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Abstract

This paper introduces a new bivariate distribution named the bivariate generalized Rayleigh
distribution (BVGR). The proposed distribution is of type of Marshall-Olkin (MO) dis-
tribution. The BVGR distribution has generalized Rayleigh marginal distributions. The
joint cumulative distribution function, the joint survival function, the joint probability den-
sity function and the joint hazard rate function of the proposed distribution are obtained
in closed forms. Statistical properties of the BVGR distribution are investigated. The
maximum likelihood and Bayes methods are applied to estimate the unknown parameters.
Both maximum likelihood and Bayes estimates are not obtained analytically. Therefore,
numerical algorithms are required to report on the model parameters and its reliability
characteristics. Markov Chain Monte Carlo (MCMC) algorithm is applied for the Bayesian
method. A real data set is analyzed using the proposed distribution and compared it with
existing distributions. It is observed that the BVGR model fits this dataset better than the
MO and the bivariate generalized exponential (BVGE) distributions.

1. Introduction

Surles and Padgett [15] introduced the two parameter Burr Type X distribution and also named as the generalized Rayleigh (GR) distribution.
The GR distribution is a particular member of the exponentiated Weibull distribution, originally proposed by Mudholkar and Srivastava [11].
Surles and Padgett [16] and Al-khedhari et al. [1] discussed the parameters’ estimations of this distribution using different techniques.
A new bivariate distribution is proposed by Sarhan and Balakrishnan [14], now known as Sarhan-Balakrishnan bivariate (SBBV) distribution,
using the GE distribution and exponential distribution and they derived several interesting properties of this new distribution. Although
the GE and exponential distributions are used to define the SBBV, the marginal distributions of SBBV distribution are not in known forms.
Kundu et al. [5] modified the SBBV to include a scale parameter and discussed the parameters’ estimation using maximum likelihood
method. Kundu and Gupta [6] followed the same idea using the GE distribution to provide a new bivariate distribution called the bivariate
generalized exponential (BVGE) distribution so that the marginal distributions are GE distributions. None of the marginal distributions of the
SBBV and BVGE distributions accommodates a bathtub shaped of the hazard rate function. The lack of the bathtub shaped property limits
the application of the SBBV and BVGE distributions. Kundu and Gupta [6] derived several interesting properties of the BVGE distribution
and discussed the maximum likelihood estimates (MLEs) of the unknown parameters of the distribution. Kundu and Gupta [6] used the
BVGE distribution to re-analyze a real data set that was originally analyzed by Meintanis [10] using the bivariate Marshal-Olkin (MO)
distribution and concluded that the BVGE distribution provides a better fit than the MO distribution.
The main aim of this paper is to use the similar idea as of Sarhan and Balakrishnan [14] to introduce a new bivariate generalized Rayleigh
(BVGR) distribution, using the GR distributions, so that the marginal distributions are GR distributions. The hazard rate functions of
marginals of the BVGR distribution can be either increasing or decreasing or constant or of bathtub shaped. This property enriches the
application of the BVGR distribution comparing to both the MO and the BVGE distributions. The proposed distribution has four parameters.
The BVGR distribution can be interpreted as the joint distribution of the lifetimes of the two components of a reliability system that consists
of two non-independent and non-identical components each follows a univariate GR lifetime distribution. The joint cumulative distribution
function (jcdf), the joint survival function (jsf), the joint probability density function (jpdf) and the the joint hazard rate function (jhrf) of the
BVGR distribution are derived in closed forms. The maximum likelihood and Bayesian methods are used to estimate the four unknown
parameters of the BVGR distribution and some of its reliability measures. None of these estimates is derived in a closed form. Therefore,
numerical methods are required to calculate them. For Bayesian method, we apply the Markov Chain Monte Carlo.
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The article is organized as follows. The BVGR distribution and discusses some of its statistical properties are presented and discussed
in Sections 2 and 3. Parameters’ estimations of the BVGR distribution are discussed in Section 4. Section 5 analyses a real data set and
compares the ability of the BVGR with the MO and BVGE distributions to fit that data set. Finally, Section 6 concludes the paper.

