

B-closed Spaces and Fuzzy b-closed Spaces

Hamid Reza Moradi*

Accepted 30th December 2016

Abstract: The purpose of this paper is to establish and project the theorems which exhibit the characterization of b-closed spaces and obtain some of interesting properties of b-closed spaces. Moreover, fuzzy b-closed spaces are introduced, and some characterization of their properties are obtained.

Keywords: Topological Spaces; b-Closed Spaces; Fuzzy Spaces; Fuzzy b-Closed Spaces.

1. Introduction

In [4], the authors introduced the notion of b-closed spaces and investigated its fundamental properties. The concept of b-open sets in fuzzy settings was introduced by Benchalli and Karnel [1]. In this paper, we investigate a class of sets called b- closed sets. We study some of its basic properties. Afterward, we introduce the concept of fuzzy b-closed spaces.

In particular, the notion of generalized b-closed spaces and its various characterizations are given (see Section 2). In Section 3, we study various forms of fuzzy b-closed spaces.

Now, we recall the following definitions which are useful in the sequel.

Proposition 1.1. A subset A of a space X is b-open if and only if $A = B \bigcup C$, where B is semi-open and C is preopen.

Proposition 1.2.

(i) Let A and B be subsets of a space X such that $A \subset B$. If $A \in bo(X)$, then $A \in bo(B)$.

(ii) If
$$A \in bo(B)$$
, $B \in \alpha o(X)$, then

 $A \in bo(X)$.

Proposition 1.3. A space X is extremally disconnected if and only if every b-open subset of X is preopen.

Proposition 1.4. A space X is strongly irresolvable if and only if every b-open subset of X is semi-open.

Proposition 1.5. For a space X, the following are equivalent:

- (i) X is locally indiscrete,
- (ii) Every b-open subset of X is preclosed.

2. b-closed Spaces

Definition 2.1. A space X is called b-closed if any b-open cover of X has a finite subfamily, the union of the preclosures of whose members covers X.

Remark 2.2. Since $so(X) \cup po(X) \subset bo(X)$, and

since pclA = A whenever A is semi-open, it is clear that every b-closed space is both S-closed and p-closed. However, the author asks about the existence of a space that is both S-closed and p-closed but not b-closed.

The following two propositions follows from Propositions 1.3 and 1.4 and from the fact that $pclA = \overline{A}$ whenever A is semi-open.

Proposition 2.3. For an extremally disconnected space X, the following are equivalent:

- (i) X is b-closed. (ii) X is p-closed.
- II) Is p-closed.

Proposition 2.4. For a strongly irresolvable space X, the following are equivalent:

The following result is an immediate consequence of Proposition 1.1 and from the fact that $so(X) \cup po(X) \subset bo(X)$.

Proposition 2.5. A space X is b-closed if and only if any cover of X whose members are semi-open or preopen has a finite subfamily, the union of the preclosures of whose members covers X.

Lemma 2.6. A subset A of a space X is b-open if and only if there exists a preopen subset U of X such that $U \subset A \subset pclU$.

Theorem 2.7. For a space X, the following are equivalent:

(i) X is b-closed.

(ii) Any regular p-open cover of X has a finite subfamily, the union of the preclosures of whose members covers X.

(iii) Any pre-regular p-closed cover of X has a finite subcover.

Proof. (i) to (ii): Follows since every regular p-open set is b-open.

¹Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran

^{*} Corresponding Author: Email: hamid_moradi_68@yahoo.com

(ii) to (iii): Follows since every pre-regular p-closed set is regular p-open and preclosed.

(iii) to (i): Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Lambda\}$ be a b-open cover of X. Then by Lemma 2.6, for each $\alpha \in \Lambda$, there exists a preopen subset V_{α} of X such that $V_{\alpha} \subset U_{\alpha} \subset pclV_{\alpha}$. Now $\mathcal{V} = \{pclV_{\alpha} : \alpha \in \Lambda\}$ is pre-regular p-closed cover of X

and thus by (ii), there exists $\alpha_1, \alpha_2, ..., \alpha_n \in \Lambda$ such that

 $X = \bigcup_{i=1}^{n} pclV_{\alpha_i} = \bigcup_{i=1}^{n} pclU_{\alpha_i}$. Hence, X is bclosed.

