
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 49 (2) (2020), 793 – 807

DOI : 10.15672/hujms.477534

Research Article

A minimal family of sub-bases
Yiliang Li1, Jinjin Li∗1,2, Yidong Lin3, Jun-e Feng1, Hongkun Wang4

1School of Mathematics and Statistics, Minnan Normal University, Zhangzhou, Fujian 363000, P.R.
China

2Lab of Granular Computing, Minnan Normal University, Zhangzhou, Fujian 363000, P.R. China
3School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, P.R. China

4Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington,
DC 20057, USA

Abstract
This paper investigates a minimal family of sub-bases. First, the concept of a minimal
family of sub-bases is presented and its properties are studied. Then the relationship
between reducts in covering information systems and minimal families of sub-bases is
discussed. Based on Boolean matrices, an approach is provided to derive a minimal family
of sub-bases. Finally, experiments are conducted to illustrate the effectiveness of the
proposed approach.
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1. Introduction
The object of general topology is to study topological properties, which are invariants

of homeomorphism [1]. Based on the properties of the topological rough membership
function, Li and Zhang [6] presented the definition of sub-base reduct in a family of sub-
bases. But there is no further research on sub-base reducts in a family of sub-bases from
the point of view of general topology. In fact, sub-base reducts in a family of sub-bases are
topological properties. In order to illustrate this point, this paper proposes the concept of
a minimal family of sub-bases, which is equal to sub-base reducts in a family of sub-bases.
In this paper, we provide a criterion of the minimal family of sub-bases. And we give an
approach based on Boolean matrices to obtain the minimal family of sub-bases.

Rough set theory, introduced by Pawlak [7], provides an approach for uncertainty man-
agement. As a generalization of the classical rough set, covering rough set [21] is a useful
mathematical tool to study covering information systems. A covering information system
is a pair (X, ∆), where X is a non-empty and finite set, and ∆ = {Si|i = 1, 2, . . . , n} is a
family of coverings on X. According to the definition of sub-base of topological spaces, it
is easy to see that a covering on X is a sub-base for a topology of finite set X. So a family
∆ of coverings is a family of sub-bases. Reducts are important problems in rough set
∗Corresponding Author.
Email addresses: liyiliang1994@126.com (Y. Li), jinjinli@mnnu.edu.cn (J. Li),

yidong_lin@yeah.net (Y. Lin), fengjune@sdu.edu.cn (J. Feng), hongkun.wang@georgetown.edu (H. Wang)
Received: 01.11.2018; Accepted: 01.04.2019

https://orcid.org/0000-0002-8994-4491
https://orcid.org/0000-0001-9947-6858
https://orcid.org/0000-0001-7552-5555
https://orcid.org/0000-0003-3881-3042
https://orcid.org/0000-0002-5443-319X


794 Y. Li et al.

theory. In covering information systems, finding a reduct is a process to delete redundant
coverings under some conditions. It is similar to deriving a minimal family of sub-bases.
Then a natural question is: is there a relationship between reducts and minimal families
of sub-bases? This paper shows that reducts of covering information systems and minimal
families of sub-bases are equivalent.

In addition, reducts from the given information system become more and more diffi-
cult when the amount of data increases. Hence, a new research direction investigating
homomorphisms or mappings between two information systems gains more attention in
recent years. The motivation of study homomorphisms or mappings between information
systems is to find a relatively small information system which has the same reduct as
the original database [16]. Grzymala-Busse et al. [2] initially introduced the concept of
homomorphism, which is used as a tool to study the relationship between information
systems based on rough set. Li and Ma [5] studied some features of redundancy and
reduct of complete information systems under some homomorphisms. Later, many au-
thors [2, 3, 5, 9, 12–20,23–28] discussed homomorphisms or mappings between information
systems based on rough set. A consistent function related to coverings was proposed by
Wang et al. [16]. By analyzing the consistent function related to coverings, we find that
the work to structure a consistent function is a process to seek a representation element
under some conditions. This process is similar to structuring a quotient space under an
equivalence relation in a topological space. Hence, this paper explains consistent functions
related to coverings and homomorphisms from the perspective of topology.

The remainder of this paper is organized as follows. In Section 2, the definition of a
minimal family of sub-bases is presented, and its properties are investigated. Section 3
discusses the relationship between reducts and minimal families of sub-bases. Based on
Boolean matrices, Section 4 proposes an approach to derive a minimal family of sub-bases.
In Section 5, several numerical experiments are conducted on UCI data sets to evaluate
the proposed method. Section 6 has some concluding remarks.

2. A minimal family of sub-bases
Suppose Si is a sub-base for finite topological space (X, τi) for i = 1, 2, . . . , n, ∆ =

{S1, S2, . . . , Sn}, and S∆ =
∧n

i=1 Si = {
∩n

i=1 Si|Si ∈ Si, i = 1, 2, . . . , n}. Then S∆ is a
sub-base for a topology τ∆ of finite set X. For each subfamily ∆′ of ∆, a question is: are
the topologies generated by both S∆ and S∆′ as sub-bases the same? Now we present
the definition of a minimal family of sub-bases, which keeps the topology unchanged.

Definition 2.1. Let Si be a sub-base for finite topological space (X, τi) for i = 1, 2, . . . , n
and ∆ = {S1, S2, . . . , Sn}. If the following statement holds, then the family ∆ of sub-
bases is called a minimal family of sub-bases with respect to X. The statement is: for any
subfamily ∆′ of ∆, if S∆′ is a sub-base for finite topological space (X, τ∆), then ∆ = ∆′.

In fact, two conclusions can be obtained from Definition 2.1: (1) for any family ∆ of
sub-bases, if there exists a subfamily ∆′ of ∆ and ∆′ ̸= ∆ such that S∆′ is a sub-base
for finite topological space (X, τ∆), then ∆ is not a minimal family of sub-bases; (2) for
each subfamily ∆′′ of ∆′ and ∆′′ ̸= ∆′, if S∆′′ is not a sub-base for finite topological
space (X, τ∆), then ∆′ is a minimal family of sub-bases. An example in [10] is employed
to illustrate our idea.

