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Abstract

In the paper, we consider stochastic Korteweg-de Vries - type equation. We give sufficient
conditions for the existence and uniqueness of the local mild solution to the equation with
additive noise. We discuss the possibility of the globalization of mild solution, as well.

1. Introduction

Nonlinear wave equations attracted enormous attention in many fields, e.g. physics (hydrodynamics, plasma physics, optics), technology
(electric circuits, light impulses propagation) and biology (neuroscience models, protein, and DNA motion). Usually, such equations are
obtained as a kind of approximation and/or simplification of the set of several more fundamental equations governing the system with their
boundary and initial conditions. Approximations are usually based on the perturbative approach in which some small parameters, related to
particular properties of the considered system, appear. Then the relevant quantities are expanded in power series of these small parameters.
The limitation to terms of the first or second order allows deriving approximate nonlinear wave equations describing the evolution of a given
system.
In several fields the lowest (first) order equation takes form of the Korteveg-de Vries equation (commonly denoted as KdV) [1]

∂u
∂ t

+6u
∂u
∂x

+
∂ 3u
∂x3 = 0. (1.1)

It was derived firstly for surface gravity waves on shallow water but later found in many other systems, see, e.g. [2, 3, 4, 5].
Although the KdV equation displays dominant features of weekly dispersive nonlinear waves, it is a valid approximation only for constant
water depth and waves with small amplitudes. For waves with a larger amplitudes perturbative approach to Euler equations should be applied
up to second order in small parameters. Then linear terms with fifth order derivatives and new nonlinear terms appear in final nonlinear wave
equation. This equation was derived by Marchant and Smyth and called the extended KdV in [6]. For short we call this equation KdV2
stressing second order perturbation expansion. Contrary to KdV this equation is non-integrable. Despite this fact, we found three kinds
of analytic solutions to KdV2, namely single soliton solutions, periodic cnoidal solutions, and periodic superposition solutions, see. e.g.
[7, 8, 9].
Nonlinear dispersive waves attracted the considerable attention of mathematicians. Among many examples of mathematical description of
those problems, we point out books of Linares and Ponce [10] and Tao [11].
Surface water waves are subjected to some unpredictable influences of the environment, like winds, bottom fluctuations, etc. These unknown
factors can be accounted for by introducing a forcing term of stochastic nature into wave equation.
In the current paper, we study stochastic version of KdV2. We supply sufficient conditions for the existence and uniqueness of a local mild
solution to the Korteweg-de Vries type equation of the form (2.1) below. We follow and generalize the approach of de Bouard and Debussche
[12] and Kenig, Ponce and Vega [13, 14] to such equation.

Email addresses and ORCID numbers: A.Karczewska@wmie.uz.zgora.pl, 0000-0001-7160-7908 (A. Karczewska), M.Szczecinski@wmie.uz.zgora.pl (M. Szczeciński)
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We obtained the existence and uniqueness results on a random interval. The generalization of these results to any time interval with the
approach due to de Bouard and Debussche [12] is not possible since they use some properties of classical KdV equation and its invariants. In
our case, for extended KdV equation, there exists only one (the lowest) exact invariant, the other ones are only adiabatic (approximate) [15].
In Section 3 we discuss the possibility for some globalization of obtained mild solution to stochastic extended KdV equation studied. We use
the near-identity transformation (NIT for short) Kodama [16], Dullin et al. [17] to transform original non-integrable extended KdV equation
into the asymptotically equivalent equation which has Hamiltonian form and therefore is integrable. The term asymptotic equivalence means
that solutions of both equations coincide when physically relevant coefficients of the equations tend to zero (for details, see Section 3).

2. Existence and uniqueness

In this section, we prove the existence and uniqueness of mild solution on a random interval to the stochastic extended KdV-type equation of
the form

du+
(

∂ 3u
∂x3 +u

∂u
∂x

+u
∂ 3u
∂x3 +

∂u
∂x

∂ 2u
∂x2

)
dt = Φ dW, x ∈ R, t ≥ 0. (2.1)

Motivation for studying the equation (2.1) is given in Section 3. In (2.1), W is a cylindrical Wiener process defined on the stochastic basis
(Ω,F ,(Ft)t≥0,P) with values on L2(R) adapted to the filtration (Ft)t≥0. The operator Φ belongs to L0

2, where L0
2 := L0

2(L
2(R);Hσ (R)) is

the space of Hilbert-Schmidt operators acting from L2(R) into Hσ (R) and Hσ (R) is the Sobolev space (see, e.g., Adams [18]), σ > 0.
The equation (2.1) is supplemented with an initial condition

u(x,0) = u0(x), x ∈ R, t ≥ 0. (2.2)

Definition 2.1. A stochastic process u(t), t ≥ 0, defined on the basis (Ω,F ,(Ft)t≥0,P) is said to be a mild solution to (2.1)-(2.2), if

u(t) =V (t)u0 +
∫ t

0
V (t− s)

(
u

∂u
∂x

+u
∂ 3u
∂x3 +

∂u
∂x

∂ 2u
∂x2

)
ds+

∫ t

0
V (t− s)Φ dW (s). (2.3)

In (2.3), V (t), t ≥ 0, is a unitary group generated by the linear part of the KdV equation (1.1).
To simplify notation we will use the following abbreviation for stochastic convolution

WV (t) :=
∫ t

0
V (t− s)ΦdW (s), t ≥ 0. (2.4)

Definition 2.2. For a given set A by nA we shall denote the biggest subset of A defined as nA :=
{

u ∈ A :
∂ knu
∂xkn ∈ A,k ∈ N

}
.