2. The bivariate generalized Rayleigh distribution

The cumulative distribution function of the univariate GR distribution is, Surles and Padgett [15],

FGR(x;λ ,α) =
(

1− e−(λx)2
)α

, x≥ 0; α,λ > 0. (2.1)

The corresponding probability density function (pdf) is

fGR(x;λ ,α) = 2αλ
2xe−(λx)2

(
1− e−(λx)2

)α−1
, x≥ 0; α,λ > 0. (2.2)

Here α and λ are the shape and scale parameters, respectively. We will use GR(α,λ ) to denoted the GR distribution with parameters α and
β . The GR(α,λ ) generalizes the Rayleigh distribution.
Now, suppose that there three mutually independent random variables, say U j, j = 1,2,3. The random variable U j follows GR(α j,λ )
distribution, j = 1,2,3. Define Xi = max{Ui, U3}, i = 1,2. The bivariate vector (X1,X2) follows the bivariate generalized Rayleigh
distribution with the shape parameters α1, α2, α3 and scale parameter λ . We will denote it by BVGR(λ ,α1,α2,α3). To simplify notation,
we write α123 = α1 +α2 +α3 and αi3 = αi +α3 for i = 1,2.
Before providing the details of the BVGR distribution, we first present some practical applications of this distribution to show how it may
occur in practice.

Maintenance Model: Suppose a two-component system, each component has been maintained independently and there is an overall
common maintenance for the system. Due to component maintenance, suppose the lifetime of the ith component is increased by a random
amount U j , j = 1,2, and because of the overall common maintenance, the lifetime of each component is increased by a random amount U3.
Thus, the lifetimes of the component a and 2 are X1 = max{U1,U3} and X2 = max{U2,U3}, respectively.

Stress Model: Suppose a system has two components. Component i is subject to individual independent stress say Ui, i = 1,2. The system
has an overall stress U3 which has been transmitted to both the components equally, independent of their individual stresses. Therefore, the
observed stress at component i is Xi = max{Ui,U3}, i = 1,2.
The following results provide the joint cdf, joint pdf, joint sf, joint hazard rate function and conditional pdf.

Theorem 2.1. If (X1,X2) follows BVGR(λ ,α1,α2,α3), then the joint cdf of (X1,X2) for x1 > 0,x2 > 0, takes the form

FX1,X2(x1,x2) =
3

∏
i=1

{
1− e−(λxi)

2
}αi

(2.3)

where x3 = min{x1,x2}.
Proof. This result is a direct consequence of the definition of X1 and X2.
The joint cdf of the BVGR(λ ,α1,α2,α3) can also be written as

FX1,X2(x1,x2) =
3

∏
i=1

FGR(xi;λ ,αi)

=


FGR(x1;λ ,α13)FGR(x2;λ ,α2) i f x1 < x2
FGR(x1;λ ,α1)FGR(x2;λ ,α23) i f x2 < x1
FGR(x;λ ,α123) i f x1 = x2 = x.

(2.4)

Theorem 2.2. Let (X1,X2) follow the BVGR(λ ,α1,α2,α3), then the joint pdf of (X1,X2) is

fX1,X2(x1,x2) =


f1(x1,x2) if ∞ > x2 > x1 > 0,
f2(x1,x2) if ∞ > x1 > x2 > 0,
f0(x) if ∞ > x1 = x2 = x > 0,

(2.5)

where

f1(x1,x2) = fGR(x1;λ ,α13) fGR(x2;λ ,α2)

= 4λ
4

α2 α13 x1 x2e−λ 2(x2
1+x2

2)
(

1− e−λ 2x2
1

)α13−1(
1− e−λ 2x2

2

)α2−1

f2(x1,x2) = fGR(x1;λ ,α1) fGR(x2;λ ,α23)

= 4λ
4

α1 α23 x1 x2 e−λ 2(x2
1+x2

2)
(

1− e−λ 2 x2
1

)α1−1(
1− e−λ 2x2

2

)α23−1

f0(x) =
α3

α123
fGR(x;λ ,α123)

= 2λ
2

α3xe−λ 2x2
(

1− e−λ 2x2
)α123−1

.