The following result follows from the the definition of a b-closed space and from Propositions 2.5 and Theorem 2.7, the straightforward proof is omitted.

Proposition 2.8. For a space X, the following are equivalent:

(i)
$$X$$
 is B-closed.

(ii) For any family $u = \{U_{\alpha} : \alpha \in \Lambda\}$ of b-closed subsets of X such that $\bigcap = \{U_{\alpha} : \alpha \in \Lambda\} = \emptyset$, there exists a finite subset Λ_0 of Λ such that $\bigcap = \{\text{pint } U_{\alpha} : \alpha \in \Lambda_0\} = \emptyset$.

(iii) For any family $u = \{U_{\alpha} : \alpha \in \Lambda\}$ each of whose members is semi-closed or preclosed in X such that $\bigcap = \{U_{\alpha} : \alpha \in \Lambda\} = \emptyset$, there exists a finite subset Λ_0 of Λ such that $\bigcap = \{\text{pint}U_{\alpha} : \alpha \in \Lambda_0\} = \emptyset$.

(iv) For any family $u = \{U_{\alpha} : \alpha \in \Lambda\}$ of regular pclosed subsets of X such that $\bigcap = \{U_{\alpha} : \alpha \in \Lambda\} = \emptyset$, there exists a finite subset Λ_0 of Λ such that $\bigcap = \{\text{pint}U_{\alpha} : \alpha \in \Lambda_0\} = \emptyset$.

(v) For any family $u = \{U_{\alpha} : \alpha \in \Lambda\}$ of pre-regular popen subsets of X such that $\bigcap = \{U_{\alpha} : \alpha \in \Lambda\} = \emptyset$, there exists a finite subset Λ_0 of Λ such that $\bigcap = \{U_{\alpha} : \alpha \in \Lambda_0\} = \emptyset$.

Definition 2.9. Let A be a subset of a space X. A point $x \in X$ is said to be a b-pre- θ -accumulation point of A if $pcl(U) \cap A \neq \emptyset$ for every b-open subset U of X that contains x. The set of all b- θ -accumulation points of A is called the b-pre- θ -closure of A and is denoted by b- $pcl_{\theta}(A)$. A is said to be b-pre- θ -closed if b- $pcl_{\theta}(A) = A$. The complement of a b-pre- θ -closed set is called b-pre- θ -open.

It is clear that A is b-pre- θ -open if and only if for each $x\in A$, there exists a b-open set U such that

 $x \in U \subset pclU \subset A$, thus, every b-pre- θ -open set is b-open.

Definition 2.10.

(i) A space X is called b-regular if for each b-open subset U of X and for each $x \in U$ there exists a b-open subset V of X and a b-closed subset F of X such that $x \in V \subset F \subset U$.

(ii) A space X is called strongly b-regular if for each bopen subset U of X and for each $x \in U$ there exists a bopen subset V of X and a preclosed subset F of X such that $x \in V \subset F \subset U$.

The following lemma can be easily established.

Lemma 2.11.

(i) A space X is strongly b-regular if and only if every b-open subset of X is b-pre- θ -open.

(ii) If A is pre-regular p-open, then A is b-pre- θ -closed.

(iii)
$$bclA \subset bcl_{\theta}A$$
.

(iv) If A is preopen, then $bcl_{\theta}A = bclA$.

Remark 2.12.

(i) The converse of Lemma 2.11 (ii) is not true, e.g. if X is an infinite set and τ_{cof} is the cofinite topology on X, then $in(X, \tau_{cof})$, every cofinite subset of X is b-pre- θ -open but not pre-regular p-closed as it is not preclosed (observe that the nonempty b-open (preopen) subsets of (X, τ_{cof}) are the infinite subsets of X).