In the paper we shall use the following notation

Xσ (T ) :=
{

u ∈ L∞(0,T ;Hσ (R))∩L2(R;L∞([0,T ])),Dσ
∂xu ∈ L∞(R,L2([0,T ])),∂xu ∈ L4([0,T ];L∞(R))

}
.

Lemma 2.3. If (u0)2x ∈ Hσ (R), then V (t)(u0)2x ∈ Xσ (T ), σ > 3
4 .

Proof. Proof comes from Proposition 3.5 in de Bouard and Debussche [12].

Now, we can formulate first result.

Theorem 2.4. Assume that Φ ∈ L0
2(L

2(R);Hσ (R)) with α > 3
4 and

∂ 2

∂x2

[∫ t

0
V (t− s)Φ dW (s)

]
∈ L2

(
Ω;L2

x (L
∞
t )
)
. (2.5)

Then ∂ 2

∂x2 WV ∈ X̂σ (T ), P-almost surely, where X̂σ (T ) :=
{

u : L2(R;L∞([0,T ])),Dσ ∂xu ∈ L∞(R,L2([0,T ])),∂xu ∈ L4([0,T ];L∞(R))
}
, for

any T > 0 and all σ , such that 3
4 < σ < 1.

Proof. For reader’s convenience the proof of Theorem 2.4 is postponed to the section 4.

Corollary 2.5. Assume that Φ ∈ L0
2(L

2(R);Hσ (R)) and for σ > 3
4 holds

∂ 2

∂x2 WV ∈ L2 (Ω;L∞
t (Hσ

x )) .

Then ∂ 2

∂x2 WV ∈ Xσ (T ), P-almost surely for any T > 0, and σ such that 3
4 < σ < 1.

Now, we are able to formulate the existence and uniqueness result.

Theorem 2.6. Assume that u0 ∈ 2L2 (Ω;H1(R)
)
∩ 2L4 (Ω;L2(R)

)
and it is F0-measurable and Φ ∈ L0

2
(
L2(R);H1(R)

)
. If (2.5) holds then

there exists a unique mild solution to the equation (2.1) with initial condition (2.2), such that u ∈ 2Xσ (T ) almost surely for some T > 0 and
for any σ ∈

( 3
4 ,1
)
.
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Proof. As we have already written, in the proof we follow the method used in de Bouard and Debussche [12].
We introduce the mapping T defined as follows

T (u) :=V (t)u0 +
∫ t

0
V (t− τ)(u

∂u
∂x

+u
∂ 3u
∂x3 +

∂u
∂x

∂ 2u
∂x2 ) dτ +WV (t), t ≥ 0. (2.6)

Then

T (u) = V (t)u0 +
∫ t

0
V (t− τ)(u∂xu+u∂xu2x +u2x∂xu) dτ +WV (t)) = (2.7)

= V (t)u0 +
∫ t

0
V (t− τ)(u∂xu) dτ +

∫ t

0
V (t− τ)(u∂xu2x) dτ +

∫ t

0
V (t− τ)(u2x∂xu) dτ +WV (t), t ≥ 0.

We want to obtain the following condition

[ u ∈ {u : u ∈ Xσ (T ),u2x ∈ Xσ (T )} ] =⇒ [ T (u) ∈ {u : u ∈ Xσ (T ),u2x ∈ Xσ (T )} ] . (2.8)

From Theorem 3.2 and Proposition 3.5 in de Bouard and Debussche [12] and because u,u2x ∈ Xσ (T ), the mapping T maps Xσ (T ) into
itself if u0 ∈ Hσ (R). We will check when ∂ 2

∂x2 T (u) ∈ Xσ (T ). We have

∂ 2

∂x2 T (u) =
∂ 2

∂x2 V (t)u0 +
∂ 2

∂x2

∫ t

0
V (t− τ)(uux) dτ +

∂ 2

∂x2

∫ t

0
V (t− τ)(uu3x) dτ +

∂ 2

∂x2

∫ t

0
V (t− τ)(uxu2x) dτ +

∂ 2

∂x2

∫ t

0
V (t− τ)ΦdW (τ)

= V (t)(u0)2x +
∫ t

0
V (t− τ)(uu3x +3uxu2x) dτ +

∫ t

0
V (t− τ)(u2xu3x +2uxu4x +uu5x) dτ

+
∫ t

0
V (t− τ)(3u2xu3x +uxu4x) dτ +

∂ 2

∂x2

∫ t

0
V (t− τ)ΦdW (τ).

Let u ∈ 2Xσ (T ). Then v = u2x ∈ 2Xσ (T ) and v2x ∈ 2Xσ (T ). We have∫ t

0
V (t− τ)(uu3x +3uxu2x) dτ =

∫ t

0
V (t− τ)u∂xu2x dτ +3

∫ t

0
V (t− τ)u2x∂xu dτ =

∫ t

0
V (t− τ)u∂xv dτ +3

∫ t

0
V (t− τ)v∂xu dτ; (2.9)

∫ t

0
V (t− τ)(u2xu3x +2uxu4x +uu5x) dτ =

∫ t

0
V (t− τ)u2x∂xu2x dτ +2

∫ t

0
V (t− τ)u4x∂xu dτ +

∫ t

0
V (t− τ)u∂xu4x dτ

=
∫ t

0
V (t− τ)v∂xv dτ +2

∫ t

0
V (t− τ)v2x∂xu dτ +

∫ t

0
V (t− τ)u∂xv2x dτ;

(2.10)

