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Abstract
In this paper, we extend the LPI property (that is, every locally principal ideal in an
integral domain is invertible) to rings with zero-divisors and we study the class of com-
mutative rings in which every regular locally principal ideal is invertible called LPI rings.
We investigate the stability of this property under homomorphic image, and its transfer
to various contexts of constructions such as direct products, amalgamation of rings and
trivial ring extensions. Our results generate examples which enrich the current literature
with new and original families of rings that satisfy this property.
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1. Introduction
All rings considered in this paper are assumed to be commutative with identity elements.

It is well-known that a finitely generated flat module over a domain is projective, and over
an integral domain, the notion of projective ideal is equivalent to the one of invertible
ideal. In general, an invertible ideal is projective but the converse is not true. The notion
of domains with flat ideals invertible was first studied by Sally and Vasconcelos in 1975
(see [21]) as domains with property P. They showed that if a domain D has the property
P, then so does the polynomial ring D[X]. In 1977 Glas and Vasconcelos studied the
invertibility of faithfully flat ideals over an H-domain and conjectured that over an H-
domain, a faithfully flat ideal is finitely generated (and hence invertible) see [14].

In [8], S. Bazzoni conjectured that Prüfer domains for which “an ideal is invertible if
and only if it is a locally principal" are exactly the ones with the finite character prop-
erty, i.e. each nonzero element of the domain belongs to finitely many maximal ideals.
This conjecture was first resolved in the affirmative by Holland, Martinez, McGovern and
Tesemma ([16]). Later, Halter-Koch stated and proved an analog of Bazzoni’s conjecture
using the language of ideal systems, that is, r-Prüfer monoids, which in the domain case
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are PV MD’s and include Prüfer domains ([15]). In 2010, Picozza and Tartarone intro-
duced the notion of quasi-stable ideals as ideals I that are flat in their ring homomorphisms
(I : I). They also studied domains in which every ideal is quasi-stable, and proved that
Glaz-Vascocncelos conjecture is false ([20]).

In 2011, D. D. Anderson and Muhammad Zafrullah [6] introduced and studied the
notion of LPI domains as integral domains in which every nonzero locally principal ideal
is invertible. They proved that a finite character intersection of LPI overrings is an LPI-
domain and so if a domain D is a finite character intersection D = ∩DP for some set of
prime ideals of D, then D is an LPI domain. In 2013, Kui, Wang and Chen answered
positively a question raised by Anderson and Zafrullah of whetter a polynomial ring over
an LPI domain is an LPI domain ([17, Theorem 1.8]). In 2014, D. D. Anderson and
A. Mimouni studied LPI domains in pullbacks ([3]). Very recently, Xing and Wang F.
answered negatively a question by Anderson-Zafurllah by showing that if R is an LPI
domain and S is a multiplicatively closed set, then RS need not be an PLI domain (see
[22]).

The purpose of the present work is to extend the notion of LPI domain to an arbitrary
ring with zero-divisors. A ring R is said to be an LPI ring if every regular locally principal
ideal of R is invertible. Noetherian rings are obviously LPI rings by [18, Lemma 18.1]. Our
aim is to give some simple methods in order to construct LPI rings outside the context of
integral domains that are not Noetherian. For this, we investigate the stability of the LPI
property under homomorphic image, and its transfer to various contexts of constructions
such as direct products, amalgamation of rings and trivial ring extensions. Our results
generate original examples which enrich the current literature with new families of rings
satisfying the LPI property. We denote Z(R) the set of zero-divisors of R and by Reg(R)
the set of regular elements in R.

Let A be a ring and E an A-module. The trivial ring extension of A by E (also called
the idealization of E over A) is the ring R = A n E whose underlying group is A × E
with multiplication given by (a, e)(a′, e′) = (aa′, ae′ + a′e). Recall that if I is an ideal of
A and E′ is a submodule of E such that IE ⊆ E′, then J = I n E′ is an ideal of R.
However, prime (resp., maximal) ideals of R have the form P n E, where P is a prime
(resp., maximal) ideal of A [5, Theorem 3.2]. Suitable background on commutative trivial
ring extensions is [5, 7, 13].