Example 2.2. Suppose Si is a sub-base for finite topological space (X, τi) for i = 1, 2, 3, 4
with X = {x1, x2, . . . , x9}. Let ∆ = {S1, S2, S3, S4}, where

S1 = {{x1, x2, x4, x5, x7, x8}, {x2, x3, x5, x6, x8, x9}},
S2 = {{x1, x2, x3, x4, x5, x6}, {x4, x5, x6, x7, x8, x9}},
S3 = {{x1, x2, x3}, {x4, x5, x6, x7, x8, x9}},
S4 = {{x1, x2, x4, x5}, {x2, x3, x5, x6}, {x4, x5, x7, x8}, {x5, x6, x8, x9}}.
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Sub-base S∆ is derived for finite topological space (X, τ∆): S∆ = {{x1, x2}, {x2}, {x2,
x3}, {x4, x5}, {x4, x5, x7, x8}, {x5}, {x5, x6}, {x5, x6, x8, x9}, {x5, x8}}. And it is easy to
check that B∆ = S∆, where B∆ is a base generated by S∆ as a sub-base.

Suppose ∆1 = {S3, S4}. Then S∆1 = {{x1, x2}, {x2, x3}, {x4, x5}, {x5, x6}, {x4, x5, x7,
x8}, {x5, x6, x8, x9}}. Assume B∆1 is a base generated by S∆1 as a sub-base. One can
examine that B∆1 = B∆, which implies that S∆1 is a sub-base for finite topological
space (X, τ∆). So ∆ is not a minimal family of sub-bases. Moreover, S3 and S4 are not
sub-bases for finite topological space (X, τ∆). Hence, ∆1 is a minimal family of sub-bases.

Example 2.2 shows the existence of minimal families of sub-bases, then is it unique?
Reconsider Example 2.2. It is easy to find that both {S1, S2, S3} and {S3, S4} are
minimal families of sub-bases. So the minimal families of sub-bases are not unique.

From [8], each point in Alexandroff spaces has a unique minimal open neighborhood.
In addition, Alexandroff spaces are special topological spaces, including finite topological
spaces as simple cases. So each point in finite topological spaces has a unique minimal
open neighborhood. Therefore, a unique minimal open neighborhood is used to study a
minimal family of sub-bases.

Suppose P is a family of subsets of X. A minimal set containing x with respect to P
is denoted by NP(x) =

∩
{U |x ∈ U ∈ P}.

Remark 2.3. Let X be a finite topological space with a topology τ . Suppose B is a base
for the topological space X and S is a sub-base for the topological space X. According
to the definitions of base and sub-base, Nτ (x) = NB(x) = NS (x) for each point x ∈ X.
And Nτ (x) is a unique minimal open neighborhood of x.
Theorem 2.4. Let Si be a sub-base for finite topological space (X, τi) for i = 1, 2, . . . , n
and ∆ = {S1, S2, . . . , Sn}. The family ∆ of sub-bases is minimal if and only if for any
subfamily ∆′ of ∆, if NS∆′ (x) = NS∆(x) for each point x ∈ X, then ∆ = ∆′.

Proof. First, we prove that for any subfamily ∆′ of ∆, NS∆′ (x) = NS∆(x) for each point
x ∈ X if and only if S∆′ is a sub-base for finite topological space (X, τ∆). Suppose S∆′

is a sub-base for finite topological space (X, τ∆). Then NS∆′ (x) = Nτ∆(x) = NS∆(x) for
each point x ∈ X by Remark 2.3. Assume S∆′ is a sub-base for a topology τ∆′ of finite
set X. Let B∆ = {NS∆(x)|x ∈ X} and B∆′ = {NS∆′ (x)|x ∈ X}. One can see easily
that B∆ and B∆′ are bases for finite topological spaces (X, τ∆) and (X, τ∆′), respectively.
Because NS∆(x) = NS∆′ (x) for each point x ∈ X, we have B∆ = B∆′ , which implies
τ∆ = τ∆′ . Hence, S∆′ is a sub-base for finite topological space (X, τ∆).

Suppose the family ∆ of sub-bases is a minimal family of sub-bases. For any subfamily
∆′ of ∆, if NS∆′ (x) = NS∆(x) for each point x ∈ X, then S∆′ is a sub-base for finite
topological space (X, τ∆). Thus, ∆ = ∆′ according to the definition of a minimal family
of sub-bases. For any subfamily ∆′ of ∆, suppose S∆′ is a sub-base for finite topological
space (X, τ∆). From the analysis above, NS∆′ (x) = NS∆(x) for each point x ∈ X. Then
∆ = ∆′. Therefore, the family ∆ of sub-bases is the minimal one. �

Theorem 2.4 shows that minimal families of sub-bases are equal to sub-base reducts in
a family of sub-bases which provided by Li and Zhang [6].

Now some properties about a minimal family of sub-bases are investigated.
Theorem 2.5. Let Si be a sub-base for finite topological space (Y, τi) for i = 1, 2, . . . , n
and ∆ = {S1, S2, . . . , Sn}. Suppose (X, τ) is a finite topological space. And f : (X, τ) →
(Y, τ∆) is continuous and onto. If ∆ is a minimal family of sub-bases with respect to Y ,
then f−1(∆) = {f−1(S1), f−1(S2), . . . , f−1(Sn)} is a minimal family of sub-bases with
respect to X.
Proof. Sf−1(∆) is a sub-base for a topology τf−1(∆) of finite set X because f : (X, τ) →
(Y, τ∆) is continuous and onto. Obviously,
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f−1(S∆) = f−1(
∧n

i=1 Si)
= f−1({

∩n
i=1 Si|Si ∈ Si, i = 1, 2, . . . , n})

= {f−1(
∩n

i=1 Si)|Si ∈ Si, i = 1, 2, . . . , n}
= {

∩n
i=1 f−1(Si)|f−1(Si) ∈ f−1(Si), i = 1, 2, . . . , n}

=
∧n

i=1 f−1(Si) = Sf−1(∆).
For any subfamily f−1(∆′) of f−1(∆), suppose Sf−1(∆′) = f−1(S∆′) is a sub-base for
finite topological space (X, τf−1(∆)). Then S∆′ is a sub-base for finite topological space
(Y, τ∆). If not, then there exists a point y ∈ Y such that NS∆′ (y) ̸= NS∆(y). So

NSf−1(∆′)
(f−1(y)) = Nf−1(S∆′ )(f−1(y)) = f−1(NS∆′ (y))

̸= f−1(NS∆(y)) = Nf−1(S∆)(f−1(y)) = NSf−1(∆)
(f−1(y)).