∫ t

0
V (t− τ)(3u2xu3x +uxu4x) dτ = 3

∫ t

0
V (t− τ)u2x∂xu2x dτ +

∫ t

0
V (t− τ)u4x∂xu dτ (2.11)

= 3
∫ t

0
V (t− τ)v∂xv dτ +

∫ t

0
V (t− τ)v2x∂xu dτ. (2.12)

From Theorem 3.2, Proposition 3.5 de Bouard and Debussche [12], Lemma 2.3 and Theorem 2.4 above, and equations (2.9)-(2.11) we obtain
that the mapping T maps the set 2Xσ (T ) into itself if u0 ∈ 2Hσ (R) and Φ ∈ 2L2

(
L2(R,Hσ (R))

)
. We want to find a ball B in 2Xσ (T )

centered at point 0 and radius 2R such that the mapping T
∣∣
B is contraction. More precisely, we want to have the following conditions

(i) |u|Xσ (T ) < 2R =⇒ |T (u)|Xσ (T ) < 2R; (ii) |T (u)−T (v)|Xσ (T ) < |u− v|Xσ (T ) , |u|Xσ (T ) , |v|Xσ (T ) < 2R. (2.13)

First, let us note that for any u ∈ Xσ (T ) there exists Mu > 0 such that |u2x|Xσ (T ) = Mu |u|Xσ (T ) . Denote M := sup{Mu : u ∈ Xσ (T )}. Then

|u2x|Xσ (T ) ≤M |u|Xσ (T ) . (2.14)

From (2.14) and Proposition 3.5. de Bouard and Debussche [12] we obtain the following estimate

|T (u)|Xσ (T ) ≤ C1(σ ,T )|u0|Hσ (R)+C2(σ ,T )T
1
2 |u|2Xσ (T )+C3(σ ,T )T

1
2 |u|Xσ (T )|u2x|Xσ (T )+C4(σ ,T )T

1
2 |u2x|Xσ (T )|u|Xσ (T )+ |WV |Xσ (T )

≤ C1(σ ,T )|u0|Hσ (R)+C2(σ ,T )T
1
2 |u|2Xσ (T )+C3(σ ,T )T

1
2 M|u|2Xσ (T )+C4(σ ,T )T

1
2 M|u|2Xσ (T )+ |WV |Xσ (T ).

Here and below we write for shortening WV instead of WV (t), t ≥ 0.
Since Ci(σ ,T ), i = 1,2,3,4, are nondecreasing with respect to T , we can use C(σ ,T ) := max

T
{C1(σ ,T ),C2(σ ,T ),C3(σ ,T ),C4(σ ,T )},

which is nondecreasing with respect to T to our estimate. We obtain

|T (u)|Xσ (T ) ≤C(σ ,T )|u0|Hσ (R)+C(σ ,T )T
1
2 |u|2Xσ (T )+C(σ ,T )T

1
2 M|u|2Xσ (T )+C(σ ,T )T

1
2 M|u|2Xσ (T )+ |WV |Xσ (T )

=C(σ ,T )|u0|Hσ (R)+C(σ ,T )T
1
2 |u|2Xσ (T ) (1+2M)+ |WV |Xσ (T ).

Now, we shall find R fulfilling condition (2.13)(i). Assume that |u|Xσ (T ) < 2R. Then we have

|T (u)|Xσ (T ) ≤C(σ ,T )|u0|Hσ (R)+C(σ ,T )T
1
2 4R2 (1+2M)+ |WV |Xσ (T ).
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We want to receive C(σ ,T )|u0|Hσ (R)+C(σ ,T )T
1
2 4R2 (1+2M)+ |WV |Xσ (T ) ≤ 2R. This is equivalent to

C(σ ,T )|u0|Hσ (R)+ |WV |Xσ (T ) ≤ 2R−C(σ ,T )T
1
2 4R2 (1+2M) . Let us note that it is enough to have such R that

C(σ ,T )|u0|Hσ (R)+ |WV |Xσ (T ) ≤ R ≤ 2R−C(σ ,T )T
1
2 4R2 (1+2M) .

From the second inequality we obtain R≤ 2R−C(σ ,T )T
1
2 4R2 (1+2M) , then 0≤ R−C(σ ,T )T

1
2 4R2 (1+2M) and

0≤ R[1−4RC(σ ,T )T
1
2 (1+2M)], so 0≤ 1−4RC(σ ,T )T

1
2 (1+2M) , and finally 1≥ 4RC(σ ,T )T

1
2 (1+2M) .

