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Introduction
Nowadays the ventral tegmental area (VTA) has become
the focus of a major research area as being involved in the
mechanism of attention deficit hyperactivity disorder
(ADHD). On the basis of neurophysiological theories, the
atypical development of the connectivity or activity
among the midbrain, prefrontal cortex (PFC) and ventral
striatum play a key role in the etiopathogenesis of
ADHD.[1,2] Fronto-subcortical circuits in these structures
are rich in catecholamines such as dopamine (DA) and
noradrenaline (NA).[3,4] Therefore, DA and NA dysfunc-
tions have long been implicated in the etiology of
ADHD.[5,6] It is currently hypothesized that the symptoms
of ADHD (inattention, hyperactivity and impulsivity) are
due to the dysfunctions of the mesocortical dopaminergic
pathway which plays a critical role in the various circuits
of the PFC.[7]

VTA is a major structure of the mesocorticolimbic
dopamine (DA) pathway that involves in executive func-
tion, attention and reward-related cognition.[8,9] In fact,
dopaminergic neurons are aggregated in two neighboring

midbrain regions; VTA and substantia nigra pars com-
pacta (SNc).[10] However, the firing and projection pat-
terns of neurons located in these two neighboring regions
are different from each other.[11,12] These molecular,
anatomic and electrophysiologic differences, are specifi-
cally important in understanding the intrinsic distinctness
of the dopaminergic VTA neurons.[13,14]

Starting with the first study by Soemmerring[15] in 1792,
research has been increasingly focused on cytoarchitectur-
al features of the midbrain nuclei. Cytoarchitectural studies
have provided valuable information for the functional
demarcation of catecholaminergic neurons in the brain-
stem.

After demarcation of these nuclei, it has been shown
that SN and VTA are associated with movement disorders
and psychotic diseases, respectively.[16,17]

The immunohistochemical revelation of tyrosine
hydroxylase (TH), the rate-limiting enzyme of DA syn-
thesis, was a breakthrough in the identification of
dopaminergic cells.[18] Immunocytochemical studies have
revealed clusters of dopaminergic neurons and three main
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nuclei in the midbrain have been identified: retrorubral
field (A8), SN (A9), and VTA (A10). The A8 neurons are
generally considered as the extension of the A9 cell group,
since the rostral and ventral portion of the A8 cell group
can not be clearly differentiated from the contiguous A9
neurons of the caudal and lateral SN. The A8 neurons are
also continuous with the caudal and lateral portions of the
A10 cell group.[19] The A9 neurons correspond to the
nigral DA-cells, most of which are localized in the SNc,
but also in the substantia nigra pars reticularis (SNr) and
to a lesser extent in the substantia nigra pars lateralis (SNl).
The A9 neurons project predominately to the dorsolateral
striatum which corresponds to putamen and part of cau-
date nucleus in man and plays a crucial role in the control
of movement and degenerates preferentially in Parkinson’s
disease.[20,21] A10 neurons are localized in VTA and give rise
to mesocorticolimbic system. The mosocorticolimbic sys-
tem innervates the frontal cortex, ventral striatum (nucle-
us accumbens), the bed nucleus of the stria terminalis and
amygdala complex, and is also involved in motivation,
reward and sustained attention processes.[19,22]

In terms of relative proportion of TH-immunopositive
cells, the A8 cells account for about 5%, and the A9 and
A10 cells account for about 95%, with a more or less equal
distribution in rodents. It was reported that in the rat TH
immunohistochemistry reveals 15,000-20,000 dopaminer-

gic neurons on each side of the midbrain tegmentum, and
about 9000 of these cells belong to the VTA.[19]

Furthermore, subdivisions of VTA have been defined in
some species, including human, rat, cat, and monkey.[23]

The subgroups of VTA have been termed with different
names for approximately 200 years. Tsai’s descriptive
anatomical study on the brain of the opossum is the key-
stone study about VTA structures. The ventromedial mes-
encephalic tegmentum was also first described and named
as VTA by Tsai.[24] Phillipson has described five distinct
nuclei: three of them are located in the midline or medial
position (nucleus linearis rostralis, nucleus linearis caudalis,
and nucleus interfascicularis) and two of them are
described as lateral nuclei, nucleus paranigralis and nucle-
us parabrachialis pigmentosus.[23,25,26]