Proof. The forms of f1(., .) and f2(., .) can be directly obtained by differentiating FX1,X2(x1,x2) in (2.4) with respect to x1 and x2 for x1 > x2
and x2 > x1. But, f0(.) can not be derived by using the following identity:∫

∞

0

∫ x2

0
f1(x1,x2)dx1dx2 +

∫
∞

0

∫ x1

0
f2(x1,x2)dx2dx1 +

∫
∞

0
f0(x)dx = 1 (2.6)

from which we get f0(x) as given above, which completes the proof of the theorem. �
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Comment 2.1: From Theorems 2.1 and 2.2, one can easily verify that if α1 +α3 = α2 +α3 = 1, then both X1 and X2 are Rayleigh
distributed. Let α3 = α and α1 = 1−α > 0 and α2 = 1−α > 0, then the joint pdf of (X1,X2) takes the following form

fX1,X2(x1,x2) =


fGR(x1;λ ,1) fGR(x2;λ ,1−α) if ∞ > x2 > x1 > 0,
fGR(x1;λ ,1−α) fGR(x2;λ ,1) if ∞ > x1 > x2 > 0,

α

2−α
fGR(x;λ ,2−α) if ∞ > x1 = x2 = x > 0.

(2.7)

Therefore, the joint pdf given in (2.7) has Rayleigh marginal distributions.
In the following we show that the BVGR distribution has both a singular part and an absolute continuous part similar to the Marshal-Olkin’s
bivariate exponential distribution, Sarhan and Balkrishnan bivariate distribution and the bivrariate generalized exponential distribution
provided by Kundu and Gupta [6]. The function fX1,X2(., .) may be considered to be a density function for the BVGR distribution if it is
understood that the first two terms are densities with respect to two-dimensional Lebesgue measure and the third term is a density function
with respect to one dimensional Lebesgue measure, see for example Bemis et al. [3]. It is well known that although in one dimension the
practical use of a distribution with this property is usually pathological, but they do arise quite naturally in higher dimension. In case of
BVGR distribution, the presence of a singular part means that if X1 and X2 are BVGR distribution, then X1 = X2 has a positive probability.
In many practical situations it may happen that X1 and X2 both are continuous random variables, but X1 = X2 has a positive probability, see
Marshall and Olkin [9], in this connection. In the following, we provide the explicit forms of the absolute continuous and the singular parts
of the BVGR distribution.

Theorem 2.3. If (X1,X2) follows the BVGR(λ ,α1,α2,α3), then

FX1,X2(x1,x2) =
α3

α123
Fs(x1,x2)+

α12

α123
Fa(x1,x2) (2.8)

where the singular and the absolute continuous parts Fs(., .) and Fa(., .) are, for x3 = min{x1,x2},

Fs(x1,x2) =
(

1− e−λ 2x2
3

)α123
, (2.9)

and

Fa(x1,x2) =
α123

α12

3

∏
i=1

(
1− e−λ 2x2

i

)αi
− α3

α12

(
1− e−λ 2 x2

3

)α123
. (2.10)

Proof. The joint cdf FX1,X2(x1,x2) can be written as

FX1,X2(x1,x2) = P(X1 ≤ x1,X2 ≤ x2|A)P(A)+P(X1 ≤ x1,X2 ≤ x2|A′)P(A′)

Let A = {U1 <U3}∩{U2 <U3} ≡ {X1 = X2}, therefore,

P(A) =
∫

∞

0
2α3λ

2xe−λ 2x2
(

1− e−λ 2x2
)α123−1

dx =
α3

α123
,

and

Fs(x1,x2) = P(X1 ≤ x1,X2 ≤ x2|A)

= α123

∫ x3

0
2λ

2xe−λ 2x2
(

1− e−λ 2x2
)α123−1

dx

=
(

1− e−λ 2x2
3

)α123
.

Once, P(A) and Fs(x1,x2) are obtained, the function Fa(x1,x2) can be derived by subtraction as given in (2.10). It can be easily shown that
Fs is the singular part as its mixed second partial derivatives is zero when x1 6= x2, and Fa is the absolute continuous part as its mixed second
partial derivative gives a density function. �

Corollary 2.4. If (X1,X2) follows the BVGR(λ ,α1,α2,α3), then the joint pdf of (X1,X2) can be expressed as a mixture of the singular and
absolute parts as

fX1,X2(x1,x2) =
α3

α123
fs(x3)+

α12

α123
fa(x1,x2) (2.11)

where

fs(x3) = fGR(x3;α123,λ ) if x1 = x2 = x3 = min{x1,x2}

and

fa(x3) =
α123

α12

{
fGR(x1,α13,λ ) fGR(x2;α2,λ ) i f x1 < x2
fGR(x1,α1,λ ) fGR(x2;α23,λ ) i f x1 > x2.