Hence, in order to obtain (2.13) (i), the following inequalities must hold

C(σ ,T )|u0|Hσ (R)+ |WV |Xσ (T ) ≤ R and 4RC(σ ,T )T
1
2 (1+2M)≤ 1. (2.15)

Let us note that the second condition in (2.15) will hold too, if

κ4RC(σ ,T )T
1
2 (1+2M)≤ 1 for any fixed constant κ > 1. (2.16)

Now, we will check when the condition (2.13)(ii) holds. First, we shall estimate the norm |T (u)−T (v)|Xσ (T ). We can write

|T (u) − T (v)|Xσ (T ) =

∣∣∣∣∫ t

0
V (t− τ)(u∂xu− v∂xv) dτ +

∫ t

0
V (t− τ)(u∂xu2x− v∂xv2x) dτ +

∫ t

0
V (t− τ)(u2x∂xu− v2x∂xv) dτ

∣∣∣∣
Xσ (T )

=
1
2

∣∣∣∣∫ t

0
V (t− τ) [u∂x(u− v)+(u− v)∂xu+ v∂x(u− v)+(u− v)∂xv] dτ

+
∫ t

0
V (t− τ) [u∂x(u− v)2x +(u− v)∂xu2x + v∂x(u− v)2x +(u− v)∂xv2x] dτ

+
∫ t

0
V (t− τ) [u2x∂x(u− v)+(u− v)2x∂xu+ v2x∂x(u− v)+(u− v)2x∂xv] dτ

∣∣∣∣
Xσ (T )

≤ 1
2

∣∣∣∣∫ t

0
V (t− τ) [u∂x(u− v)+(u− v)∂xu+ v∂x(u− v)+(u− v)∂xv] dτ

∣∣∣∣
Xσ (T )

+
1
2

∣∣∣∣∫ t

0
V (t− τ) [u∂x(u− v)2x +(u− v)∂xu2x + v∂x(u− v)2x +(u− v)∂xv2x] dτ

∣∣∣∣
Xσ (T )

+
1
2

∣∣∣∣∫ t

0
V (t− τ) [u2x∂x(u− v)+(u− v)2x∂xu+ v2x∂x(u− v)+(u− v)2x∂xv] dτ

∣∣∣∣
Xσ (T )

.

Then

|T (u) − T (v)|Xσ (T ) ≤
1
2

C(σ ,T )T
1
2 |u|Xσ (T ) |u− v|Xσ (T )+

1
2

C(σ ,T )T
1
2 |u− v|Xσ (T ) |u|Xσ (T )

+
1
2

C(σ ,T )T
1
2 |v|Xσ (T ) |u− v|Xσ (T )+

1
2

C(σ ,T )T
1
2 |u− v|Xσ (T ) |v|Xσ (T )

+
1
2

C(σ ,T )T
1
2 |u|Xσ (T ) |(u− v)2x|Xσ (T )+

1
2

C(σ ,T )T
1
2 |u− v|Xσ (T ) |u2x|Xσ (T )

+
1
2

C(σ ,T )T
1
2 |v|Xσ (T ) |(u− v)2x|Xσ (T )+

1
2

C(σ ,T )T
1
2 |u− v|Xσ (T ) |v2x|Xσ (T )

+
1
2

C(σ ,T )T
1
2 |u2x|Xσ (T ) |u− v|Xσ (T )+

1
2

C(σ ,T )T
1
2 |(u− v)2x|Xσ (T ) |u|Xσ (T )

+
1
2

C(σ ,T )T
1
2 |v2x|Xσ (T ) |u− v|Xσ (T )+

1
2

C(σ ,T )T
1
2 |(u− v)2x|Xσ (T ) |v|Xσ (T )

=
1
2

C(σ ,T )T
1
2 |u− v|Xσ (T )

[
2 |u|Xσ (T )+2 |v|Xσ (T )+2 |u2x|Xσ (T )+2 |v2x|Xσ (T )

]
+

1
2

C(σ ,T )T
1
2 |(u− v)2x|Xσ (T )

[
2 |u|Xσ (T )+2 |v|Xσ (T )

]
≤C(σ ,T )T

1
2 |u− v|Xσ (T )

[
|u|Xσ (T )+ |v|Xσ (T )+M |u|Xσ (T )+M |v|Xσ (T )

]
+C(σ ,T )T

1
2 M |u− v|Xσ (T )

[
|u|Xσ (T )+ |v|Xσ (T )

]
.

Finally we have

|T (u) − T (v)|Xσ (T ) ≤C(σ ,T )T
1
2 |u− v|Xσ (T )

[
|u|Xσ (T )+ |v|Xσ (T )+M |u|Xσ (T )+M |v|Xσ (T )

]
+C(σ ,T )T

1
2 |u− v|Xσ (T )

[
M |u|Xσ (T )+M |v|Xσ (T )

]
=C(σ ,T )T

1
2 |u− v|Xσ (T )

[
|u|Xσ (T ) (2M+1)+ |v|Xσ (T ) (2M+1)

]
=C(σ ,T )T

1
2 |u− v|Xσ (T )

(
|u|Xσ (T )+ |v|Xσ (T )

)
(2M+1).