Thus Sf−1(∆′) is not a sub-base for finite topological space (X, τf−1(∆)). It is a con-
tradiction. Hence, S∆′ is a sub-base for finite topological space (Y, τ∆). Since ∆ is
a minimal family of sub-bases with respect to Y , by Definition 2.1, ∆ = ∆′. That is
f−1(∆) = f−1(∆′). Therefore, f−1(∆) is a minimal family of sub-bases with respect to
X. �

By Theorem 2.5, a minimal family of sub-bases remains invariant under f−1 : Y → X
if and only if f is continuous and onto. When a minimal family of sub-bases remains
invariant under a mapping f , what conditions does the mapping f satisfy? In order to
answer this question, we prove a proposition first.
Definition 2.6 ([4]). Let f : X → Y, g : Y → Z be two mappings. We call subset
{(x, z) : there exists y ∈ Y such that f(x) = y, g(y) = z} a composition of f and g. The
composition of f and g is denoted by f ◦g : X → Z. For each x ∈ X, (f ◦g)(x) = g(f(x)).
Proposition 2.7. Let Si be a sub-base for finite topological space (X, τi) for i = 1, 2, . . . , n,
∆ = {S1, S2, . . . , Sn}, and Y be a finite topological space. For two points x1, x2 ∈ X,
define x1Rx2 if NS∆(x1) = NS∆(x2). Define p : (X, τ∆) → (X/R, τ ′) a natural quotient
mapping, where (X/R, τ ′) is a natural quotient space. Suppose a mapping g : X/R → Y
is a bijection. If a mapping f : X → Y satisfies f = p ◦ g, then the following conclusions
hold:

(1) For each subset S ∈ Si ∈ ∆, x1 ∈ S implies x2 ∈ S for any points x1, x2 ∈ S
satisfying f(x1) = f(x2),

(2) For any two subsets Si ∈ Si and Sj ∈ Sj for i, j = 1, 2, . . . , n, f(Si ∩ Sj) =
f(Si) ∩ f(Sj),

(3) f(
∩n

i=1 Si) =
∩n

i=1 f(Si),
(4) S = f−1(f(S)) for each subset S ∈ S ,
(5) S = f−1(f(S )) for each element S ∈ ∆.

Proof. (1) First, we prove that f(x1) = f(x2) implies NS∆(x1) = NS∆(x2) for two points
x1, x2 ∈ X. Since f satisfies f = p ◦ g, f(x1) = f(x2) implies

g(p(x1)) = p ◦ g(x1) = p ◦ g(x2) = g(p(x2))
for any two points x1, x2 ∈ X. Thus, p(x1) = p(x2) because g is a bijection, i.e., [x1] = [x2].
So x1Rx2, which means NS∆(x1) = NS∆(x2). Next, for each subset S ∈ Si, x1 ∈ S means
x1 ∈ NS∆(x1) ⊂ S. NS∆(x1) = NS∆(x2) because f(x1) = f(x2). It means NS∆(x2) ⊂ S,
that is x2 ∈ S.

(2) First, we prove that f(Si) ∩ f(Sj) = ∅ if Si ∩ Sj = ∅. Assume f(Si) ∩ f(Sj) ̸= ∅.
Then there exists a point y ∈ Y such that y ∈ f(Si) ∩ f(Sj), i.e., y ∈ f(Si) and y ∈ f(Sj).
So there exist two points x1 ∈ Si and x2 ∈ Sj such that f(x1) = f(x2) = y. By (1),
x2 ∈ Si. Then x2 ∈ Si ∩ Sj . This contradicts that f(Si) ∩ f(Sj) = ∅. Next, we prove that
if Si ∩ Sj ̸= ∅, then f(Si ∩ Sj) = f(Si) ∩ f(Sj). Obviously, f(Si ∩ Sj) ⊂ f(Si) ∩ f(Sj)
holds. For each point y ∈ f(Si) ∩ f(Sj), there exist two points x1 ∈ Si and x2 ∈ Sj

such that f(x1) = f(x2) = y. By (1), x2 ∈ Si. Then x2 ∈ Si ∩ Sj , which implies
y = f(x2) ∈ f(Si ∩ Sj). So f(Si) ∩ f(Sj) ⊂ f(Si ∩ Sj). That is f(Si ∩ Sj) = f(Si) ∩ f(Sj).
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(3) The proof is similar to (2).
(4) It is obvious that S ⊂ f−1(f(S)) holds. For each point x ∈ f−1(f(S)), f(x) ∈ f(S).

Thus, there exists a point x′ ∈ S such that f(x) = f(x′). By (1), x ∈ S. So f−1(f(S)) ⊂ S.
That is f−1(f(S)) = S.

(5) Obviously, S ⊂ f−1(f(S )). For each subset S ∈ f−1(f(S )), f(S) ∈ f(S ). Then
there exists a subset S′ ∈ S such that f(S) = f(S′). From (4), S = S′ ∈ S must hold.
Hence, f−1(f(S )) ⊂ S , that is S = f−1(f(S )). �

Remark 2.8. By the proof of Proposition 2.7, if both Si and Sj are elements of the same
sub-base, then Proposition 2.7 (2) holds. Furthermore, for each subfamily ∆′ of ∆, the
following statements hold:

(1) f(NS∆′ (x)) = f(
∩

{S|x ∈ S ∈ S∆′}) =
∩

{f(S)|f(x) ∈ f(S) ∈ f(S∆′)} =
Nf(S∆′ )(f(x)) for each point x ∈ X,

(2) NS∆′ (x) = f−1(f(NS∆′ (x))) for each point x ∈ X.

For two points x1, x2 ∈ X, define x1Rx2 if NS∆(x1) = NS∆(x2). Define p : (X, τ∆) →
(X/R, τ ′) a natural quotient mapping, where (X/R, τ ′) is a natural quotient space. Based
on the natural quotient mapping, Theorem 2.9 is proved.

Theorem 2.9. Let Si be a sub-base for finite topological space (X, τi) for i = 1, 2, . . . , n,
∆ = {S1, S2, . . . , Sn}, and (Y, τ) be a finite topological space. Suppose a mapping
g : X/R → Y is a bijection. If a mapping f : (X, τ∆) → (Y, τ) is an open mapping
satisfying f = p ◦ g and ∆ is a minimal family of sub-bases with respect to X, then
f(∆) = {f(S1), f(S2), . . . , f(Sn)} is a minimal family of sub-bases with respect to Y .