Here fs(.) and fa(., .) are the singular and absolute continuous parts, respectively.

Figures 2.1 and 2.2 show different shapes of the joint pdf and the jhrf of the BVGR distribution along with their contours for different sets of
values of parameters.
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Set (1):(α1,α2,α3,λ ) = (1.2,1.2,0.2,1)
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Set (2): (α1,α2,α3,λ ) = (1.2,1.2,2.1,1)
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Set (3): (α1,α2,α3,λ ) = (1.2,1.2,1.0,1)
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Set (4): (α1,α2,α3,λ ) = (1.2,0.2,2.1,1)

0
0.5

1
1.5

2
2.5

0

0.5

1

1.5

2

2.5

0

2

4

6

8

10

x
2

x
1

T
h
e
 j
o
in

t 
p
ro

b
a
b
ili

ty
 d

e
n
s
it
y
 f
u
n
c
ti
o
n

0 5 10 15 20 25 30
0

5

10

15

20

25

30

x
1

x
2

Figure 2.1: The joint probability density function of BVGR distribution.
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Set (2): (α1,α2,α3,λ ) = (1.2,1.2,2.1,1)
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Set (3): (α1,α2,α3,λ ) = (1.2,1.2,1.0,1)
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Figure 2.2: The joint hazard rate function of the BVGR distribution.
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3. Statistical properties

3.1. Marginal distributions

We can easily verify that the marginal distribution of Xi, i = 1,2, follows GR(λ ,αi3). That is, the marginal cdf of Xi is

FXi(xi) =
(

1− e−(λxi)
2
)αi3

, x > 0. (3.1)

Therefore, the marginal survival function of Xi is

SXi(x) = 1−FXi(x) = 1−
(

1− e−(λx)2
)αi3

, x > 0. (3.2)

The relation (3.2) gives the survival function of a parallel system with two independent units, say i and 3. The lifetime of unit i is Ui
which follows GR(λ ,αi) and the lifetime of unit 3 is U3 which follows GR(λ ,α3). Thus, the system lifetime Xi = max{Ui,U3} follows
GR(λ ,αi +α3).
Using (3.1), the marginal pdf of Xi is

fXi(x) = 2λ
2
αi3xe−(λx)2

(
1− e−(λx)2

)αi3−1
, (3.3)

and the marginal hrf of Xi is

hXi(x) =
2λ 2αi3xe−(λx)2

(
1− e−(λx)2

)αi3−1

1−
(
1− e−(λx)2)αi3

. (3.4)

It is observed by Raqab and Kundu (2006) that: (1) if αi3 ≤ 1
2 , the pdf is decreasing and the hrf takes a bathtub shape, (2) if αi3 >

1
2 , the

pdf is right-skewed and unimodal and the hrf is increasing. Shapes of the pdf and hrf of Xi for different values of λ and αi3 are provided
in Figure 3.1. Surles and Padgett [15] showed that the GR distribution can be used quite effectively in modeling strength univariate data
and also modeling general univariate lifetime data. Hence, we expect that the BVGR distribution can be used quite effectively in modeling
strength bivariate data and also modeling general bivariate lifetime data comparing to the MO and the BVGE distributions.
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Figure 3.1: The probability density [left panel] and hazard rate [right panel] functions of the marginal distribution of X1.

3.2. Conditional distributions

The following theorem provides the conditional pdf of X1 given X2 = x2, say fX1|X2
(x1|x2), which is not continuous at X1 = x2.

Theorem 3.1. If (X1,X2)∼BVGR(λ ,α1,α2,α3), then conditional pdf of X1 given X2 = x2 is

fX1|X2
(x1|x2) =

α3

α123
f (s)1|2(x1|x2)+

α12

α123
f (a)1|2 (x1|x2) (3.5)

where

f (s)1|2(x1|x2) =
α123

α23
FGR(x2;λ ,α1) i f x1 = x2

and

f (a)1|2 (x1|x2) =
α123

α12

{
α2
α23

fGR(x1;λ ,α13)
FGR(x2;λ ,α3)

if x1 < x2 ,

fGR(x1;λ ,α1) if x1 > x2 .