Since |u|Xσ (T ) ≤ 2R and |v|Xσ (T ) ≤ 2R, we have

|T (u)−T (v)|Xσ (T ) ≤ 4RC(σ ,T )T
1
2 |u− v|Xσ (T ) (2M+1). (2.17)

From (2.16) we know that 4RC(σ ,T )T
1
2 (2M+1)≤ 1

κ
, so, putting this into (2.17), we can write |T (u)−T (v)|Xσ (T ) ≤

1
κ
|u− v|Xσ (T ) .

Hence, the mapping T
∣∣
B is contraction if 1

κ
|u− v|Xσ (T ) < |u− v|Xσ (T ), what is satisfied for any κ > 1. So, we have to choose R0 and T

such that

C(σ ,T )|u0|Hσ (R)+ |WV |Xσ (T ) ≤ R0 and κ4R0C(σ ,T )T
1
2 (1+2M)≤ 1 for some constant κ > 1. (2.18)
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Remark 2.7. In order to do this it is enough to take M := sup{Mu : u ∈ Xσ (T ), |u|Xσ (T ) ≤ 4R}.

Proof. We estimated by M only terms |u|Xσ (T ), |v|Xσ (T ) and |u− v|Xσ (T ). Since |u|Xσ (T ) ≤ 2R and |v|Xσ (T ) ≤ 2R, so |u− v|Xσ (T ) ≤ 4R.

Hence, the mapping T maps the ball B in 2Xσ (T ) centered at 0 with radius 2R into itself and, restricted to this ball, the mapping T is
contraction. By Banach contraction theorem, the mapping T has fixed point in the set 2Xσ (T ), which is a unique solution to the equation
(2.1) with initial condition (2.2).

3. Near-identity transformation for KdV2

The famous Korteweg-de Vries equation [1] was first obtained in consideration of shallow water wave problem with the ideal fluid model.
It is assumed that the fluid is inviscid and its motion is irrotational. Then the set of hydrodynamic (Euler’s) equations with appropriate
boundary conditions at the flat bottom and unknown surface is obtained. Scaling transformation to dimensionless variables introduces small
parameters that allow us to apply perturbation approach. First order perturbation approach leads to KdV equation (below written in a fixed
reference frame)

ηt +ηx +
3
2

α ηηx +
1
6

β η3x = 0. (3.1)

More exact, second order perturbation approach gives the extended KdV equation [6] called by us KdV2 which has the following form

ηt +ηx +
3
2

α ηηx +
1
6

β η3x−
3
8

α
2
η

2
ηx +αβ

(
23
24

ηxη2x +
5

12
ηη3x

)
+

19
360

β
2
η5x = 0. (3.2)

In both equations (3.1) and (3.2) there appear parameters α,β , which should be small. Parameter α := A
h is the ratio of wave amplitude A to

water depth h and determines nonlinear terms. Parameter β := ( h
l )

2, where l is an average wavelength describes the dispersion properties.
When α ≈ β � 1 we have a classical shallow water problem. However, our recent paper [7] showed that exact solutions of KdV2 (3.2)
occur when β is much less than α . Therefore for further considerations we can safely neglect in (3.2) the last term with fifth derivative.
Transformation to a moving reference frame x′ = x− t and t ′ = t yields KdV2 equation in the form

ηt ′ +
3
2

α ηηx′ +
1
6

β η3x′ −
3
8

α
2
η

2
ηx′ +αβ

(
23
24

ηx′η2x′ +
5

12
ηη3x′

)
= 0. (3.3)

In next steps we drop signs ′ at x′ and t ′, having in mind that (3.3) represents the KdV2 in a moving frame.
Kodama [16] showed that several nonlinear partial differential equations are asymptotically equivalent. This term means that solutions to
these equations converge to the same solution when parameters α,β → 0. Kodama and several other authors [17, 19, 20] have shown that
asymptotically equivalent equations are related to each other by near-identity transformation (NIT).
Let us introduce Near Identity Transformation (NIT for short) in the form used in Dullin et al. [17]

η = η
′±αaη

′2±βbη
′
xx + · · · (3.4)

[In the sequel we set the sign +. Then the inverse transformation, up to O(α2) is η ′ = η−αaη2−βbηxx + · · · ]
NIT preserves the structure of the equation (3.3), at most altering some coefficients. Insertion (3.4) into (3.3) gives (up to 2nd order in α,β )

η
′
t +η

′
x + α

[(
3
2
+2a

)
η
′
η
′
x +2aη

′
η
′
t

]
+β

[(
1
6
+b
)

η
′
3x +bη

′
xxt

]
(3.5)

+ α
2
(
−3

8
+

9
2

a
)

η
′2

η
′
x +αβ

{[(
23
24

+a+
3
2

b
)

η
′
xη
′
2x

]
+

[(
5
12

+
1
3

a+
3
2

b
)

η
′
η
′
3x

]}
+β

2 1
6

bη
′
5x = 0.

