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Abstract 

 
In this article, we have found some soliton wave solutions of the (2 + 1) -dimensional dispersive long wave equation 

using the generalized (
𝐺′

𝐺
) - expansion method. Recently this method is developed for searching exact traveling wave 

solutions of nonlinear partial differential equations. Also, these solutions might play important role in mechanics. For 

this equation, we obtained hyperbolic function solutions, exponential function solutions and rational function 

solutions. We also saw that the solutions provided the equation using Mathematica 11.2 and we showed the graphical 

performance of some of the solutions found. 
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1.INTRODUCTION 

 

Nonlinear partial differential equations (NPDEs) have an important place in applied sciences [1,2]. There 

are some analytical methods for solving these equations in the literature [3-11]. In addition to these methods, 

there are many methods of solving such equations by using an auxiliary equation. By using these methods, 

partial differential equations are converted to ordinary differential equations and the solutions of partial 

differential equations are found with the help of these ordinary differential equations. These methods are 

given in [12-26].  Many authors have applied these and similar methods to various equations [27-47]. 

 

We used the generalized (
𝐺′

𝐺
)- Expansion Method for finding the some soliton wave solution (2+1)-

dimensional (DLWE).  This method is presented in[29]. 

 

2. ANALYSIS OF METHOD 

 

Let's introduce the method briefly.  Consider a general partial differential equation of two variables, 

                                               𝑄(𝑢, 𝑢𝑡 , 𝑢𝑥, 𝑢𝑥𝑥, … ) = 0,                                                                   (1) 

 

Using the wave variable 𝑢(𝑥, 𝑡) = 𝑢(𝜉),  𝜉 = 𝑥 − 𝜇𝑡   the Eq.(1) turns into an ordinary differential equation,  

                                              𝑄′(𝑢′, 𝑢′′, 𝑢′′′, … ) = 0                                                                        (2) 
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here 𝜇 is constant. With this conversion, we obtain a nonlinear ordinary differential equation for  𝑢(𝜉). We 

can express the solution of Eq.(2) as below,   

 

                                  𝑢(𝜉) = ∑ 𝑑𝑘Φ(𝜉)𝑘 + ∑ 𝑒𝑘Φ(𝜉)−𝑘𝑚
𝑘=1

𝑚
𝑘=0                                                      (3) 

 

where 𝑚 is a positive integer is found as the result of balancing the highest order linear term and the highest 

order nonlinear term found in the equation, the coefficients 𝑑𝑘 and 𝑒𝑘 are constants. Φ(𝜉) = (
𝐺′

𝐺
) satisfies 

the following ordinary differential equation, 

 

                                   𝑘1𝐺𝐺′′ − 𝑘2𝐺𝐺′ − 𝑘3(𝐺
′)2 − 𝑘4𝐺

2 = 0.                                                     (4) 

 

Substituting solution (3) into Eq. (2) yields a set of algebraic equation for (
𝐺′

𝐺
) , (

𝐺′

𝐺
)
−𝑘

, then, all coefficients 

of (
𝐺′

𝐺
) , (

𝐺′

𝐺
)
−𝑘

, have to vanish. Then, we can found  𝑑𝑘, 𝑒𝑘 ,𝑘1, 𝑘2, 𝑘3, 𝑘4 and 𝜇. The special solutions of 

Eq. (4) are as follows,[29] 

 

1. When 𝑘2 ≠ 0, 𝑓 = 𝑘1 − 𝑘3 and 𝑠 = 𝑘2
2 + 4𝑘4(𝑘1 − 𝑘3 ) > 0, then  

Φ(𝜉) =
𝑘2

2𝑓
+

√𝑠

2𝑓

𝐶1𝑠𝑖𝑛ℎ (
√𝑠
2𝑘1

𝜉) + 𝐶2𝑐𝑜𝑠ℎ(
√𝑠
2𝑘1

𝜉)

𝐶1𝑐𝑜𝑠ℎ (
√𝑠
2𝑘1

𝜉) + 𝐶2𝑠𝑖𝑛ℎ(
√𝑠
2𝑘1

𝜉)

. 