Proof. These results are obtained using the definition of conditional probability and the results of Corollary 2.4 and equation (3.3).
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The conditional pdf of X1 given X2 = x2 can be rewritten as

fX1|X2
(x1|x2) =

α3

α23
FGR(x1;λ ,α1) Ix1=x2 + fGR(x1;λ ,α1) Ix1>x2

+
α2

α23

fGR(x1;λ ,α13)

FGR(x2;λ ,α3)
Ix1<x2

where IA = 1 if A is true and 0 otherwise.
Equivalently, fX1|X2

(x1|x2) can be rewritten as in the following form

fX1|X2
(x1|x2) =



2α2α13λ 2x1e−λ2x2
1
(

1−e−λ2x2
1
)α13−1

α23

(
1−e−λ2x2

2
)α3−1 x1 < x2 ,

2λ 2α1x1e−λ 2x2
1

(
1− e−λ 2x2

1

)α1−1
x1 > x2 ,

α3
α23

(
1− e−λ 2x2

)α1
x1 = x2 .

Obviously, the fX1|X2
(x1|x2) is not continuous when X1 = x2. Plots in Figure 3.2 give different patterns of the conditional pdf’s of X1 given

X2 = x2 plotted at different values of x2 (x2 = 1.5,0.5) and different sets of parameters.
Similarly, the conditional pdf of X2 given X1 = x1, which is not continuous at X2 = x1, can be derived in a similar form as above.

Theorem 3.2. If (X1,X2)∼BVGR(λ ,α1,α2,α3), then the conditional cumulative distribution function of X1 given X2≤ x2, say FX1|X2≤x2
(x1),

is an absolute continuous function which is given by

FX1|X2≤x2
(x1) = P(X1 ≤ x1|X2 ≤ x2)

=
FGR(x1;α1)FGR(x3;α3)

FGR(x2;α3)

=


(

1− e−λ 2x2
1

)α13
(

1− e−λ 2 x2
2

)−α3
if x1 ≤ x2(

1− e−λ 2 x2
1

)α1
if x1 > x2

Proof. These results are obtained using the definition of conditional probability and the results of Theorems 2.3 and 3.1.

Comment: Using Theorem 3.2, different moments of X1, X2, and conditional moments of X2|X1 = x1 or X1|X2 = x2 can be obtained in
terms of infinite series.

Remarks If (X1,X2)∼ BVGR(λ ,α1,α2,α3) distribution, then

1. The cdf of max{X1,X2} is

P(max{X1,X2} ≤ x) =
(

1− e−λ 2 x2
)α1+α2+α3

. (3.6)

That is, the max{X1,X2} has GR(λ ,α1 +α2 +α3). This result means that the reliability function of a parallel system with three
independent units such that the lifetime of unit i follows GR(λ ,αi), i = 1,2,3, is

R(x) = 1−
(

1− e−λ 2 x2
)α1+α2+α3

. (3.7)

2. For all 0 < x1,x2 < ∞,

FX1,X2(x1,x2)≥ FX1(x1)FX2(x2) . (3.8)

One can easily prove (3.8), as follows. Since

FX1,X2(x1,x2) = F̄U1(x1)FU2(x2)FU3(x3), x3 = min(x1,x2) (3.9)

and

FX1(x1)FX2(x2) = FU1(x1)FU3(x1)FU2(x2)FU3(x2) . (3.10)

From (3.9) and (3.10), we get

FX1,X2(x1,x2)−FX1(x1)FX2(x2) = FU1(x1)FU2(x2)

×
{

FU3(x1)F̄U3(x2) i f x1 ≤ x2
F̄U3(x1)FU3(x2) i f x1 > x2

≥ 0.

which completes the proof of (3.8).
3. For all 0 < x1,x2 < ∞,

F̄X1,X2(x1,x2)≥ F̄X1(x1)F̄X2(x2). (3.11)

4. From (3.8), one can say that X1 and X2 are positive quadratic dependent. That is, for every pair of increasing functions g1(.) and g2(.),

Cov(g1(X1),g2(X2))≥ 0.
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Figure 3.2: The conditional probability density function of X1, given X2 at different sets of the parameters.
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3.3. Joint hazard rate function