Let A and B be two rings, let J be an ideal of B and let f : A −→ B be a ring
homomorphism. In this setting, we consider the following subring of A × B

A ◃▹f J = {(a, f(a) + j)|a ∈ A, j ∈ J}
called the amalgamation of A and B along J with respect to f . Moreover, other classical
constructions (such as the A + XB[X], A + XB[[X]], and the D + M constructions) can
be studied as particular cases of the amalgamation (see [9, Examples 2.5 and 2.6]). A par-
ticular case of this construction is the amalgamated duplication of a ring along an ideal I
(introduced and studied by D’Anna and Fontana in [9–11]). Let A be a ring, and let I be
an ideal of A. A ◃▹ I := {(a, a + i) : a ∈ A, i ∈ I} is called the amalgamated duplication
of A along the ideal I. See for instance [9–12].

2. Main results
Notice that a characterization of locally principal ideals in integral domains is given in

[6, Theorem 1]. The following proposition extends this characterization to regular locally
principal ideals in rings with zero-divisors. The proof is similar to that one in [6, Theorem
1], and for the convenience of the reader we include it here. Recall that an ideal I in a ring
R is called a cancellation ideal if IJ ⊆ IK for ideals J and K of R implies that J ⊆ K.
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Proposition 2.1 ([6, Theorem 1]). Let R be a ring and let I be a regular ideal of R. The
following conditions are equivalent:

(1) I is locally principal.
(2) I is faithfully flat.
(3) I is a cancellation ideal.

Proof. (1) ⇒ (2) Let I be a regular locally principal ideal of R. Then, IM is free for all
maximal ideals M of R. Indeed, IM is a regular ideal of RM for all M ∈ Max(R) since I
is regular. Therefore, IM is a regular principal ideal of RM for all M ∈ Max(R) and so
IM is genereted by a regular element and so it is free. Hence, IM is faithfully flat for all
M ∈ Max(R). Then, I is faithfully flat.
(2) ⇒ (3) Let I be a regular faithfully flat ideal of R. Let IJ ⊆ IK for some ideals J and
K of R. We concider the exact sequence,

0 → K → K + J → K+J
K → 0.

Since I is faithfully flat, then we have

0 → I ⊗ K → I ⊗ (K + J) → I ⊗ K+J
K → 0.

Therefore, I ⊗ K+J
K = I⊗(K+J)

I⊗K = I(K+J)
IK = IK

IK = 0. Since I is faithfully flat, then
K+J

K = 0 and so J ⊆ K.
(3) ⇔ (1) By [4, Theorem]. �

Next, we study the transfer of the LPI property to direct products.
Theorem 2.2. Let (Ri)i=1,··· ,n be a family of commutative rings. Then R =

∏n
i=1 Ri is

an LPI ring if and only if so is Ri for each i = 1, · · · , n.
The proof of this theorem needs the following lemmas. The proof of the first lemma is

straightforward and it is omitted, and the second lemma is a well-known result.
Lemma 2.3. Let (Ri)i=1,2 be two rings and Ii be an ideal of Ri for i = 1, 2. Then, I1 × I2
is a regular locally principal ideal of R1 × R2 if and only if I1 and I2 are regular locally
principal ideals of R1 respectively R2.
Lemma 2.4 ([18, Lemma 18.1]). Let I be a regular locally principal ideal of a ring A.
Then, I is invertible if and only if it is finitely generated.
Proof of Theorem 2.2. The proof is done by induction on n and it suffices to check it
for n = 2. By Lemma 2.3, I1 × I2 is a regular locally principal ideal of R1 × R2 if and
only if I1 and I2 are locally principal ideals of R1 respectively R2 and it is easy to see that
I1 ×I2 is a finitely generated ideal of R1 ×R2 if and only if I1 and I2 are finitely generated
ideals of R1 respectively R2 and we conclude by Lemma 2.4. �

The next result shows that the LPI-property descends into a faithfully flat ring homo-
morphism.
Proposition 2.5. Let R and S be two rings and f : R → S be a ring homomorphism
making S a faithfully flat R-module. Assume that f(Reg(R)) ⊆ Reg(S). If S is an LPI
ring, then so is R.
In particular, if R and S are two domains and f : R → S is a ring homomorphism making
S a faithfully flat R-module then if S is an LPI domain, then so is R.
Proof. Let I be a regular locally principal ideal of R. Then I is a faithfully flat R-module
by Proposition 2.1. So I⊗S = IS is a faithfully flat S-module. Since f(Reg(R)) ⊆ Reg(S),
IS is a regular locally principal ideal of S and so it is invertible since S is an LPI-ring
which, in turn, is equivalent to IS is finitely generated. Therefore I ⊗ S = IS is finitely
generated. Hence I is a finitely generated ideal of R (as S is a faithfully flat R-module),
and therefore I is an invertible ideal of R. Thus R is an LPI ring as desired. �
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As an immediate consequence, we recover [6, Teorem 5 (1)].

Corollary 2.6 ([6, Theorem 5 (1)]). Let R be a domain and let X be an indeterminate
over R. If R[X] (resp.R[[X]]) is an LPI ring, then so is R.

Now, we will see the transfer of the LPI property to homomorphic image. Recall that
an ideal I of a ring R is a pure ideal if for every maximal ideal M ∈ Max(R), IM = 0M

or IM = RM .

Proposition 2.7. Let R be a ring.
(1) Let P be a finitely generated non-regular prime ideal of R such that P is contained

in all regular locally principal ideals of R. If R
P is an LPI ring, then so is R.

(2) Let I be a regular pure ideal of R. If R is an LPI ring, then R
I is an LPI ring.

The proof of this proposition needs the following lemma.

Lemma 2.8. Let P be a non-regular prime ideal of a ring R.
If J is a regular locally principal ideal of R such that P ⊆ J , then J

P is a regular locally
principal ideal of R

I .

Proof. Let J be a regular locally principal ideal of R such that P ⊆ J and let a be a
regular element of J . Necessarily a ̸∈ P . Now, for every x ∈ R, ax = 0 in J

P implies that
ax ∈ P . Hence x ∈ P since P is prime. Then, x = 0 and so a is a regular element in J

P .
Therefore, J

P is a regular ideal of R
I . Thus if J is locally principal, then the localization

of J
P at any maximal ideal M

P of R
P is isomorphic to JM

PM
. Since JM is principal, JM

PM
is

principal and therefore J
P is locally principal. �

Proof of Proposition 2.7. (1) Let P be a finitely generated non-regular prime ideal of
R contained in all regular locally principal ideals. Assume that R

P is an LPI ring. Let J

be a regular locally principal ideal of R. Then J
P is a regular locally principal ideal of R

P

(Lemma 2.8) and so it is invertible. By Lemma 2.4, J
P is finitely generated. Now, by the

exact sequence,

0 −→ P −→ J −→ J
P −→ 0

J is finitely generated and by Lemma 2.4 we conclude that J is invertible. Hence R is an
LPI ring.

(2) Let J
I be a regular locally principal ideal of R

I . Then J
I is a faithfully flat R

I -module.
Since I is a regular ideal of R and I ⊆ J , then J is a regular ideal of R. Now, consider
the following exact sequence:

0 → I → J → J
I → 0

Since I is a regular pure ideal of R, I is a regular locally principal ideal of R. So I is
a faithfully flat ideal of R by Proposition 2.1. Thus J

I is a flat R-module (since R
I is a

flat R-module). By the exact sequence, we conclude that J is a faithfully flat ideal of
R. Hence J is a regular locally principal ideal of R. So J is invertible and so finitely
generated. Therefore J ⊗ R

I = J
I is a finitely generated ideal of R

I and so it is invertible
by Lemma 2.4. Therefore R

I is an LPI ring. �
Example 2.9. Let K be a field and R = K n K and let P = 0 n K. Then P is a
finitely generated non-regular prime ideal of R that is contained in all regular ideals of R
by Lemma 2.12. Since R

P = KnK
0nK = K, K n K is an LPI ring by Proposition 2.7.

Our next theorem develops a result on the transfer of the LPI property to trivial ring
extension. Recall that if E is an A-module, then Z(E) = {a ∈ A such that ae = 0 for
some 0 ̸= e ∈ E}.
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Theorem 2.10. Let A be a ring, E an A-module, R = A n E the trivial ring extension
of A by E and let S = A r (Z(A) ∪ Z(E)).