Proof. Obviously, Sf(∆) is a sub-base for a topology τf(∆) of finite set Y . By Proposition
2.7 (3),

f(S∆) = f(
∧n

i=1 Si)
= f({

∩n
i=1 Si|Si ∈ Si, i = 1, 2, . . . , n})

= {f(
∩n

i=1 Si)|Si ∈ Si, i = 1, 2, . . . , n}
= {

∩n
i=1 f(Si)|f(Si) ∈ f(Si), i = 1, 2, . . . , n}

=
∧n

i=1 f(Si) = Sf(∆).
For any subfamily f(∆′) of f(∆), suppose Sf(∆′) = f(S∆′) is a sub-base for finite topo-
logical space (Y, τf(∆)). Then S∆′ is a sub-base for finite topological space (X, τ∆). If
not, then there exists a point x ∈ X such that NS∆′ (x) ̸= NS∆(x). From Remark 2.8,
Nf(S∆′ )(f(x)) = f(NS∆′ (x)) for each point x ∈ X. Then

NSf(∆′)
(f(x)) = Nf(S∆′ )(f(x)) = f(NS∆′ (x))

̸= f(NS∆(x)) = Nf(S∆)(f(x)) = NSf(∆)(f(x)).
Thus, Sf(∆′) is not a sub-base for finite topological space (Y, τf(∆)). This contradicts
that S∆′ is a sub-base for finite topological space (X, τ∆). Since ∆ is a minimal family
of sub-bases with respect to X, by Definition 2.1, ∆ = ∆′. That means f(∆) = f(∆′).
Hence, f(∆) is a minimal family of sub-bases with respect to Y . �

With no doubt, one-to-one mappings satisfy results of Proposition 2.7. So the following
corollary is provided.

Corollary 2.10. Let Si be a sub-base for finite topological space (X, τi) for i = 1, 2, . . . , n
and ∆ = {S1, S2, . . . , Sn}. Suppose (Y, τ) is a finite topological space. And f : (X, τ∆) →
(Y, τ) is open and one-to-one. If ∆ is a minimal family of sub-bases with respect to X,
then f(∆) = {f(S1), f(S2), . . . , f(Sn)} is a minimal family of sub-bases with respect to
f(X).

Proof. The proof is similar to Theorem 2.9. �
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3. Relationship between minimal families of sub-bases and reducts of
covering information systems

In this section, we restrict that universes are finite. A covering information system is
a pair (X, ∆), where X is a non-empty and finite set, and ∆ = {Si|i = 1, 2, . . . , n} is a
family of coverings on X. According to the definition of sub-base of topological spaces, it
is easy to see that a covering on X is a sub-base for a topology of finite set X. So a family
∆ of coverings is a family of sub-bases. Moreover, the definition of reduct is introduced
in covering information systems. And finding a reduct is a process to delete redundant
coverings under some conditions. It is similar to deriving a minimal family of sub-bases.
Then is there a relationship between reducts and minimal families of sub-bases? Before
answering this question, we present the definition of reduct.

Definition 3.1 ([17]). Let (X, ∆) be a covering information system. ∆′ ⊂ ∆ is referred
to as a reduct of ∆ if ∆′ satisfies

∩
∆′ =

∩
∆ and

∩
∆′ ̸=

∩
(∆′ \ {S }) for any covering

S ∈ ∆′, where
∩

∆′ = {
∩

S ∈∆′ NS (x)|x ∈ X} for each subfamily ∆′ of ∆.

Theorem 3.2. Let X be a non-empty and finite set and ∆ be a family of coverings.
(1) If (X, ∆) is a covering information system and a subfamily ∆′ of ∆ is a reduct of

∆, then ∆′ can be viewed as a minimal family of sub-bases.
(2) If each covering Si ∈ ∆ is a sub-base for topological space (X, τi) for i = 1, 2, . . . , n

and a subfamily ∆′ of ∆ is a minimal family of sub-bases, then ∆′ can be viewed as a
reduct of ∆.

Proof. For any subfamily ∆′ of ∆, according to the definition of NS∆′ (x),
∩

∆′ =
∩

∆ if
and only if NS∆′ (x) = NS∆(x) for each point x ∈ X.

(1) NS∆′ (x) = NS∆(x) for each point x ∈ X because ∆′ is a reduct of ∆. It implies that
S∆′ is a sub-base for finite topological space (X, τ∆). Suppose for any covering S ∈ ∆′,
S∆′\{S } is a sub-base for finite topological space (X, τ∆). Then NS∆′\{S }

(x) = NS∆(x)
for each point x ∈ X, which implies NS∆′\{S }

(x) = NS∆′ (x) for each point x ∈ X. Since
∆′ is reduct of ∆,

∩
∆′ ̸=

∩
(∆′ \ {S }) for any covering S ∈ ∆′. In other words, there

exists a point x ∈ X such that NS∆′\{S }
(x) ̸= NS∆′ (x). It is a contradiction. Hence,

S∆′\{S } is not a sub-base for finite topological space (X, τ∆). By Definition 2.1, ∆′ is a
minimal family of sub-bases.

(2) The proof is similar to (1). �
In Section 2, a minimal family of sub-bases remains invariant under some certain map-

pings. And Theorem 3.2 states that a reduct in covering information systems and a
minimal family of sub-bases are equivalent. Therefore, the reduct also remains invariant
under these certain mappings when the reduct in covering information systems is viewed
as a minimal family of sub-bases. Wang et al. [16] proposed the definitions of consis-
tent mapping and homomorphism, which keep a reduct unchanged. Since there are two
different mappings which keep a reduct unchanged, are these mappings the same? The
following definition is about consistent mappings.

Definition 3.3 ([16]). Let X and Y be two universes, f : X → Y a mapping, S =
{S1, S2, . . . , Sn} a covering on X and Cov(S ) = {NS (x)|x ∈ X}. The mapping f is
called a consistent function with respect to S if for any x, y ∈ X, NS (x) = NS (y)
whenever f(x) = f(y).

By Definition 3.3, the construction of consistent function with respect to S is to find
representation elements under some conditions. This process is similar to structure a
natural quotient mapping in topological spaces. For two points x1, x2 ∈ X, define x1Rx2
if NS (x1) = NS (x2). Define p : X → X/R a natural quotient mapping. Based on the
natural quotient mapping, Theorem 3.4 is proved.
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Theorem 3.4. Let X and Y be two finite topological spaces, S a covering on X, f :
X → Y a mapping. If f is a consistent function with respect to S , then there exists a
bijection g : X/R → f(X) such that f satisfies f = p ◦ g.