Using the forms (2.3) and (3.1) together with the relations between the joint sf and the joint cdf of (X1,X2) given by

SX1,X2(x1,x2) = 1−FX1(x1)−FX2(x2)+FX1,X2(x1,x2) ,

we can derive the joint sf of (X1,X2) as

SX1,X2(x1,x2) = 1−
2

∑
j=1

{
1− e−(λx j)

2
}α j3

+
3

∏
i=1

{
1− e−(λx j)

2
}αi

. (3.12)

Using the relation between the joint pdf and the jsf of (X1,X2), one can derive the joint hazard rate function (jhrf) of (X1,X2) according to
the following relation

hX1,X2(x1,x2) =
fX1,X2(x1,x2)

SX1,X2(x1,x2)
.

Different shapes of the joint hrf and corresponding contour are provided in Figures 4 for different sets of values of the parameters.

4. Parameters’ estimations

In this section we discuss the problem of computing the maximum likelihood estimates of the four unknown parameters of the BVRD. Let us
assume that (x11,x12), (x21,x22), · · · ,(xn1,xn2) be a simple random sample ”data” from the BVRD(α1,α2,α3,λ ). The likelihood function
for this sample is

l(data;θ) =
n

∏
i=1

[ f1(x1i,x2i)]
I(x1i<x2i) [ f2(x1i,x2i)]

I(x2i<x1i) [ f0(x1i)]
I(x1i=x2i) , (4.1)

where I(A) is an indicator function that is equal to 1 if A is true and 0 otherwise. Substituting (2.11) into (4.1) and take the natural logarithm,
we get the log-likelihood function as

L =
n

∑
i=1

{
I(x1i < x2i)

[
ln
(

4λ
4

α2 α13

)
+ ln(x1i x2i)−λ

2
(

x2
1i + x2

2i

)
+ (4.2)

(α13−1) ln
(

1− e−λ 2x2
1i

)
+(α2−1) ln

(
1− e−λ 2x2

2i

)]
+I(x2i < x1i)

[
ln
(

4λ
4

α1 α23

)
+ ln(x1i x2i)−λ

2
(

x2
1i + x2

2i

)
+

(α23−1) ln
(

1− e−λ 2x2
2i

)
+(α1−1) ln

(
1− e−λ 2x2

1i

)]
+I(x2i = x1i)

[
ln
(

2λ
2

α3

)
+ ln(x1i)−λ

2x2
1i +(α123−1) ln

(
1− e−λ 2x2

1i

)}
.

4.1. Maximum likelihood method

Maximum likelihood point estimates (MLE) of the vector of the four unknown parameters is the value of that vector that maximizes the
log-likelihood function (4.2). That is the MLE of θ = (α1,α2,α3,λ ) is the solution of the following system of four non-linear equations
with respect to α1,α2,α3, and λ .

0 =
n1

α1 +α3
+

n2

α1
+

n

∑
i=1

ln
(

1− e−λ 2x2
1i

)
, (4.3)

0 =
n2

α2 +α3
+

n1

α2
+

n

∑
i=1

ln
(

1− e−λ 2x2
2i

)
,

0 =
n0

α3
+

n1

α1 +α3
+

n2

α2 +α3
+

n

∑
i=1

[
I(x1i < x2i) ln

(
1− e−λ 2x2

1i

)
+{I(x1i > x2i)+ I(x1i = x2i)} ln

(
1− e−λ 2x2

2i

)]
,

0 = 2λ

n

∑
i=1

{
I(x1i < x2i)

[
(α2−1)x2

2i

eλ 2x2
2i −1

+
(α13−1)x2

1i

eλ 2x2
1i −1

− x2
1i− x2

2i

]
+

I(x1i > x2i)

[
(α1−1)x2

1i

eλ 2x2
1i −1

+
(α23−1)x2

2i

eλ 2x2
2i −1

− x2
1i− x2

2i

]
+

I(x1i = x2i)

