}=P_{n}+P_{n+1} e_{1}+\ldots+P_{n+15} e_{15}
$$

Then we get

$$
\begin{aligned}
S P_{n} & =\sum_{i=0}^{15} P_{n+i} e_{i} \\
& =\sum_{i=0}^{15}\left[r_{1}^{n+i}+r_{2}^{n+i}+r_{3}^{n+i}\right] e_{i} \\
& =\alpha r_{1}^{n}+\beta r_{2}^{n}+\gamma r_{3}^{n}
\end{aligned}
$$

where $\alpha=\sum_{i=0}^{15} r_{1}^{i} e_{i}, \beta=\sum_{i=0}^{15} r_{2}^{i} e_{i}, \gamma=\sum_{i=0}^{15} r_{3}^{i} e_{i}$. So we obtain the desired result.
Theorem 2.10. Let $S P_{n}$ be the nth Perrin sedenion. Then we get the following sums formulas:
i. $\sum_{m=0}^{n} S P_{m}=S P_{n+3}+S P_{n+2}-S P_{4}$
ii. $\sum_{m=0}^{n} S P_{2 m}=S P_{2 n+3}-S P_{1}$
iii. $\sum_{m=0}^{n} S P_{2 m+1}=S P_{2 n+4}-S P_{2}$.

Proof. The proof is seen by using Definition 2.6 and Theorem 2.7.

References

[1] I. Akkus and O. Keçilioglu, Split Fibonacci and Lucas octonions. Adv. Appl. Clifford Algebras Vol.25, No. 3 (2015), 517-525.
[2] J. Baez, The octonions, Bull. Amer. Math. Soc. Vol. 39 No. 2 (2002), 145-205.
[3] G. Bilgici, Ü. Tokeşer and Z. Ünal, Fibonacci and Lucas Sedenions. J. Integer Seq., Vol.20, 17.1.8, (2017), 11p.
[4] P. Catarino, k-Pell-Lukas and Modified k-Pell sedenions. Asian-Eur. J. Math. (2018), S1793557119500189.
[5] R. E. Cawagas, On the structure and zero divisors of the Cayley-Dickson sedenion algebra, Discuss. Math. Gen. Algebra Appl., Vol.24, (2004), $251-265$.
[6] K. Imaeda and M. Imaeda, Sedenions: algebra and analysis, Applied Mathematics and Computation, Vol.115, (2000), 77-88.
[7] O. Kecilioglu and I. Akkus, The Fibonacci octonions, Adv. Appl. Clifford Algebra, Vol.25, (2015), 151-158.
[8] R. Serôdio, On octonionic polynomials. Adv. Appl. Clifford Algebras Vol.17, No. 2 (2007), 245-258.
[9] A. G. Shannon, P. G. Anderson, and A. F. Horadam, Properties of Cordonnier, Perrin and van der laan numbers, International Journal of Mathematical Education in Science and Technology, Vol.37, No. 7 (2006), 825-831.
[10] Y. Tasyurdu and A. Akpınar, Padovan and Pell-Padovan Octanions. Turk. J. Math. Comput. Sci., Vol.11(Special Issue), (2019), 114-222.
[11] Y. Tian, Matrix representations of octonions and their applications. Adv. Appl. Clifford Algebras Vol.10, No.1 (2000), 61-90.