Proof. Obviously, there exists a mapping g such that f = p◦g. Suppose g([x1]) = g([x2])
for any two points x1, x2 ∈ X. p(x) = [x] for each point x ∈ X, because p is a natural
quotient mapping. Then

f(x1) = p ◦ g(x1) = g(p(x1)) = g([x1]) = g([x2]) = g(p(x2)) = p ◦ g(x2) = f(x2).
Since f is a consistent function with respect to S , by Definition 3.3, NS (x1) = NS (x2).
It implies x1Rx2. Then [x1] = [x2], that is g is one-to-one. Because f : X → f(X) is onto
and p is a natural quotient mapping, g is onto. So g is a bijection. �

According to the definition of consistent function, homomorphisms are defined in [16].

Definition 3.5 ([16]). Let (X, ∆) be a covering information system. If f is a consistent
function with respect to each Si ∈ ∆, then f is referred to as a homomorphism on (X, ∆).

Wang et al. [16] proves that f is a consistent function with respect to S1 and S2 if and
only if f is a consistent function with respect to S1

∩
S2 = {NS1(x) ∩ NS2(x)|x ∈ X}.

Based on mathematical induction, if f is a consistent function with respect to each covering
S ∈ ∆, then f is a consistent function with respect to S∆. In other words, if f is a
homomorphism on (X.∆), then f is a consistent function with respect to S∆. So the
following corollary holds according to Theorem 3.4.

Corollary 3.6. Let X and Y be two finite topological spaces, and f : X → Y a mapping.
Suppose ∆ = {S1, S2, . . . , Sn} is a family of coverings on X. If f is a homomorphism
on (X, ∆), then there exists a bijection g : X/R → f(X) such that f satisfies f = p ◦ g.

Consider f : X → f(X). By Corollary 3.6, if f is a homomorphism on (X, ∆), then
f is the composition p ◦ g, where p is a natural quotient mapping and g is a bijection.
According to Theorem 3.2 (1), a reduct ∆′ of covering information system (X, ∆) can be
viewed as a minimal family of sub-bases with respect to X. By Theorem 2.9, f(∆′) is a
minimal family of sub-bases with respect to f(X). Then f(∆′) can be viewed as a reduct
of f(∆) according to Theorem 3.2 (2). The above analysis illustrates that the necessity
of the following lemma, which is proposed by Wang et al in [16], is equal to Theorem 2.9
presented in this paper. On the other hand, f : X → f(X) is onto. If f(∆′) is a reduct of
f(∆), then f(∆′) can be viewed as a minimal family of sub-bases with respect to f(X).
By Theorem 2.5, f−1(f(∆′)) is a minimal family of sub-bases with respect to X. From
Proposition 2.7 (5), one can see that f−1(f(S )) = S for each sub-base S ∈ ∆′. Then
f−1(f(∆′)) = ∆′, which implies ∆′ is a minimal family of sub-bases with respect to X.
Thus, ∆′ is a reduct of ∆. Therefore, we conclude that the sufficiency of the following
lemma and Theorem 2.5 introduced in this paper are equivalent.

Lemma 3.7 ([16]). Let (X, ∆) be a covering information system, ∆′ ⊂ ∆. If f is a
homomorphism on (X, ∆), then ∆′ is a reduct of ∆ if and only if f(∆′) is a reduct of
f(∆).

Wang et al. also defined another homomorphism in [16].

Definition 3.8 ([16]). Let (Y, ∆) be a covering information system and f : X → Y be
a mapping. If f is surjective, then f−1 is referred to as a homomorphism from (Y, ∆) to
(X, f−1(∆)).

Based on homomorphisms from (Y, ∆) to (X, f−1(∆)), Wang et al. obtained the fol-
lowing lemma in [16].

Lemma 3.9 ([16]). Suppose (Y, ∆) is a covering information system, (X, f−1(∆)) is an
induced covering information system of (Y, ∆), and f−1 is a homomorphism from (Y, ∆)
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to (X, f−1(∆)) and ∆′ ⊂ ∆. Then ∆′ is a reduct of ∆ if and only if f−1(∆′) is a reduct
of f−1(∆).

We will show Lemma 3.9 is equal to Theorem 2.5 introduced in this paper. First, if
∆′ is a reduct of ∆, by Theorem 3.2 (1), then ∆′ can be viewed as a minimal family of
sub-bases with respect to Y . Next f is onto according to the definition of homomorphism
from (Y, ∆) to (X, f−1(∆)). By Theorem 2.5, f−1(∆′) is a minimal family of sub-bases
with respect to X. So f−1(∆′) is a reduct of f−1(∆) from Theorem 3.2 (2). In another
word, the necessity of Lemma 3.9 and Theorem 2.5 are equivalent. Besides, f−1 is also
onto. If f−1(∆′) is a reduct of f−1(∆), then f−1(∆′) is a minimal family of sub-bases
with respect to X. By Theorem 2.5, ∆′ = f(f−1(∆′)) is a minimal family of sub-bases
with respect to Y . So ∆′ is a reduct of ∆. Therefore, the sufficiency of Lemma 3.9 and
Theorem 2.5 are equivalent.

4. An approach to obtain a minimal family of sub-bases
In Section 2, a minimal family of sub-bases is presented. And a criterion of a minimal

family of sub-bases is provided. In fact, it is hard to obtain a minimal family of sub-bases
via this criterion. So an approach based on Boolean matrices will be given to derive a
minimal family of sub-bases. First, the following definition is proposed.

Definition 4.1 ([10]). Let X = {x1, x2, . . . , xm} and A ⊂ X. The characteristic function
is defined as f(A) = (f1, f2, . . . , fm)′ (′ denotes the transpose throughout this paper),
where

fi =
{

1, xi ∈ A;
0, xi ̸∈ A.

From Definition 4.1, characteristic function f(A) shows the relationship between each
point of X and a subset A of X. For example, if X = {x1, x2, x3, x4, x5, x6} and A =
{x2, x3, x6}, then f(A) = (0, 1, 1, 0, 0, 1)′.

Definition 4.2. Let P be a family of subsets of X with X = {x1, x2, . . . , xm} and P =
{P1, P2, . . . , Pk}. The characteristic matrix of P is defined as MP = (f(P1), f(P2), . . . ,
f(Pk)).

Obviously, MP is a Boolean matrix with size m × k. Let S be a sub-base for a finite
topological space X. A neighborhood Boolean matrix of sub-base S is defined.