It follows also from Proposition 1.5 that every locally indiscrete space is strongly b-regular. The converse is, howere, not true, e.g. if X is an infinite set and τ_{cof} is the cofinite topology on X, then in (X, τ_{cof}) , every b-open subset of X is b-pre- θ -open. Thus by Proposition 2.11 (i), X is strongly b-regular. Howere, (X, τ_{cof}) is not locally indiscrete.

Theorem 2.13. A space X is b-closed if and only if every b-pre- θ -open cover of X has a finite subcover.

Proof. Suppose that X is b-closed and let $u = \{U_{\alpha} : \alpha \in \Lambda\}$ be a b-pre- θ -open cover of X. Then for each $x \in X$, there exists $\alpha_x \in \Lambda$ such that $x \in U_{\alpha x}$. Since $U_{\alpha x}$ is b-pre- θ open, there exists a b-open set V_x such that $x \in V_x \subset pclV_x \subset U_{\alpha x}$, but X is b-closed, so there exists $x_1, x_2, ..., x_n \in X$ such that $X = \bigcup_{i=1}^n U_{\alpha x_i}$. Sufficiency. Follows from Theorem 2.7 and Lemma 2.11 (ii).

Proposition 2.14. let X be a b-closed, strongly b-regular space. Then X is finite.

Proof. It follows from Lemma 2.11 (i) and Theorem 2.13, that if X is a B-closed, strongly b-regular space, then every b-open cover of X has a finite subcover. Since

 $so(X) \cup po(X) \subset bo(X)$, X is both semi-compact and strongly compact. Hence, X is finite.

Definition 2.15. A filter base Γ on a space X is said b-pre- θ converge to a point $x \in X$ if for each b-open subset U of X such that $x \in U$, there exists $F \in \Gamma$ such that $F \subset pclU$. Γ is said to b-pre- θ -accumulate at $x \in U$ if $(pclU) \cap F \neq \emptyset$ for every $F \in \Gamma$ and for every b-open subset U of X such that $x \in U$.

Observe that if a filter base Γ b-pre- θ -converges to a point $x \in U$, then Γ b-pre- θ -accumulate at x. On the other hand, it is easy to see that a maximal filter base Γ b-pre-heta converges to a point $x \in X$ if and only if Γ b-pre- θ accumulate at X.

Theorem 2.16. For a space X, the following are equivalent:

(i) X is b-closed.

Every maximal filter base on X b-pre- θ -converges (ii) to some point of X.

Every filter base on X b-pre- θ -accumulate at some (iii) point of X.

Proof. (i) to (ii): Let Γ be a maximal filter base on X such that Γ does not b-pre- θ -converge to any point of X . Since Γ is maximal, Γ does not b-pre-heta -accumulate at any point of X . Thus, for each $x \in X$ exists $F_x \in \Gamma$ and a b-open subset U_x of X such that $x \in U_x$ and $(pclU_x) \cap F_x = \emptyset$, but X is B-closed, so there exists $x_1, x_2, ..., x_n \in X$ such that $X = \bigcup_{i=1}^{n} pclU_{x_{i}}$. Since Γ is a filter base on X , there exists $F \in \Gamma$ such that $F \subset \bigcap_{i=1}^{n} F_{x_i}$, but $(pclU_{x_i}) \cap F_{x_i} = \emptyset$ for each $i \in \{1, 2, ..., n\}$, so $(pclU_{x_i}) \cap F = \emptyset$ for each $i \in \{1, 2, ..., n\}$, i.e. $\left(\bigcup_{i=1}^{n} pclU_{x_{i}}\right) \cap F = X \cap F = F = \emptyset$, a

contradiction.

(ii) to (iii): Let Γ be a filter base on X . Then Γ is contained in a maximal filter base Υ on X .

By (ii), Υ b-pre- θ -converges to some point x of X , thus Υ b-pre- θ -accumulates at x , but $\Gamma \subset \Upsilon$, so Γ b-pre- θ accumulate at X.