Cytoarchitectural Description of Components
Since the boundaries of VTA are not distinct, it is difficult
to define its components. Therefore, it is necessary to use
neuron-specific immunohistochemical staining for their
identification. In Nissl stained sections, neurons of VTA
were distinguishable from the red nucleus dorsally, and
separated from the interpeduncular nucleus ventrally.[25,26]

However, this adjacency of these structures shows differ-
ences in the sections of midbrain from caudal to rostral
(Figure 1). In terms of ease of understanding, the local-

Figure 1. Schematic illustration of the human
midbrain displaying VTA nuclei. The localizations
of the nuclei are approximately displayed by
using the Atlas of the Human Brainstem by
Paxinos and Huang as reference. Aq: aquaduct;
IF: nucleus interfascicularis; LC: nucleus linearis
caudalis/centralis; LR: nucleus linearis rostralis;
PAG: periaquductal gray; PN: nucleus parani-
gralis; PBP: nucleus parabrachialis pigmentosus;
RN: red nucleus; SN: substantia nigra. Illustration
design: Esat Ad›güzel; digitalization: C. Gökçen
Köseli. [Color figure can be viewed in the online
issue, which is available at www.anatomy.org.tr]
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ization of these structures were discussed by using the
Atlas of the Human Brainstem by Paxinos and Huang that
takes obex as a reference point.[27] The order of the struc-
tures is as follows; the most caudal VTA subdivision is the
nucleus PN (paranigralis), seen 34 mm rostral from the
obex. Nucleus PBP (parabrachialis pigmentosus), nucleus
LC (linearis raphe caudalis/centralis), red nucleus (RN),
IF (interfascicularis), and LR (linearis raphe rostralis) start
appearing from obex at 35 mm, 35 mm, 38 mm, 40 mm
and 40 mm, respectively; LC, IF and PN disappear at 40
mm 41 mm and 41 mm, respectively. LR and PBP con-
tinue from obex up to 47 mm rostral[27] (Figure 1). IF is
located in the midline, LR and LC are in the paramedian
zone, and others (PN, PBP) are located more laterally in
humans. The LC curves lateral of PAG dorsally and
extends to interpeduncular fossa ventrally. It neighbors
the RN and PBP laterally.[19]

In the region of the human VTA, neuron sizes range
from 10 to 53 μm.[19] PN neurons are small to medium in
size, stellate, round, fusiform or spindle in shape, and lie
ventrally in the VTA. The orientation of PN neurons in
coronal sections is horizontal. In contrast, PBP neurons
lies dorsally in the VTA. Some of these neurons are small,
but most of them are medium-sized, and are more ran-
domly arranged dorsal to the PN with no preferential ori-
entation.[26] The IF neurons are usually very small particu-
larly at the anterior pole, fusiform and oriented mediolat-
erally. LR and LC neurons are very variable based on their
size, shape, and are often oriented ventrodorsally. They are
clearly isolated from other neurons of the VTA because of
the presence of neuromelanin pigment. The largest neu-
rons of the five component nuclei are found in LR.[19,25]

Five component nuclei contain roughly 690,000 neu-
rons, and approximately 80% of these neurons are
dopaminergic in human.[10,19] However, these neurons are
different from each other due to their properties. After
Carlsson first developed the histofluorescence micro-
scopic method that allowed sensitive visualization of a
neurotransmitter in the neuron, the first detailed paper
displaying the distribution of catecholamine (CA) con-
taining neurons in the rat brain was published.[28–30] A new
nomenclature for the monoamine-containing neuron
groups was adopted based on Dahlström and Fuxe obser-
vations with CA histofluorescence. The CA class of
monoamines was named “A” for the descriptive purposes.
They identified twelve groups of catecholaminergic neu-
rons (A1-A12) distributed from the medulla oblongata to
the hypothalamus.[30]