(1) Assume that for every regular locally principal ideal I of A, I ∩ S ̸= ∅. If R is an
LPI ring, then so is A.

(2) Assume that E is torsion-free and divisible. Then A is an LPI ring if and only if
so is R. In particular, if A is a domain and E is a flat divisible R-module, then
A is an LPI ring if and only if so is R.

(3) Assume E is finitely generated and E = S−1E. If A is an LPI ring, then so is R.
If furthermore, for every regular locally principal ideal I of A, I ∩ S ̸= ∅, then A
is an LPI ring if and only if so is R.

The proof of this theorem needs the following lemmas.

Lemma 2.11. (1) Let A be a ring, E an A-module and I an ideal of A and let S =
A r (Z(A) ∪ Z(E)).
(a) If InIE is a regular locally principal ideal of AnE, then I is a regular locally

principal ideal of A.
(b) If I ∩ S ̸= ∅, then I is a regular locally principal ideal of A if and only if

I n IE is a regular locally principal ideal of A n E.
(c) If E is torsion free, then I is a regular locally principal ideal of A if and only

if I n IE is a regular locally principal ideal of A n E.
(2) Let E′ is a submodule of E. If I n E′ is a regular locally principal ideal of A n E,

then so is I.

Proof. (1) (a) Clearly if (a, e) is a regular element of I n IE, then a is a regular element
of I by [1, Lemma 6]; and I is a locally principal ideal of A if and only if I n IE is a
locally principal ideal of A n E by [1, Theorem 7].

(b) Assume that I∩S ̸= ∅. Then there exists a regular element a in I such that a /∈ Z(E).
Clearly (a, 0) is a regular element of I n IE. Indeed, let (0, 0) ̸= (b, e) ∈ I n IE such that
(a, 0)(b, e) = (0, 0). Then ab = 0 and ae = 0. Since a is regular, b = 0 and since a /∈ Z(E),
e = 0. Thus (b, e) = (0, 0) and so (a, 0) is regular. Hence InIE is a regular ideal of AnE.

(c) Follows from [2, Lemma 10].
(2) Let E′ is a submodule of E such that I n E′ is a regular locally principal ideal of

A n E. Then I is a regular ideal of A and for every maximal ideal M of R,
(I n E′)MnE = IM n EM

= (AM n EM )(x, e)
= AM x n (AM e + EM e)

Hence IM = AM x and therefore I is a locally principal ideal of A. �
Lemma 2.12 ([5, Theorem 3.9]). Let A be a ring, E an A-module and S = A r (Z(A) ∪
Z(E)). Then the following conditions are equivalent.

(1) Every regular ideal of A n E has the form I n E where I is an ideal of A with
I ∩ S ̸= ∅.

(2) Every regular ideal of A n E is homogenous.
(3) E = S−1E.

Lemma 2.13 ([1, Theorem 7]). Let A be a ring, I a nonzero ideal of A and E an A-
module. If I n IE is an invertible ideal of A n E, then I is invertible.

Lemma 2.14 ([2, Theorem 11]). Let A be a ring, E be a torsion-free and divisible A-
module and I n N a homogenous ideal of A n E. If I is an invertible ideal of A, then
I n N is invertible.
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Lemma 2.15 ([1, Theorem 9]). Let A be a ring, E an A-module, I nN an homogeneous
ideal of AnE. If I is a finitely generated ideal of A and N is a finitely generated submodule
of E, then I n N is finitely generated.

Proof of Theorem 2.10. (1) Assume that for every regular locally principal ideal I of
A, I ∩ S ̸= ∅ and let I be a regular locally principal ideal of A. By Lemma 2.11 (1)(b),
I n IE is a regular locally principal ideal of A n E. Since A n E is an LPI ring, then
I n IE is invertible. By Lemma 2.13, I is invertible and so A is an LPI ring.

(2) Assume that E is torsion-free and divisible. Then E = S−1E where S = Ar(Z(A)∪
Z(E)) (since E is divisible).
Let J be a regular locally principal ideal of R. By Lemma 2.12, J has the form I n E
where I is an ideal of A with I ∩ S ̸= ∅. Thus I is a regular locally principal ideal of A
by Lemma 2.11 (2). Since A is an LPI ring, I is invertible. By Lemma 2.14, I n E is an
invertible ideal of A n E and therefore A n E is an LPI ring.