[
(α123−1)x2

1i

eλ 2x2
1i −1

− x2
1i

]}
+

4
λ

(
n1 +n2 +

1
2

n0

)
,

where n1 = ∑
n
i=1 I(x1i < x2i), n2 = ∑

n
i=1 I(x1i > x2i), and n0 = ∑

n
i=1 I(x1i = x2i). The likelihood equations (4.3) do not have an explicit

solution. Therefore, the distribution of the MLE of the parameters cannot be derived in an explicit form. Hence, we could not obtain the
explicit confidence intervals for the parameters. We use R to get the MLEs and the corresponding Fisher information matrix. Using normality
property of MLEs, we can construct the asymptotic confidence interval for each parameter.
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4.2. Bayes estimation

Let us assume that the four parameters are independent random variables with gamma priori distributed. That is, the joint prior pdf of θ is

g0(θ) ∝ α
a11−1
1 α

a21−1
2 α

a31−1
3 λ

a41−1e−a12α1−a22α2−a32α3−a42λ , α1,α2,α3,λ > 0 , (4.4)

where the hyperparameters ai j , i = 1,2,3,4 and j = 1,2 are all positive and reflect the prior knowledge about the parameters. The log-prior
density function is

G0(θ) ∝ (a41−1) ln(λ )−a42λ +
3

∑
i=1

[(ai1−1) ln(αi)−ai2αi] . (4.5)

Applying Bayes’ theorem and using the likelihood function of the available data and the joint prior distribution of θ , the joint posterior
probability density function of θ , given data, is

g(θ |data) =
1
K

exp{L +G0(θ)} , (4.6)

where K is the normalizing constant. Obviously, the joint posterior distribution of θ is analytically intractable. Therefore, under the squared-
error loss, Bayes estimators of the parameters and/or of any parametric function of θ , say w(θ), involve ratio of two multidimensional
integrals as

ŵ(data) =
∫

∞

0
∫

∞

0
∫

∞

0
∫

∞

0 w(α1,α2,α3,λ )exp{L +G0(θ)}dα1 dα2 dα3 dλ∫
∞

0
∫

∞

0
∫

∞

0
∫

∞

0 exp{L +G0(θ)}dα1 dα2 dα3 dλ
. (4.7)

The integrals in (4.7) do not have analytical solution. Thus, some approximation methods should be used to solve these integrals an calculate
the ratio of the integrals. Lindley [7] and Tierney and Kadane [13] discussed some methods of approximations that work well for low
dimension. In this paper we will use Markov Chain Monte Carlo method that works well with higher dimensions cases, see Metropolis et
al. [8] and Hastings [4]. One of the main advantages of the MCMC is it does not require to calculate the integrals that are needed for the
normalizing constant K and/or included in the ratio that gives the Bayes estimators.
The MCMC method generates random draws from the joint posterior distribution by generating draws from an an arbitrary distribution
that easy to simulate from then apply an accept-reject method. The arbitrary distribution is named a proposal distribution that satisfies two
conditions: (1) it mimics the posterior distribution, (2) easy to simulate from. In this article, we use multivariate normal distribution as a
proposal. We follow steps below to generate random draws from the joint posterior distribution (4.6) without computing the normalizing
constant K:

1. Set the size of the random draws we wish to generate, say M.
2. Choose an initial guess of θ , say θ (0).
3. i = 1,2, · · · ,M, perform the following steps:

(a) Generate θ∗ from the multivariate normal with mean θ (i−1) and variance-covariance Σ.

(b) Compute the ratio κ = min
{

1,
g(θ∗|data)

g(θ (i−1)|data)

}
.

(c) Generate a random value u from uniform distribution on (0,1).
(d) If κ ≥ u set θ (i) = θ∗, otherwise set θ (i) = θ (i−1).

We discard the early M0 number of burn-in draws and use the remaining M−M0, ”θ (M0+1),θ (M0+2), · · · ,θ (M)”, as the desired draws from
the joint posterior distribution. Thus Bayes estimate of θ j is

θ̂ j =
∑

M−M0
i=M0+1 θ

(i)
j

M−M0
, j = 1,2,3,4.

Furthermore, the lower and upper bounds of the 100(1−ϑ)%, 0 < ϑ < 1, Bayesian probability interval (BPI) of θ j are the ϑ

2 100th and

(1− ϑ

2 )100 th percentiles of the sequence of the M−M0 draws θ
(M0+1)
j ,θ

(M0+2)
j , · · · ,θ (M)

j , respectively.