2. When 𝑘2 ≠ 0, 𝑓 = 𝑘1 − 𝑘3 and 𝑠 = 𝑘2
2 + 4𝑘4(𝑘1 − 𝑘3 ) < 0, then  

Φ(𝜉) =
𝑘2

2𝑓
+

√−𝑠

2𝑓

−𝐶1𝑠𝑖𝑛 (
√−𝑠
2𝑘1

𝜉) + 𝐶2𝑐𝑜𝑠 (
√−𝑠
2𝑘1

𝜉)

𝐶1𝑐𝑜𝑠 (
√−𝑠
2𝑘1

𝜉) + 𝐶2𝑠𝑖𝑛 (
√−𝑠
2𝑘1

𝜉)

. 

3. When 𝑘2 ≠ 0, 𝑓 = 𝑘1 − 𝑘3 and 𝑠 = 𝑘2
2 + 4𝑘4(𝑘1 − 𝑘3 ) = 0 , then  

Φ(𝜉) =
𝑘2

2𝑓
+

𝐶2

𝐶1 + 𝐶2𝜉
. 

4. When 𝑘2 = 0, 𝑓 = 𝑘1 − 𝑘3 and 𝑔 = 𝑓𝑘4 > 0 , then 

Φ(𝜉) =
√𝑔

𝑓

𝐶1𝑠𝑖𝑛ℎ(
√𝑔

𝑘1
𝜉) + 𝐶2𝑐𝑜𝑠ℎ(

√𝑔

𝑘1
𝜉)

𝐶1𝑐𝑜𝑠ℎ (
√𝑔

𝑘1
𝜉) + 𝐶2𝑠𝑖𝑛ℎ(

√𝑔

𝑘1
𝜉)

. 

5. When 𝑘2 = 0, 𝑓 = 𝑘1 − 𝑘3 and 𝑔 = 𝑓𝑘4 < 0 , then 

Φ(𝜉) =
√−𝑔

𝑓

−𝐶1𝑠𝑖𝑛 (
√−𝑔
𝑘1

𝜉) + 𝐶2𝑐𝑜𝑠 (
√−𝑔
𝑘1

𝜉)

𝐶1𝑐𝑜𝑠 (
√−𝑔
𝑘1

𝜉) + 𝐶2𝑠𝑖𝑛 (
√−𝑔
𝑘1

𝜉)

. 

6. When 𝑘4 = 0 and  𝑓 = 𝑘1 − 𝑘3, then 

Φ(𝜉) =
𝐶1𝑘2

2𝑒𝑥𝑝 (
−𝑘2
𝑘1

𝜉)

𝑓𝑘1 + 𝐶1𝑘1𝑘2𝑒𝑥𝑝 (
−𝑘2
𝑘1

𝜉)
. 

7. When 𝑘2 ≠ 0 and  𝑓 = 𝑘1 − 𝑘3 = 0, then 
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Φ(𝜉) = −
𝑘4

𝑘2
+ 𝐶1𝑒𝑥𝑝 (

𝑘2

𝑘1
𝜉). 

 

8. When 𝑘1 = 𝑘3,  𝑘2 = 0 and  𝑓 = 𝑘1 − 𝑘3 = 0, then 

Φ(𝜉) = 𝐶1 +
𝑘4

𝑘1
𝜉. 

9. When 𝑘3 = 2𝑘1,  𝑘2 = 0 and  𝑘4 = 0, then 

Φ(𝜉) = −
1

𝐶1 + (
𝑘3
𝑘1

− 1) 𝜉
. 

 

 

3.EXAMPLE. We consider the (2+1)-dimensional DLWE [47], 

 

𝑢𝑦𝑡 + 𝑣𝑥𝑥 + 𝑢𝑦𝑢𝑥 + 𝑢𝑢𝑥𝑦 = 0 

                                                 𝑣𝑡 + 𝑢𝑥 + 𝑢𝑥𝑣 + 𝑢𝑣𝑥 + 𝑢𝑥𝑥𝑦 = 0,                                                  (5) 

 

Using the wave variable  𝑢(𝑥, 𝑦, 𝑡) = 𝑢(ξ), ξ = 𝑥 + 𝑦 − 𝜇𝑡    the equation (1) turns into an ordinary 

differential equation, 

 