(iii) to (ii): Suppose that X is not B-closed. Then by Proposition 2.8, there exists a b-open cover $u = \{U_{\alpha} : \alpha \in \Lambda\}$ of X

such that for any finite subset Λ_0 of Λ ,

$$\bigcap \left\{ p \operatorname{int} \left(X \setminus U_{\alpha} \right) : \alpha \in \Lambda_{0} \right\} \neq \emptyset \text{ . For each finite subset} \\ \Lambda_{0} \text{ of } \Lambda \text{ , let } F_{\Lambda_{0}} = \bigcap \left\{ p \operatorname{int} \left(X \setminus U_{\alpha} \right) : \alpha \in \Lambda_{0} \right\} \text{ . Then}$$

 $\Gamma = \{F_{\Lambda_0} : \Lambda_0 \text{ is a finite subset of } \Lambda\}$ is a filter base

on X . Since ${\boldsymbol{\mathcal{U}}}$ is a b-open cover of X , there exists $\alpha_{_0}\in\Lambda\;$ such that $x\;\in U_{_{\alpha_{_0}}}\;$, but $\Gamma\;$ b-pre- $\theta\;$ -accumulates at

$$x$$
, so $(pclU_{x_i}) \cap F \neq \emptyset$ for every $F \in \Gamma$. Let
 $F = p \operatorname{int}(X \setminus U_{\alpha_0})$. Then $F \in \Gamma$ and thus
 $(pclU_{x_i}) \cap (p \operatorname{int}(X \setminus U_{\alpha_0})) \neq \emptyset$ a contradiction

3. Fuzzy b-close Spases

Definition 3.1. [7] For two fuzzy subsets μ_1 and μ_2 of X , the fuzzy subset $\mu_1 + \mu_2$ is defined by

 $(\mu_1 + \mu_2)(x) = \bigvee \{ \mu_1(x_1) \land \mu_2(x_2) \mid x = x_1 + x_2 \}.$

And for a scalar t of K and a fuzzy subset μ of X , the fuzzy subset $t \mu$ is defined by

$$(t \mu)(x) = \begin{cases} \mu(x/t) & \text{if } t \neq 0\\ 0 & \text{if } t = 0 \text{ and } x \neq 0.\\ \lor \{\mu(y) \mid y \in X\} & \text{if } t = 0 \text{ and } x = 0 \end{cases}$$

Definition 3.2. [5] $\mu \in I^x$ is said to be,

1. convex if
$$t \mu + (1-t) \mu \subseteq \mu$$
 for each $t \in [0,1]$
2. balanced if $t \mu \subseteq \mu$ for each $t \in K$ with $|t| \le 1$
3. absorbing if $\lor \{t \mu(x) | t > 0\} = 1$ for all $x \in X$.

Definition 3.3. [5] Let (X, τ) be a topological space and $\omega(\tau) = \{ f : (X, \tau) \to [0, 1] | \text{ f is lower semicontinuous} \},\$

then $\omega(\tau)$ is a fuzzy topology on X. This topology is called the fuzzy topology generated by τ on X. The fuzzy usual topology on K means the fuzzy topology generated by the usual topology of K.

$$n \ge M$$
 implies $\frac{t}{2} \rho(x_n - x) > 1 - \varepsilon$

therefore

$$n \ge M$$
 implies $P_{1-\varepsilon}(x_n - x) \le \frac{t}{2} < t$.

Definition 3.4. [5] A fuzzy linear topology on a vector space X over K is a fuzzy topology on X such that the two mappings

+ :
$$X \times X \to X$$
, $(x, y) \to x + y$
. : $K \times X \to X$, $(t, x) \to tx$

Are continuous when K has the fuzzy usual topology and $K \times X$ and $X \times X$ have the corresponding product fuzzy topologies. A linear space with a fuzzy linear topology is called a fuzzy topological linear space or a fuzzy topological vector space. **Definition 3.5.** [5] Let x be a point in a fuzzy topological space X. A family F of neighborhood of x is called a base for the system of all neighborhoods of x if for each neighborhood μ of x and each $0 < \theta < \mu(x)$, there exists $\mu_1 \in F$ with $\mu_1 \leq \mu$ and $\mu_1(x) > \theta$.