The dopamine (DA) containing pathways of the mid-
brain were divided as A8, A9 and A10 neurons. A9 neu-

rons are located in the SNc, whereas the A8 neurons are
located dorsal and caudal to the SN. The A10 neurons are
found in the VTA with some of them extend into the
structures located at the midline.[31] The A10 neurons
projecting from the VTA (five component nuclei) to the
limbic and cortical areas along mesolimbic and mesocor-
tical pathways.[32] Dopaminergic axon branches of the
mesocortical pathways within the cortex reach more than
one cortical areas.[33] Neocortex is extensively innervated
by midbrain dopaminergic projections in humans. These
projections to the PFC arise mostly from the VTA,
mesocortical dopaminergic system, and play a critical role
in executive functions, attention and motor components
of the behavior.[34,35] Mesocortical dopaminergic system
has received considerable attention due to its involvement
in a range of psychological processes and neuropsychi-
atric diseases such as ADHD.[36,37]

Despite the presence of subdivisions within the VTA,
their respective functions have not yet been clarified.
This is more likely due to the difficulty in selectively
manipulating these different groups of neurons, their rel-
atively small size, proximity and mostly shared neuro-
chemistry. However, behavioral evidence supports the
presence of a major antero-posterior heterogeneity with-
in the VTA.[38] In addition, this anteroposterior hetero-
geneity concerns the functionality as one of the most
important symptoms of ADHD, the locomotor activity.[39]

Accumulating evidence indicates that subdivisions of the
VTA are also physiologically and characteristically het-
erogeneous. One group of neurons is centered in the
medial VTA and projects to the medial PFC. The nucle-
us accumbens medial shell and core and basolateral
amygdala are smaller and have fewer and shorter dendrit-
ic branches as compared to the lateral VTA neurons
which are projecting to more lateral parts of the nucleus
accumbens and ventrolateral caudat-putamen.[13,40–42]

While the medial subdivisions of the VTA are fast-firing,
display higher baseline activity profiles and have low DA
transporter (DAT)/TH mRNA ratios, lateral VTA neu-
rons have a slow firing pattern and express DAT more
robustly.[13,41] Uniquely, VTA neurons that project to the
medial PFC lack D2 receptor-mediated auto-inhibition
and display lower levels of D2.[13] These neurons also have
a very low expression of DAT when compared with
mesolimbic projecting neurons.[43,44] Indeed, it has been
shown that the medial PFC maintains higher concentra-
tions of DA for longer amounts of time compared with
the striatum.[45,46] Because of the decreased uptake for DA
in VTA-medial PFC, DA neurons could have functional
importance for the DA in working memory and executive
functions in the cortex.
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Conclusion and Perspectives
Psychostimulants affecting dopaminergic systems are the
most frequently prescribed treatments for ADHD. The
mechanism of these stimulants is to increase the DA level
in the PFC by inhibiting the dopamine transporters.[36]

Since VTA is the major dopamine source of the PFC, it
has been that VTA plays an important role in ADHD.
Nevertheless, the neuronal pathophysiology of ADHD is
obscure, and further researches are needed. 

We have reviewed the subdivisions of VTA neurons
and highlighted the necessity for a better understanding
of these subdivisions of VTA in terms of functionality.
We would argue that the depth of our understanding of
the functional role of the subdivisions of VTA will con-
tinue to increase, only if accompanied by continued elu-
cidation of its neuroanatomical relationship. However,
the subdivions of VTA sends functionally distinct DA
projections to its targets. Recent advances in optogenet-
ic techniques, projection- and cell-specific molecular
profiling have opened up new avenues into addressing
these issues. To better understand how these subdivi-
sions of VTA convey it to their target sites, it is neces-
sary to determine the organization of connectivity in the
VTA and the functional nature of the synapses that are
established by these neurons in upstream brain struc-
tures. The subdivions of VTA cell maps and identifying
their connectivity pattern will be useful for future neuro-
biological studies on ADHD.
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