                                                    −𝜇𝑢′′ + 𝑣′′ + (𝑢′)2 + 𝑢𝑢′′ = 0       

                                                    −𝜇𝑣′ + 𝑢′ + 𝑢′𝑣 + 𝑢𝑣′ + 𝑢′′′ = 0,                                             (6) 

 

when balancing  𝑣′′ with  𝑢𝑢′′ and  𝑢′′′ with 𝑢′𝑣  then 𝑚 = 1 and 𝑛 = 2  gives. The solutions are as 

follows:     

                                           𝑢(𝜉) = 𝑑0 + 𝑑1Φ(𝜉) + 𝑒1Φ(𝜉)−1  

                                           𝑣(𝜉) = 𝑓0 + 𝑓1Φ(𝜉) + 𝑓2Φ(𝜉)2 + 𝑔1Φ(𝜉)−1 + 𝑔2Φ(𝜉)−2                 (7)    

 

If Eq. (7) is substituted in Eq. (6), the following algebraic equation system is obtained for 𝑑0, 𝑑1, 𝑒1, 

,𝑘1, 𝑘2, 𝑘3, 𝑘4 and 𝜇;  

 

𝑒1
2 + 2𝑔2 +

𝜇𝑒1𝑘2

𝑘1
−

𝑑0𝑒1𝑘2

𝑘1
−

𝑔1𝑘2

𝑘1
−

2𝑒1
2𝑘3

𝑘1
−

4𝑔2𝑘3

𝑘1
−

𝜇𝑒1𝑘2𝑘3

𝑘1
2 +

𝑑0𝑒1𝑘2𝑘3

𝑘1
2 +

𝑔1𝑘2𝑘3

𝑘1
2 +

𝑒1
2𝑘3

2

𝑘1
2 +

2𝑔2𝑘3
2

𝑘1
2 −

𝜇𝑑1𝑘2𝑘4

𝑘1
2 +

𝑑0𝑑1𝑘2𝑘4

𝑘1
2 +

𝑓1𝑘2𝑘4

𝑘1
2 +

𝑑1
2𝑘4

2

𝑘1
2 +

2𝑓2𝑘4
2

𝑘1
2 = 0,  

3𝑒1
2𝑘4

2

𝑘1
2 +

6𝑔2𝑘4
2

𝑘1
2 = 0,         

5𝑒1
2𝑘2𝑘4

𝑘1
2 +

10𝑔2𝑘2𝑘4

𝑘1
2 −

2𝜇𝑒1𝑘4
2

𝑘1
2 +

2𝑑0𝑒1𝑘4
2

𝑘1
2 +

2𝑔1𝑘4
2

𝑘1
2 = 0,    

2𝑒1
2𝑘2

2

𝑘1
2 +

4𝑔2𝑘2
2

𝑘1
2 −

4𝑒1
2𝑘4

𝑘1
−

8𝑔2𝑘4

𝑘1
−

3𝜇𝑒1𝑘2𝑘4

𝑘1
2 +

3𝑑0𝑒1𝑘2𝑘4

𝑘1
2 +

3𝑔1𝑘2𝑘4

𝑘1
2 +

4𝑒1
2𝑘3𝑘4

𝑘1
2 +

8𝑔2𝑘3𝑘4

𝑘1
2 = 0,⋯                                                            

                                                                                                                                      (8)   

         

If this linear algebraic equation system is solved, the coefficients are found as follows: 

 

Case 1.   

𝑒1 = 0, 𝑓0 = −1, 𝑓2 = −
𝑑1

2

2
, 𝑔1 = 0,  𝑔2 = 0, 𝑑1 ≠ 0, 𝑘2 =

𝑓1𝑘1

𝑑1
, 𝑘2 ≠ 0, 𝑘3 =

𝑘1(−𝑓1𝑘1+2𝑘2)

2𝑘2
, 

𝑘4 = 0,−𝑘1 + 𝑘3 ≠ 0, 𝜇 =
−2𝑑0𝑘1−𝑑1𝑘2+2𝑑0𝑘3

2(−𝑘1+𝑘3)
. 
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Solution 1.     