Definition 4.3. Let Si be a sub-base for finite topological space (X, τi) for i = 1, 2, . . . , n
with X = {x1, x2, . . . , xm}, and ∆ = {S1, S2, . . . , Sn}. Define a neighborhood Boolean
matrix of each sub-base S ∈ ∆ as Nm(S ) = (f(NS (x1)), f(NS (x2)), . . . , f(NS (xm))),
and a neighborhood Boolean matrix of ∆ as Nm(S∆) = (f(NS∆(x1)), f(NS∆(x2)), . . . ,
f(NS∆(xm))).

Denote the i-th row and j-th column element of neighborhood Boolean matrix Nm(S )
as Nm(S )(i, j). In fact, Nm(S )(i, j) = 1 means xi ∈ NS (xj) and Nm(S )(i, j) = 0
means xi ̸∈ NS (xj). If xi ̸∈ NS (xj) for any points xi, xj ∈ X, then we call that xi and
xj are discernible by sub-base S . Hence, Nm(S )(i, j) = 0 implies that xi and xj can be
discernible by sub-base S .

Definition 4.4 ([11]). Let M = (mij)n×m be a matrix. Define a matrix operator ∼ as
∼ M = (∼ mij)n×m, where

∼ mij =
{

1, mij = 0,
0, mij ̸= 0.

Definition 4.5 ([22]). Let A = (aij)n×m and B = (bij)n×m be two matrices. The
Hadamard product of A and B is defined as A ◦ B = (aijbij)n×m.
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Two operators introduced above will be used to calculate neighborhood Boolean matri-
ces.

Theorem 4.6. Let Si be a sub-base for finite topological space (X, τi) for i = 1, 2, . . . , n
and ∆ = {S1, S2, . . . , Sn}. Then the following statements hold:

(1) Nm(S ) =∼ ((∼ MS )M ′
S ) for each sub-base S ∈ ∆,

(2) Nm(S∆) = Nm(S1) ◦ Nm(S2) ◦ · · · ◦ Nm(Sn).

Proof. For each sub-base S ∈ ∆, suppose S = {S1, S2, . . . , Sk}. And the i-th element
of column vector f(S) is denoted by f(S)(i). For each matrix M , denote its j-th column
vector as M(·, j), and its i-th row and j-th column element as M(i, j).

(1) Suppose xi ∈ NS (xj). It means Nm(S )(i, j) = 1. Next we prove that (∼ ((∼
MS )M ′

S ))(i, j) = 1. It is obvious that
((∼ MS )M ′

S )(·, j) =
∑

1≤l≤k M ′
S (l, j)(∼ f(Sl)).

According to Definition 4.2, M ′
S (l, j) = 1 means xj ∈ Sl, and M ′

S (l, j) = 0 implies
xj ̸∈ Sl. Thus,

((∼ MS )M ′
S )(·, j) =

∑
1≤l≤k M ′

S (l, j)(∼ f(Sl)) =
∑

xj∈Sl
(∼ f(Sl)).

For each point xi ∈ X, xi ∈ NS (xj) means xi ∈ Sl for each subset Sl satisfying xj ∈ Sl.
This implies f(Sl)(i) = 1 and (∼ f(Sl))(i) = 0 for each subset Sl satisfying xj ∈ Sl.
Hence, for each point xi ∈ NS (xj),

(
∑

xj∈Sl
(∼ f(Sl)))(i) =

∑
xj∈Sl

((∼ f(Sl))(i)) = 0.
That is ∼ (

∑
xj∈Sl

(∼ f(Sl)))(i) = 1. Therefore, (∼ ((∼ MS )M ′
S ))(i, j) = 1. Assume

xi ̸∈ NS (xj). Then we have Nm(S )(i, j) = 0. It is similar to proving that (∼ ((∼
MS )M ′

S ))(i, j) = 0. So it is easy to conclude that
Nm(S ) =∼ ((∼ MS )M ′

S ).
(2) If Nm(S∆)(i, j) = 1, then xi ∈ NS∆(xj). According to the definitions of S∆ and

minimal open neighborhood of each point x ∈ X, we get xi ∈ NS (xj) for each element
S ∈ ∆, which implies Nm(S )(i, j) = 1 for each element S ∈ ∆. So

(Nm(S1) ◦ Nm(S2) ◦ · · · ◦ Nm(Sn))(i, j) = 1.
If Nm(S∆)(i, j) = 0, then it is similar to proving that

(Nm(S1) ◦ Nm(S2) ◦ · · · ◦ Nm(Sn))(i, j) = 0.
Consequently, Nm(S∆) = Nm(S1) ◦ Nm(S2) ◦ · · · ◦ Nm(Sn). �

Theorem 4.6 shows that the discernible power of S∆ is larger than S∆′ for each sub-
family ∆′ of ∆. Or the discernible power of ∆ is larger than each subfamily ∆′ of ∆. The
following example in [17] is given to calculate neighborhood Boolean matrices by Theorem
4.6.

Example 4.7. Suppose Si is a sub-base for finite topological space (X, τi) for i = 1, 2, 3, 4
with X = {x1, x2, . . . , x15}.Let ∆ = {S1, S2, S3, S4}, where

S1 = {{x1, x2, x3, x4, x5, x8, x10, x15}, {x3, x5, x7, x11, x12}, {x4, x6, x8, x9, x10, x13, x14}},

S2 = {{x1, x2, x3, x4, x5, x7, x8, x10, x11, x12, x15}, {x3, x4, x5, x8, x10}, {x3, x5, x6, x9,
x13, x14}},

S3 = {{x1, x2, x3, x4, x5, x8, x10, x15}, {x6, x9, x13, x14}, {x4, x7, x8, x10, x11, x12}},

S4 = {{x1, x2, x3, x5, x15}, {x6, x7, x9, x11, x12, x13, x14}, {x3, x4, x5, x8, x10}}.

The characteristic matrices of Si for i = 1, 2, 3, 4 are obtained:



802 Y. Li et al.

MS1 =



1 0 0
1 0 0
1 1 0
1 0 1
1 1 0
0 0 1
0 1 0
1 0 1
0 0 1
1 0 1
0 1 0
0 1 0
0 0 1
0 0 1
1 0 0


, MS2 =



1 0 0
1 0 0
1 1 1
1 1 0
1 1 1
0 0 1
1 0 0
1 1 0
0 0 1
1 1 0
1 0 0
1 0 0
0 0 1
0 0 1
1 0 0


, MS3 =



1 0 0
1 0 0
1 0 0
1 0 1
1 0 0
0 1 0
0 0 1
1 0 1
0 1 0
1 0 1
0 0 1
0 0 1
0 1 0
0 1 0
1 0 0


, MS4 =



1 0 0
1 0 0
1 0 1
0 0 1
1 0 1
0 1 0
0 1 0
0 0 1
0 1 0
0 0 1
0 1 0
0 1 0
0 1 0
0 1 0
1 0 0


.