5. Application

In order to discuss how the proposed distribution can be implemented in real life, we re-analyze the UEFA Champion’s League Data.
This data set was originally analyzed in Meintanis [10] using the Marshall-Olkin bivariate exponential model (MO) with three parameters
λ1,λ2,λ3, then by Kundu and Gupta [6] using the bivariate generalized exponential (BVGE) distribution with four parameters α1,α2,α3 and
β . Kundu and Gupta [6] reported that the BVGE model fits the data better than MO model. In the following, we use the BVGR distribution
to reanalyze this data and compare it with the MO and BVGE models.
Table 1 shows the MLEs of the unknown parameters of the proposed distribution along with the values of the log-likelihhod values and the
Akaike information criterion (AIC; see [2]). The AIC suggests that the BVGR distribution provides a better fit than both the MO and BVGE
distributions.
For Bayesian computations, we assumed that: (1) the four parameters follow gamma prior distributions with all hyperparameters equal and
equal to 0,001, (2) the proposal distribution is multinormal with variance covariance matrix, which is the same as the Fisher information
matrix,

Σ =


0.016461 9.574e−04 0.0011642 −1.135e−04
0.000957 4.188e−03 −0.0010077 −2.663e−05
0.001164 −1.008e−03 0.0086362 −6.134e−05
−0.000114 −2.663e−05 −0.0000613 3.688e−06

 .
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Distribution MLE L AIC
MO λ̂1 = 0.012, λ̂2 = 0.014, λ̂3 = 0.022 -339.006 684.012
MVGE α̂1 = 1.351, α̂2 = 0.465, α̂3 = 1.153, β̂ = 0.039 -296.935 601.870
MVGR α̂1 = 0.492, α̂2 = 0.166, λ̂3 = 0.410, λ̂ = 0.020 -293.357 594.714

Table 1: The MLEs of the parameters, the log-likelihood values and AIC values.

Figure 5.1: The trace plot of the random draws from the joint posterior distribution along with the posterior mean and the limits of the 95% BPI after
discarding the early 2000 draws.

The acceptance rate is 37.07% which is very high for a four parameter case. The trace plots of the draws are plotted in Figure 5.1 after
discarding the early 2000 draws (burn-in period). The trace plots show a good mix of the simulated draws. As a further diagnostic test for
the draws, we provide the autocorrelations (ACFs) of the simulated draws from the joint posterior distribution of the four parameters after
discarding the early 20% of the draws as shown in Figure 5.2. From the ACFs plot, we see that the Lag goes to zero very rapidly which
indicates the draws converge to the actual distribution very fast.
Using the simulated draws, the posterior mean (Bayes estimates under squared error loss), median (Bayes estimate under absolute error loss)
and the bounds of a 95% Bayesian probability intervals for the parameters are calculated as given in Table 2. Furthermore, the marginal
posterior density functions are estimated as presented in Figure ??.

6. Conclusions

A new bivariate lifetime distribution named bivariate generalized Rayleigh (BVGR) distribution function whose marginals are generalized
Rayleigh distributions is proposed in this paper. The BVGR distribution is of Marshal-Olkin type. It is observed that the BVGR distribution
is a singular distribution and has an absolute continuous part and a singular part. Since the joint distribution function and the joint density

95% Bayesian Probability Interval
Parameter Mean Median Lower limit upper limit
α1 0.4569 0.4467 0.2568 0.7194
α2 0.1423 0.1337 0.0507 0.2802
α3 0.3895 0.3794 0.2288 0.5951
λ 0.0193 0.0192 0.0154 0.0230

Table 2: The basic posterior characteristics for the four parameters of the BVGR distribution.
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Figure 5.2: The autocorrelations of the simulated draws from the joint posterior distribution of the four parameters after discarding the early 20% of the draws.
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function are in closed forms, this distribution can be used in practice for non-negative and positively correlated random variables. We
investigated some statistical properties of the proposed distribution. Also, the marginal and conditional distribution of the BVGR distribution
are derived in closed forms. The maximum likelihood and Bayesian methods are applied to estimate the four unknown parameters of the
BVGR distribution. For Bayesian method, we used the Markov chain Monte Carlo (MCMC) method. One real data set is analyzed using the
BVGR distribution which showed a better fit than the MO and BVGE distributions for this data set.
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