 𝑢(𝑥, 𝑦, 𝑡) = 𝑑0 +
𝑓1

𝑑1
+ (

 
 

𝐶1Sinh

[
 
 
 
 (𝑥+𝑦−𝑡(𝑑0+

𝑓1
𝑑1

))√
𝑓1
2𝑘1

2

𝑑1
2

2𝑘1

]
 
 
 
 

+𝐶2Cosh

[
 
 
 
 (𝑥+𝑦−𝑡(𝑑0+

𝑓1
𝑑1

))√
𝑓1
2𝑘1

2

𝑑1
2

2𝑘1

]
 
 
 
 

)

 
 

√
𝑓1
2𝑘1

2

𝑑1
2

(

 
 

𝐶1Cosh

[
 
 
 
 (𝑥+𝑦−𝑡(𝑑0+

𝑓1
𝑑1

))√
𝑓1
2𝑘1

2

𝑑1
2

2𝑘1

]
 
 
 
 

+𝐶2Sinh

[
 
 
 
 (𝑥+𝑦−𝑡(𝑑0+

𝑓1
𝑑1

))√
𝑓1
2𝑘1

2

𝑑1
2

2𝑘1

]
 
 
 
 

)

 
 

𝑘1

                     (9) 

 

 
𝑣(𝑥, 𝑦, 𝑡)

= −

2Sinh

[
 
 
 
 
 
(𝑥 + 𝑦 − 𝑡 (𝑑0 +

𝑓1
𝑑1

))√
𝑓1

2𝑘1
2

𝑑1
2

𝑘1

]
 
 
 
 
 

𝐶1𝐶2𝑑1
2 + 𝐶1

2

(

 
 
 
 

(

 
 
 

1 + Cosh

[
 
 
 
 
 
(𝑥 + 𝑦 − 𝑡 (𝑑0 +

𝑓1
𝑑1

))√
𝑓1

2𝑘1
2

𝑑1
2

𝑘1

]
 
 
 
 
 

)

 
 
 

𝑑1
2 − 𝑓1

2

)

 
 
 
 

2

(

 
 
 

Cosh

[
 
 
 
 
 
(𝑥 + 𝑦 − 𝑡 (𝑑0 +

𝑓1
𝑑1

))√
𝑓1

2𝑘1
2

𝑑1
2

𝑘1

]
 
 
 
 
 

𝐶1 + Sinh

[
 
 
 
 
 
(𝑥 + 𝑦 − 𝑡 (𝑑0 +

𝑓1
𝑑1

))√
𝑓1

2𝑘1
2

𝑑1
2

𝑘1

]
 
 
 
 
 

𝐶2

)

 
 
 

2

𝑑1
2

 

+

𝐶2
2

(

  
 

(

 
 

−1+Cosh

[
 
 
 
 (𝑥+𝑦−𝑡(𝑑0+

𝑓1
𝑑1

))√
𝑓1
2𝑘1

2

𝑑1
2

𝑘1

]
 
 
 
 

)

 
 

𝑑1
2+𝑓1

2

)

  
 

2

(

 
 

Cosh

[
 
 
 
 (𝑥+𝑦−𝑡(𝑑0+

𝑓1
𝑑1

))√
𝑓1
2𝑘1

2

𝑑1
2

𝑘1

]
 
 
 
 

𝐶1+Sinh

[
 
 
 
 (𝑥+𝑦−𝑡(𝑑0+

𝑓1
𝑑1

))√
𝑓1
2𝑘1

2

𝑑1
2

𝑘1

]
 
 
 
 

𝐶2

)

 
 

2

𝑑1
2

                                                       (10)                                                                                                                 

                                                                                                                                        

 

Case 2.  

𝑑1 = 0, 𝑓0 = −1,  𝑓2 = 0,  𝑔1 = 0, 𝑔2 = −
𝑒1

2

2
,  𝑘2 = 0,  𝑘3 = 𝑘1, 𝑘4 =

𝑒1𝑘1

2
, 𝜇 = 𝑑0, 𝑒1𝑓1𝑘1 ≠ 0. 

 

Solution 2.      