Definition 3.6. [6] A fuzzy semi norm on X is a fuzzy set ρ in X which is convex, balanced and absorbing. If in addition $\wedge \{(t_{\rho})(x) | t > 0\}$ for $x \neq 0$, then ρ is called a fuzzy norm.

Definition 3.7. [6] If ρ is a fuzzy semi norm on X, then the family $B_{\rho} = \left\{ \theta \land (t_{\rho}) \mid 0 < \theta \le 1, t > 0 \right\}$ is a base at zero for a fuzzy linear topology $au_{
ho}\,$. The fuzzy topology $au_{
ho}\,$ is called the fuzzy topology induced by the fuzzy semi norm ρ . And a linear space equipped with a fuzzy semi norm is called a fuzzy semi normed linear space.

Definition 3.8. [8] Let ρ be a fuzzy semi norm on X. $P_{\mathcal{E}}: X \to R_+$ Is defined by

$$P_{\varepsilon}(x) = \wedge \left\{ t > 0 \mid t \, \rho(x) > \varepsilon \right\}$$

For each $\varepsilon \in (0,1)$.

Theorem 3.9. [8] The P_{ε} is a semi norm on X for each $\varepsilon \in (0,1)$. Further P_{ε} is norm on X for each $\varepsilon \in (0,1)$ if and only if ρ is a fuzzy norm on X.

Definition 3.10. A fts X is said to be fuzzy b-closed iff for every family λ of fuzzy b-open set such that $\bigvee_{A \in \lambda} A = l_x$ there is that

a finite subfamily
$$\delta \subseteq \lambda$$
 such that
 $\begin{pmatrix} \bigvee bCl(A) \end{pmatrix} (x) = 1_x$, for every $x \in X$.

Definition 3.11. A fuzzy set U in a fts X is said to be fuzzy bclosed relative to X iff for every family λ of fuzzy b-open set such that $\bigvee_{A \in \lambda} A = \mathbf{1}_x$ there is a finite subfamily $\delta \subseteq \lambda$ such

that that $\bigvee_{A \in \delta} bCl(A)(x) = U(x)$, for every $x \in S(U)$.

Remark 3.12. Every fuzzy b-compact space is fuzzy b-closed, but the converse is not true.

Theorem 3.13. A fts X is fuzzy b-closed iff for every fuzzy filterbases Γ in X, $\left(\bigwedge_{G \in \Gamma} bCl(G)\right) \neq 0_x$.

Proof. Let μ be a fuzzy b-open set cover of X and let for every finite family of μ , $\bigvee_{A \in \partial} bCl(A)(x) < l_x$ for some

 $x \in X$. Then $\left(\bigwedge_{A \in \partial} \overline{bCl(G)}\right)(x) > 0_x$ for some. $x \in X$

Thus $\left\{\left(\overline{bCl(A)}: A \in \mu\right)\right\} = \Gamma$ forms a fuzzy b-open filterbases in X. Since μ is a fuzzy b-open set cover of X, then

$$\begin{pmatrix} & & \\ A \in \mu \end{pmatrix} = \mathbf{0}_{X} , \qquad \text{which} \qquad \text{implies}$$

 $\left(\bigwedge_{A \in \mu} bCl\left(\overline{bCl\left(G\right)}\right)\right)(x) = 0_x$, which is a contradiction. Then

every fuzzy b-open μ of X has a finite subfamily ∂ such that

$$\left(\bigvee_{A \in \partial} bCl(A)(x)\right) = \mathbf{1}_{x} \text{ for every } x \in X.$$

Hence X is a fuzzy b-closed.