Since terms with derivatives with respect to t appear with coefficients α and β , we can replace them by appropriate expressions obtained
from (3.2) limited to first order (that is from KdV)

η
′
t =−η

′
x−

3
2

αη
′
η
′
x−

1
6

βη
′
3x (3.6)

and

η
′
xxt = ∂xx

(
−η
′
x−

3
2

αη
′
η
′
x−

1
6

βη
′
3x

)
=−η

′
3x−

3
2

α(3η
′
xη
′
2x +η

′
η
′
3x)−

1
6

βη
′
5x. (3.7)

Then terms (3.6) and (3.7) cause the following changes

α 2aη
′
η
′
t +β bη

′
xxt = −2αaη

′
(

η
′
x +

3
2

αη
′
η
′
x +

1
6

βη
′
3x

)
−βb

[
η
′
3x +

3
2

α(3η
′
xη
′
2x +η

′
η
′
3x)+

1
6

βη
′
5x

]
= −2αaη

′
η
′
x−3α

2aη
′2

η
′
x−βbη

′
3x−αβ

[
1
2

bη
′
xη
′
2x +

(
1
3

a+
3
2

b
)

η
′
η
′
3x

]
− 1

6
β

2bη
′
5x. (3.8)

Insertion of (3.8) into (3.5) yields

η
′
t +η

′
x +

3
2

αη
′
η
′
x +

1
6

βη
′
3x +α

2
(
−3

8
+

3
2

a
)

η
′2

η
′
x +αβ

[(
23
24

+a−3b
)

η
′
xη
′
2x +

5
12

η
′
η
′
3x

]
= 0. (3.9)
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Comparison of (3.9) with (3.3) shows that only two coefficients are altered, that at the term containing α2, where − 3
8 →−

3
8 +

3
2 a and that

with αβη ′xη ′2x, where 23
24 →

23
24 +a−3b.

Equation (3.9) is asymptotically equivalent to (3.3). NIT gives us some freadom in choosing coefficients a,b. They can be chosen such that
the most nonlinear term (with 3-rd order nonlinearity) is canceled and the final equations is integrable. The first goal is obtained if

−3
8
+

3
2

a = 0 =⇒ a =
1
4
.

Integrability is achieved when coefficient in front of the term with ηxη2x is twice the coefficient in front of the term with ηη3x. So, we can
choose b such that

23
24

+a−3b = 2
5
12

=⇒ b =
1
8
.

Then, applying to (3.3) NIT (3.4) with parameters a = 1
4 and b = 1

8 we obtain asymptotically equivalent integrable equation in the form

η
′
t +

3
2

α η
′
η
′
x +

1
6

β η
′
3x +

5
12

αβ
(
2η
′
xη
′
2x +η

′
η
′
3x
)
= 0. (3.10)

We will show that for (3.10) there exists Hamiltonian form

η
′
t =

∂

∂x

(
δH

δη ′

)
, (3.11)

where Hamiltonian H =
∫

∞

−∞
H dx has the density

H =−1
4

αη
′3 +

1
12

βη
′2
x +

5
24

αβη
′
η
′2
x .

Since H = H (η ′,η ′x), then functional derivative is given by

δH

δη ′
=

∂H

∂η ′
− ∂

∂x
∂H

∂η ′x
=−3

4
αη
′2− 1

6
βη
′
2x−

5
24

αβη
′
x

2− 5
12

αβη
′
η
′
2x. (3.12)

Insertion of (3.12) into (3.11) gives

η
′
t =−

3
2

αη
′
η
′
x−

1
6

βη
′
3x−

5
12

αβ
(
2η
′
xη
′
xx +η

′
η
′
xxx
)
. (3.13)

what coincides with (3.10).
It is worth to notice, that application of inverse NIT to (3.10) brings back the equation (3.3) (up to second order in α,β ).
The existence of the Hamiltonian implies that there exist invariants of the equation (3.10). This is the first step towards obtaining a global
mild solution according to approach due to de Bouard and Debussche [12].

Remark 3.1. Equations (3.10) or (3.13), up to numerical coefficients, are the same as left hand side of stochastic equation (2.1). Then study
of stochastic equation (2.1) is justified.

4. Proof of Theorem 2.4

To make the paper self-contained, we recall the following results.

Theorem 4.1. ([12], Proposition A.1) Let A = Lq
ω (L2

t ) or A = Lq(Ω), with 1 < q < ∞, and let u be an A-valued function of x ∈ R. Assume
that for some p, with 1 < p < ∞ and some σ > 0

u ∈ Lp
x (A), Dσ u ∈ L∞

x (A);

then for any α ∈ [0,σ ] Dα u ∈ Lpα

x , with pα defined by 1
pα

= 1
p
(
1− α

σ

)
. Furthermore, there is a constant C such that

|Dα |Lpα
x (A) ≤C |u|1−

α

σ

Lpα
x (A) |D

σ u|
α

σ

L∞
x (A)

.

Theorem 4.2. ([13], Lemma 2.1) Let v0 ∈ L2(R).Then∫
∞

−∞

∣∣∣D α

2 V α (t)v0(x)
∣∣∣2 dt = cα ||v0||22 for any x ∈ R.

Theorem 4.3. ([13], Theorem 2.4) For any (θ ,β ) ∈ [0,1]×
[
0, α−1

2
]

(∫
∞

−∞

∥∥∥Dθ
β

2 Uα (t)v0

∥∥∥q

p
dt
) 1

q

≤ c‖v0‖2

and (∫
∞

−∞

∥∥∥∥∫ Dθ
β

2 Uα (t− s) f (·,s) ds
∥∥∥∥q

p
dt

) 1
q

≤ c
(∫

∞

−∞

‖ f (·,s)‖q′
p′ dt

) 1
q′

,

where (q, p) = (2(α +1)/(θ(β +1)),2/(1−θ)), 1
p +

1
p′ =

1
q +

1
q′ = 1.
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Lemma 4.4. Asume that σ̃ > σ > 3
4 and 0 < ε < inf{σ̃ ,2}. Then

Dσ̃−ε
∂x

(
∂ 2

∂x2 WV

)
∈ L2

(
Ω;L∞

x (L
2
t )
)
.