𝑢(𝑥, 𝑦, 𝑡) = 𝑑0 +
𝑒1

𝐶1+
1

2
(𝑥+𝑦−𝑡𝑑0)𝑒1

                                                                 (11) 

 

𝑣(𝑥, 𝑦, 𝑡) = −1 −
2𝑒1

2

(2𝐶1+(𝑥+𝑦−𝑡𝑑0)𝑒1)2
+ (𝐶1 +

1

2
(𝑥 + 𝑦 − 𝑡𝑑0)𝑒1)𝑓1     (12) 

 

Case 3.         

𝑑1 = 0,  𝑓0 = −1, 𝑓1 = 0, 𝑓2 = 0, 𝑔2 = −
𝑒1

2

2
, 𝑒1 ≠ 0, 𝑘2 =

𝑔1𝑘1

𝑒1
, 𝑘3 = 𝑘1, 𝑘2 ≠ 0, 𝑘4 = −

𝑔1𝑘1
2

2𝑘2
,

𝑘4 ≠ 0, 𝜇 =
−𝑒1𝑘2+2𝑑0𝑘4

2𝑘4
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Solution 3.           

𝑢(𝑥, 𝑦, 𝑡) = 𝑑0 +
2𝑒1𝑔1

𝑒1
2+2𝑒

𝑔1(𝑥+𝑦−𝑡(𝑑0+
𝑔1
𝑒1

))

𝑒1 𝐶1𝑔1

                                                                    (13) 

 

𝑣(𝑥, 𝑦, 𝑡) = −1 −
2𝑒1

2𝑔1
2

(

 
 

𝑒1
2+2𝑒

𝑔1(𝑥+𝑦−𝑡(𝑑0+
𝑔1
𝑒1

))

𝑒1 𝐶1𝑔1

)

 
 

2 +
2𝑔1

2

𝑒1
2+2𝑒

𝑔1(𝑥+𝑦−𝑡(𝑑0+
𝑔1
𝑒1

))

𝑒1 𝐶1𝑔1

             (14) 

 

 
4. EXPLANATIONS AND GRAPHICAL REPRESENTATIONS OF THE OBTAINED SOME 

SOLUTIONS                             

 

The graphs of  Eq. (9) and Eq. (10) are shown in Figs. 1-2 respectively, within the interval −20 ≤ 𝑥 ≤
20,−5 ≤ 𝑡 ≤ 5.  

                 

a)                                                                                                        b) 

 

                            
 

Figure 1. a) The 3 Dimensional surfaces of Eq. (9) for 𝑓1 = 1, 𝑑1 = 1, 𝑑0 = 2, 𝐶1 = 2, 𝑘1 = 3, 𝐶2 = 1, 𝑦 = 1.  b) 

The 2 Dimensional surfaces of Eq. (9) for 𝑓1 = 1, 𝑑1 = 1, 𝑑0 = 2, 𝐶1 = 2, 𝑘1 = 3, 𝐶2 = 1, 𝑦 = 1 and 𝑡 = 1. 

 

a)                                                                                                        b) 

 

                        
 

Figure 2.a)The 3 Dimensional surfaces of Eq. (10) for 𝑓1 = 1, 𝑑1 = 1, 𝑑0 = 2, 𝐶1 = 2, 𝑘1 = 3, 𝐶2 = 1, 𝑦 = 1.  b) 

The 2 Dimensional surfaces of Eq. (10) for 𝑓1 = 1, 𝑑1 = 1, 𝑑0 = 2, 𝐶1 = 2, 𝑘1 = 3, 𝐶2 = 1, 𝑦 = 1 and 𝑡 = 1. 

20 10 10 20
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5. CONCLUSIONS 
 

We used the Generalized (
𝐺′

𝐺
)- Expansion Method for some soliton wave solution (2+1)-dimensional 

DLWE. Some nonlinear partial differential equations were solved by this method. For this equation, we 

obtained hyperbolic function solutions, exponential function solutions and rational function solutions. We 

also saw that the solutions provided the equation using Mathematica 11.2 and we showed the graphical 

performance of some of the solutions found. Moreover, this method is also computerizable, which lets 

us to perform confused and oppressive algebraic calculation on a computer by the aid of symbolic 

programs such as Mathematica, Maple, Matlab, and so on. It can be solved similarly in a number of 

nonlinear partial differential equations.   
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