According to Theorem 4.6, neighborhood Boolean matrices are derived.

Nm(S1) =



1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 1 0 1 0 1 0 0 0 1 1 0 0 1
1 1 0 1 0 1 0 1 1 1 0 0 1 1 1
1 1 1 0 1 0 1 0 0 0 1 1 0 0 1
0 0 0 0 0 1 0 0 1 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0
1 1 0 1 0 1 0 1 1 1 0 0 1 1 1
0 0 0 0 0 1 0 0 1 0 0 0 1 1 0
1 1 0 1 0 1 0 1 1 1 0 0 1 1 1
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 1 1 0
0 0 0 0 0 1 0 0 1 0 0 0 1 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 1


,

Nm(S2) =



1 1 0 0 0 0 1 0 0 0 1 1 0 0 1
1 1 0 0 0 0 1 0 0 0 1 1 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 0 0 1 1 0 1 1 1 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 0 0 1 0 0 0 1 1 0
1 1 0 0 0 0 1 0 0 0 1 1 0 0 1
1 1 0 1 0 0 1 1 0 1 1 1 0 0 1
0 0 0 0 0 1 0 0 1 0 0 0 1 1 0
1 1 0 1 0 0 1 1 0 1 1 1 0 0 1
1 1 0 0 0 0 1 0 0 0 1 1 0 0 1
1 1 0 0 0 0 1 0 0 0 1 1 0 0 1
0 0 0 0 0 1 0 0 1 0 0 0 1 1 0
0 0 0 0 0 1 0 0 1 0 0 0 1 1 0
1 1 0 0 0 0 1 0 0 0 1 1 0 0 1


,

Nm(S3) =



1 1 1 0 1 0 0 0 0 0 0 0 0 0 1
1 1 1 0 1 0 0 0 0 0 0 0 0 0 1
1 1 1 0 1 0 0 0 0 0 0 0 0 0 1
1 1 1 1 1 0 1 1 0 1 1 1 0 0 1
1 1 1 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 1 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0
1 1 1 1 1 0 1 1 0 1 1 1 0 0 1
0 0 0 0 0 1 0 0 1 0 0 0 1 1 0
1 1 1 1 1 0 1 1 0 1 1 1 0 0 1
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 1 1 0
0 0 0 0 0 1 0 0 1 0 0 0 1 1 0
1 1 1 0 1 0 0 0 0 0 0 0 0 0 1


,

Nm(S4) =



1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 1 1 1 0 0 1 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1 0 1 0 0 0 0 0
1 1 1 1 1 0 0 1 0 1 0 0 0 0 1
0 0 0 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 0 0 1 1 0 1 0 1 1 1 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 1


.
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Thus,

Nm(S∆) =



1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 1 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 1 0 1 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 1 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0
0 0 0 1 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 1 1 0
0 0 0 1 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 1 1 0
0 0 0 0 0 1 0 0 1 0 0 0 1 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 1


.

From Example 2.2, we find that S3 is the common element of minimal families of sub-
bases {S1, S2, S3} and {S3, S4}. Then S3 is more important than others for a minimal
family of sub-bases. A natural question is: is there an element S ∈ ∆ such that S
belongs to all the minimal families of sub-bases? If there is, then what properties does the
element have? The concept of core is proposed in the following definition.

Definition 4.8. Let Si be a sub-base for finite topological space (X, τi) for i = 1, 2, . . . , n
and ∆ = {S1, S2, . . . , Sn}. The element S is called a core if S is an element of all the
minimal families of sub-bases.

The characteristics of a minimal family of sub-bases and core can be described via
neighborhood Boolean matrices.

Theorem 4.9. Let Si be a sub-base for finite topological space (X, τi) for i = 1, 2, . . . , n,
and ∆ = {S1, S2, . . . , Sn}. Then the following results hold:

(1) For each subfamily ∆′ of ∆, S∆′ is a sub-base for finite topological space (X, τ∆) if
and only if Nm(S∆) = Nm(S∆′);

(2) S is a core if and only if Nm(S∆\{S }) ̸= Nm(S∆) for each element S ∈ ∆.

Proof. (1) From the proof of Theorem 2.4, for each subfamily ∆′ of ∆, S∆′ is a sub-base
for finite topological space (X, τ∆) if and only if NS∆(x) = NS∆′ (x) for each point x ∈ X.
By the definition of neighborhood Boolean matrix, it is equal to Nm(S∆) = Nm(S∆′).

(2) Assume Nm(S∆\{S }) = Nm(S∆). From (1), S∆\{S } is a sub-base for finite
topological space (X, τ∆). Obviously, there exists a subfamily ∆′ of ∆ \ {S } such that ∆′

is a minimal family of sub-bases, and S ̸∈ ∆′. Because S is a core, S is an element of all
the minimal families of sub-bases. It is a contradiction. Hence, Nm(S∆\{S }) ̸= Nm(S∆).

For each matrix M , denote its i-th row and j-th column element as M(i, j). Sup-
pose a subfamily ∆′ of ∆ \ {S } is a minimal family of sub-bases. From (1), Nm(S∆) =
Nm(S∆′). Because Nm(S∆) ̸= Nm(S∆\{S }), there exist Nm(S∆)(i, j) and Nm(S∆\{S })
(i, j) such that Nm(S∆)(i, j) = 0 but Nm(S∆\S )(i, j) = 1. That is Nm(S∆′)(i, j) = 0
but Nm(S∆\{S })(i, j) = 1. By Theorem 4.6, Nm(S∆\{S })(i, j) = 1 means Nm(S ′)(i, j)
= 1 for each element S ′ ∈ ∆ \ {S }. It is contradictory to Nm(S∆′)(i, j) = 0. So ∆′ is
not a minimal family of sub-bases. Therefore, S is a core. �
Corollary 4.10. Let Si be a sub-base for finite topological space (X, τi) for i = 1, 2, . . . , n
and ∆ = {S1, S2, . . . , Sn}. Then a subfamily ∆′ of ∆ is a minimal family of sub-bases if
and only if ∆′ is a minimal subfamily of ∆ satisfying Nm(S∆) = Nm(S∆′).