Proof. Let, as usually, WV :=
∫ t

0 V (t− s)Φ dW (s) and let q = 6
ε

. Estimate the expression
∣∣∣D3+σ̃WV

∣∣∣
L∞

x (L
q
ω (L2

t ))
. We have

∣∣∣D3+σ̃WV

∣∣∣
L∞

x (L
q
ω (L2

t ))
= sup

x∈R
E

(∫ T

0

∣∣∣∣∫ t

0
D3+σ̃V (t− s)Φ dW (s)

∣∣∣∣2 dt

) q
2
≤C sup

x∈R

∫ T

0
E

(∣∣∣∣∫ t

0
D3+σ̃V (t− s)Φ dW (s)

∣∣∣∣2
) q

2

dt

≤C sup
x∈R

∫ T

0

(∫ t

0
∑
i∈N

∣∣∣D3+σ̃V (t− s)Φei(s)
∣∣∣2 ds

) q
2

dt ≤C
∫ T

0

(
∑
i∈N

sup
x∈R

∫ t

0

∣∣∣D3+σ̃V (t− s)Φei(s)
∣∣∣2 ds

) q
2

dt.

(4.1)

Let us substitute in Theorem 4.2 v0 = Dσ̂+ 5
2 Φei and α = 1. Then we obtain

C
∣∣∣Dσ̂+ 5

2 Φei

∣∣∣2
L2

=
∫

∞

−∞

|D
1
2 V (s)Dσ̂+ 5

2 Φei|2 ds =
∫

∞

−∞

|D3+σ̂V (s)Φei|2 ds≥
∫ t

0
|D3+σ̂V (t− s)Φei|2 ds.

Since Theorem 4.2 holds for all x ∈ R and
∣∣∣Dσ̂+ 5

2 Φei

∣∣∣
L2
≤ |Φei|H σ̂+ 5

2
, then

sup
x∈R

∫ t

0
|D3+σ̂V (t− s)Φei|2 ds≤C |Φei|2

H σ̂+ 5
2
. (4.2)

Insertion of (4.2) into (4.1), gives

∣∣∣D3+σ̃WV

∣∣∣q
L∞

x (L
q
ω (L2

t ))
≤C

∫ T

0

(
∑
i∈N
|Φei|2

H σ̃+ 5
2

) q
2

dt ≤C(T ) |Φ|0,σ̂+ 5
2

2 ≤C(T )|Φ|q
L

0,σ̃+ 5
2

2

.

Let us estimate
∣∣∣Dσ̃WV

∣∣∣2
L2

x(L
q
ω (L2

t ))
. Basing on proof of Proposition 3.3 in de Bouard and Debussche [12] we have that

∣∣∣Dσ̃WV

∣∣∣2
L2

x(L
q
ω (L2

t ))
≤C|Φ|2

L0,σ̃
2
≤C|Φ|q

L
0,σ̃+ 5

2
2

.

Now, set in Theorem 4.1 A = Lq
ω (L2

t ), p = 2, u = Dσ̃WV σ = 3 and α = 3− ε for some 3 > ε > 0. Then D3−ε Dσ̃WV = D3+σ̃−εWV ∈
Lpα

x (Lq
ω (L2

t )) and there exists a constant C, such that∣∣∣D3+σ̃−εWV

∣∣∣
Lpα

x (Lq
ω (L2

t ))
≤C

∣∣∣Dσ̃WV

∣∣∣1− 3−ε

3

L2(Lq
ω (L2

t ))

∣∣∣D3+σ̃WV

∣∣∣ 3−ε

3

L∞
x (L

q
ω (L2

t ))
=C

∣∣∣Dσ̃WV

∣∣∣ ε

3

L2(Lq
ω (L2

t ))

∣∣∣D3+σ̃WV

∣∣∣1− ε

3

L∞
x (L

q
ω (L2

t ))
,

where

pα =

(
1
2

(
1− 3− ε

3

))−1
=

(− ε

3
2

)−1

=
6
ε
= q.

Then we have ∣∣∣D3+σ̃−εWV

∣∣∣
Lq

x(L
q
ω (L2

t ))
≤C

∣∣∣Dσ̃WV

∣∣∣ 2
q

L2(Lq
ω (L2

t ))

∣∣∣D3+σ̃WV

∣∣∣1− 2
q

L∞
x (L

q
ω (L2

t ))
≤C |Φ|

L
0,σ̃+ 5

2
2

. (4.3)

Moreover, basing on the proof of Proposition 3.3 in de Bouard and Debussche [12],

|WV |Lq
ω (L

q
x(L2

t ))
≤C |Φ|

L0,σ̃
2
≤C |Φ|

L
0,σ̃+ 5

2
2

. (4.4)

Since
∣∣∣D3+σ̃−εWV

∣∣∣
Lq

ω (L
q
x(L2

t ))
=
∣∣∣D3+σ̃−εWV

∣∣∣
Lq

x(L
q
ω (L2

t ))
, then from (4.3) oraz (4.4) we obtain

|WV |Lq
ω (W

3+σ̃−ε,q
x (L2

t ))
≤C |Φ|

L
0,σ̃+ 5

2
2

.