Conversely, suppose there exists a fuzzy b-open filterbases Γ in (α) 1

X such that
$$\left(\bigwedge_{G \in \Gamma} bCl(G)\right) = 0_x$$
. That implies

$$\left(\bigvee_{G \in \Gamma} \left(\overline{bCl(G)}\right)\right)(x) = 1_x$$
 for $x \in X$ and hence

 $\mu = \left\{ \overline{\left(bCl\left(G\right)\right)} : G \in \Gamma \right\} \text{ is a fuzzy b-open set cover of X.}$ Since X is fuzzy b-closed, by definition μ has a finite subfamily ∂ such that $\left(\bigvee_{G \in \partial} bCl\left(\overline{bCl}\left(G\right)\right) \right) (x) = 1_x$ for every $x \in X$, and hence $\bigwedge_{\lambda \in \partial} \left(\overline{bCl(G)} \right) = 0_x$. Thus $\bigwedge_{G \in \partial} G = 0_x$ is a

contradiction. Hence $\bigwedge_{G \in \Gamma} bCl(G) \neq 0_x$.

Theorem 3.14. Let $f:(X,\tau) \to (Y,\sigma)$ be a fuzzy b^* continuous surjection. If X is fuzzy b-closed space, then Y is fuzzy b-closed space. **Proof.** Let $\{A_{\lambda} : \lambda \in \Lambda\}$ be a fuzzy b-open cover of Y. Since f is fuzzy b*-continuous, $\{f^{-1}(A_{\lambda}): \lambda \in \Lambda\}$ is fuzzy b-open

cover of X. By hypothesis, there exists a finite subset Δ of Γ such that $\bigvee_{\lambda \in \Delta} bCl\left(f^{-1}(A_{\lambda})\right) = 1_x$. Since f is surjection and by theorem

$$\begin{split} \mathbf{l}_{Y} &= f\left(\mathbf{l}_{x}\right) = f\left(\bigvee_{\lambda \in \Delta} bCl\left(f^{-1}\left(A_{\lambda}\right)\right)\right) \\ &\leq \bigvee_{\lambda \in \Delta} bCl\left(f\left(f^{-1}\left(A_{\lambda}\right) = \bigvee_{\lambda \in \Delta} bCl\left(A_{\lambda}\right)\right)\right) \end{split}$$

Hence Y is fuzzy b-closed space.

References

- S. S. Benchalli, & J. Karnel, On Fuzzy b-open sets in Fuzzy [1] Topological Space, J.Computer and Mathematical Sciences., 1 (2010), pp, 27-134.
- [2] R. Chugh, R. & S. Rathi, Weakly compatible maps in fuzzy metric space, Universitatea Din Bacau, Studii Si Cercetari Stiintifice Seria: Matematica Nr., 15 (2005), pp, 31-38.
- M. A. Erceg, Metric space in fuzzy set theory, J. [3] Math.Anal., (1979).
- [4] J. H. Park, Strongly θ -b-continuous functions, Acta. Math. Hungar., 110(4) (2006), pp, 347-359.
- [5] A. K. Katsaras, Fuzzy topological vector space I, Fuzzy sets and systems., 6 (1981), pp, 85-95.
- A. K. Katsaras, Fuzzy topological vector space II, Fuzzy [6] sets and systems., 12 (1984), pp, 143-154.
- A. K. Katsaras, Fuzzy vector spaces and fuzzy topological [7] vector spaces, J. Math. Anal. Appl., 58(1977), 135-146.
- [8] S. V. Krishna, & Sarma. K. K. M. Fuzzy topological vector spaces topological generation and normability, Fuzzy sets and systems., 41 (1991), pp, 89-99.
- [9] L. A. Zadeh, Fuzzy sets, Inform. Control., 8 (1965), pp, 338-353.
- [10] H. R. Moradi, Characterization of fuzzy complete normed space and fuzzy b-complete set, Sahand Commun. Math. Anal., 1(2) (2014), pp, 65-75.
- [11] H. R. Moradi, Bounded and Semi Bounded Inverse Theorems in Fuzzy Normed Spaces, International Journal of Fuzzy System Applications (IJFSA)., 4(2) (2015), pp, 47-55.
- [12] H. R. Moradi, & A. Kamali, on fuzzy strongly g*-closed sets and g**-closed sets, Int. J. Adv. Appl. Math. and Mech., 2(4) (2015), pp, 13 -17.