Based on the results above, a heuristic algorithm is presented to find a minimal family
of sub-bases.

Steps 3-5 are to compute all the cores and their time complexity is not more than
O(

∑
S ∈∆ |X|2|S |). A sub-base with the maximal discernible power is added into a min-

imal family ∆′ of sub-bases in step 9, whose time complexity is O(
∑|∆|−1

i=1 |X|2(|∆| − i)).
So the time complexity of Algorithm 1 is O(

∑
S ∈∆ |X|2|S | +

∑|∆|−1
i=0 |X|2(|∆| − i)).



804 Y. Li et al.

Algorithm 1 A matrix-based algorithm for finding a minimal family of sub-bases
Require: A family ∆ of sub-bases.
Ensure: A minimal family ∆′ of sub-bases.

1: Let ∆′ = ∅;
2: for each S ∈ ∆ do
3: Compute Nm(S∆\{S }) according to Theorem 4.6;
4: if Nm(S∆\{S }) ̸= Nm(S∆); then
5: Let ∆′ = ∆′ ∪ {S }.//find all the cores;
6: end if
7: end for
8: while Nm(S∆′) ̸= Nm(S∆) do
9: Let ∆′ = ∆′ ∪ {S0},

where S0 satisfies |Nm(S∆′∪{S0})| = max{|Nm(S∆′∪{S })| | S ∈ ∆ \ ∆′} and | · |
is the total number of 0 in a matrix;

10: end while
11: Return ∆′.

The following example uses Algorithm 1 to compute a minimal family of sub-bases.

Example 4.11. Re-discuss Example 4.7. According to Algorithm 1, we can obtain that:
Nm(S∆\{S1}) = Nm(S∆), Nm(S∆\{S2}) = Nm(S∆), Nm(S∆\{S3}) = Nm(S∆),
Nm(S∆\{S4}) ̸= Nm(S∆). So S4 is a core. In addition, |Nm(S{S1,S4})| = max
{|Nm(S{S4}∪{S })| | S ∈ ∆ \ {S4}} and Nm(S∆1) = Nm(S∆). Hence, ∆1 = {S1, S4}
is a minimal family of sub-bases on X.

5. Numerical experiments
To further illustrate the effectiveness of the proposed algorithm, we choose 18 data sets

from UCI to conduct several numerical experiments. These data sets are described in Table
1. Decision attributes in data sets are removed, and the rest of these data are normalized.
In order to obtain an original family of sub-bases from data sets, a parameter ε is used to
control the size of the neighborhood of each object in each data set. For each attribute
in each data set, each object has a neighborhood. And the family of neighborhoods of
all objects is regarded as a covering. Since a covering can be viewed as a sub-base for
a topological space, the family of neighborhoods of all objects will be a sub-base for a
topological space. Hence, given an ε, a family of sub-bases is generated by all attributes
in each data set. In our numerical experiments, we take ε = 0.4 to generate a family of
sub-bases with respect to each data set.

The experiments are performed on a personal computer with Windows 10 and an Inter
(R) Core (TM) i7-6700 CPU @ 3.40 GHz 3.41 GHz with 8 GB of memory. The algorithms
are implemented using Matlab R2017a.

Table 1. Data set description

Data sets Sample Attributes Data sets Sample Attributes Data sets Sample Attributes

breast 84 9216 crx 690 15 derm 366 34
diabe 768 8 gearboxA 1603 72 gearboxB 1603 72

gearboxC 1603 72 gearboxD 1603 72 gene1 84 9216
heart 270 13 hepatitis 155 19 horse 368 22
sonar 208 60 wdbc 569 30 wine 178 13
wpbc 198 33 yale 165 1024 zoo 101 16
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As seen in Table 2, sub-bases’ number in a minimal family of sub-bases is dramati-
cally reduced. It shows that Algorithm 1 is effective in deleting redundant elements and
providing a minimal family of sub-bases.

Table 2. Sub-bases’ numbers in a minimal family of sub-bases

Date sets Sub-bases’ numbers in a original family of sub-bases Sub-bases’ numbers in a minimal family of sub-bases

breast 9216 2
crx 15 12

derm 34 2
diabe 8 8

gearboxA 72 5
gearboxB 72 7
gearboxC 72 7
gearboxD 72 6

gene1 9216 2
heart 13 1

hepatitis 19 1
horse 22 13
sonar 60 9
wdbc 30 18
wine 13 7
wpbc 33 7
yale 1024 5
zoo 16 1

Time consumption on finding a minimal family of sub-bases is shown in Table 3. It can
be observed that Algorithm 1 does not cost much time on all the data sets. It further turns
out that Algorithm 1 is feasible in finding a minimal family of sub-bases. In addition, the
effect of objects’ number on time consumption is larger than that of sub-bases’ numbers.
For example, for data set breast with 84 objects and 9216 sub-bases, the time for finding a
minimal family of sub-bases is 113.76s. But for data set gearboxD with 1603 objects and
72 sub-bases, the time for finding a minimal family of sub-bases is 365.01s. Between the
two data sets, the gap of sub-bases’ number is far greater than that of objects’ number.
However, time consumption of data set breast with more sub-bases is less than data set
gearboxD with more objects. The reason for it is as follows, that sub-bases’ numbers do
not affect objects’ number, but objects’ number affects subsets’ number in each sub-base,
which affects the computing speed of neighborhood Boolean matrix.

Table 3. Time consumptions on finding a minimal family of sub-bases

Data sets Times(s) Data sets Times(s) Data sets Times(s)
breast 113.76 crx 2.48 derm 0.94
diabe 2.66 gearboxA 330.69 gearboxB 354.69

gearboxC 335.53 gearboxD 365.01 gene1 122.23
heart 0.50 hepatitis 0.31 horse 2.35
sonar 3.91 wdbc 12.68 wine 0.60
wpbc 2.03 yale 48.29 zoo 0.07

6. Conclusion
In this paper, the definition of a minimal family of sub-bases has been presented. More-

over, a criterion of a minimal family of sub-bases has been provided. According to this
criterion, an approach based on Boolean matrices has been proposed to obtain a minimal
family of sub-bases. In order to illustrate the effectiveness of the obtained approach, we
have conducted several numerical experiments on UCI data sets. Although the presented
approach is feasible in finding a minimal family of sub-bases, there is no way to show
that the derived result is optimal. Moreover, the relationship between reducts in covering
information systems and minimal families of sub-bases has been discussed.
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