Because qε > 1, then W ε,q
x (L2

t )⊂ L∞
x (L

2
t ), therefore D3+σ̃−εWV ∈ Lq

ω (L∞
x (T

2
t )). Moreover∣∣∣D3+σ̃−εWV

∣∣∣
Lq

ω (L∞
x (L2

t ))
≤C |Φ|

L
0,σ̃+ 5

2
2

.

Finally

Dσ̃−ε
∂x

(
∂ 2

∂x2 WV

)
= Dσ̃−ε

∂3xWV =
∫ t

0
Dσ̃−ε

∂3xV (t− s)Φ dW (s) =
∫ t

0
D3+σ̃−εV (t− s)H Φ dW (s),

where H is the Hilbert transform, what finishes the proof.
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Lemma 4.5.

∂x

(
∂ 2

∂x2 WV

)
∈ L2

(
Ω;L4

t (L
∞
x )
)
.

Proof. Let ε = σ̃ − 3
4 and q = 4+ 12

ε
. Estimate

∣∣D3+εWV
∣∣
L4

t (L∞
x (L

q
ω ))

.
We have∣∣∣D3+εWV

∣∣∣4
L4

t (L∞
x (L

q
ω ))

=
∫ T

0
sup
x∈R

E
(∣∣∣∣∫ t

0
Dσ̃+ 9

4 V (t− s)Φ dW (s)
∣∣∣∣q) 4

q

dt ≤C
∫ T

0
sup
x∈R

(
∑
i∈N

∫ t

0

∣∣∣Dσ̃+ 9
4 V (t− s)Φei

∣∣∣2 ds

)2

dt

≤C(T )

(
∑
i∈N

(∫ T

0
sup
x∈R

∣∣∣Dσ̃+ 9
4 V (t− s)Φei

∣∣∣4 ds
) 1

2
)2

.

Substitute in Theorem 4.3 α = 2, θ = 1, β = 1
2 (like in de Bouard and Debussche [12]). The result is

∫ T

0
sup
x∈R

∣∣∣Dσ̃+ 9
4 V (t)Φei

∣∣∣4 dt ≤

C
∣∣∣Dσ̃+2

Φei

∣∣∣4
L2

x

≤C |Φ|
L0,σ̃+2

2
, where L0,σ̃+2

2 = L0
2(L

2(R);Hσ̃+2(R)). This implies
∣∣D3+εWV

∣∣4
L4

t (L∞
x (L

q
ω ))
≤C |Φ|

L0,σ̃+2
2

, Moreover from the

proof of Proposition 3.4 in de Bouard and Debussche [12] we know that |WV |L4
t (L2

x(L
q
ω ))
≤C |Φ|L0,0

2
≤C |Φ|

L0,σ̃
2
≤C |Φ|

L0,σ̃+2
2

.

Now substitute in Theorem 4.1 σ = 3+ ε , A = Lq
ω = Lq(Ω), p = 2, u =WV , α = 3+ ε

2 . Then pα =
(

1
2

(
1− 3+ ε

2
3+ε

))−1
= 4+ 12

ε
= q and

∣∣∣D3+ ε

2 WV

∣∣∣
Lpα

x (Lq
ω )
≤C |WV |

1− 3+ ε
2

3+ε

Lpα
x (Lq

ω )

∣∣∣D3+εWV

∣∣∣ 3+ ε
2

3+ε

L∞
x (L

q
ω )

=C |WV |
ε
2

3+ε

Lpα
x (Lq

ω )

∣∣∣D3+εWV

∣∣∣ 3+ ε
2

3+ε

L∞
x (L

q
ω )

=C |WV |
2
q

Lq
x(L

q
ω )

∣∣∣D3+εWV

∣∣∣1− 2
q

L∞
x (L

q
ω )
.

Since q = 4+ 12
ε
≥ 4, then∣∣∣D3+ ε

2 WV

∣∣∣
L4

ω (L4
t (L

q
x))
≤
∣∣∣D3+ ε

2 WV

∣∣∣
L4

t (L
q
x(L

q
ω ))
≤C |WV |

2
q

Lq
x(L

q
ω )

∣∣∣D3+εWV

∣∣∣1− 2
q

L∞
x (L

q
ω )
≤C |Φ|

L0,σ̃
2
≤C |Φ|

L0,σ̃+2
2

.

The proof of Proposition 3.4 in de Bouard and Debussche [12] implies that |WV | ≤C(T ) |Φ|
L0,σ̃

2
≤C(T ) |Φ|

L0,σ̃+2
2

, therefore

|WV |
L4

ω

(
L4

t

(
W

3+ ε
2 ,q

x

)) ≤C |Φ|
L0,σ̃+2

2
and, since qε/2 > 1, |∂3xWV |L4

ω (L4
t (L∞

x ))
≤C |WV |

L4
ω

(
L4

t

(
W

3+ ε
2 ,q

x

)) ≤C |Φ|
L0,σ̃+2

2
.
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