Conversely, assume that A n E is an LPI ring. Since E is torsion free, Z(E) ⊆ Z(A)
and so for every regular locally principal ideal I of A, I ∩ S ̸= ∅. Hence A is an LPI ring
by (1).

(3) Assume that E is finitely generated, E = S−1E and A is an LPI ring. Let I n E
be a regular locally principal ideal of R where I is an ideal of A with I ∩ S ̸= ∅. Then I
is a regular locally principal ideal of A (Lemma 2.11 (2)) and thus I is invertible (and so
is finitely generated). Since E is finitely generated, I n E is a finitely generated ideal of
A n E (Lemma 2.15) and therefore it is invertible by Lemma 2.4. Thus A n E is an LPI
ring. If furthermore, for every regular locally principal ideal I of A, I ∩ S ̸= ∅, then the
equivalence by (1). �

Theorem 2.10 leads to the following result.

Corollary 2.16. Let A is a domain and E a K-vector space where K = qf(A). Then
A n E is an LPI ring if and only if so is A.

Example 2.17. Let A = Z(2) = {a
b | a, b ∈ Z and b is not divisible by 2} and E = Q

Z(2)
.

Then A n E is an LPI ring.

Proof. Z(2) , as a DV R, is an LPI ring.
Q

Z(2)
is a divisible (Z(2))-module since Q is a divisible (Z(2))-module. Also, Q

Z(2)
= {a

b |
a, b ∈ Z and b is divisible by 2} is a flat (Z(2))-module since it is a free module generated
by 1

2 . So A n E is an LP -ring by Theorem 2.10 (2). �
By Theorem 2.10, we are able to give new examples of LPI rings that are not Noether-

ian.

Example 2.18. Let K be a field and E be an infinite dimensional vector space over K.
Then :

(1) K n E is an LPI ring (by Corollary 2.16).
(2) K n E is not Noetherian (since E is not finitely generated and by [5, Theorem

4.8]).

Next, we will see the transfer of the LPI property to the amalgamated duplication.
Recall that an ideal J of A ◃▹ I is called homogeneous if J = K ◃▹ I for some ideal K of
A. If K is an ideal of A ◃▹ I such that 0× I ⊆ K, then K is homogeneous (see [19, Lemma
2.9]).
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Theorem 2.19. Let A be a ring and I be an ideal of A.
(1) Assume that I is flat. If A ◃▹ I is an LPI ring, then so is A.
(2) Assume that I is a non-regular finitely generated ideal of A and S−1I = I where

S = A \ Z(A). If A is an LPI ring, then so is A ◃▹ I. If furthermore I is flat,
then A is an LPI ring if and only if so is A ◃▹ I.

The proof of this theorem needs the following lemmas. The proofs of the first and third
lemma are elementary proofs and for convenience we include them here.

Lemma 2.20. Let A be a ring and I be an ideal of A. If (a, a + i) is a regular element of
A ◃▹ I, then a is a regular element of A.

Proof. Let (a, a + i) be a regular element of A ◃▹ I and b ∈ A such ab = 0. If there exists
j ∈ I such that jb ̸= 0, then (a, a + i)(bj, 0) = (0, 0), which is absurd since (a, a + i) is
regular. Hence, for all j ∈ I, jb = 0. Thus (a, a + i)(b, b) = (0, 0) and so (b, b) = (0, 0).
Hence a is a regular element of A. �
Lemma 2.21. Assume that I is a non-regular proper ideal of a ring A and S = A\(Z(A)).
The following are equivalent:

(1) All regular ideals of A ◃▹ I are homogeneous.
(2) For all a ∈ S we have I = aI which is equivalent to I = S−1I.

Proof. (1) ⇒ (2) Assume that all regular ideals of A ◃▹ I are homogeneous and let
a ∈ S. Then (a, a) is a regular element of A ◃▹ I and so ⟨(a, a)⟩ is a homogeneous ideal
of A ◃▹ I. Thus 0 × I ⊆ ⟨(a, a)⟩ = J ◃▹ I for some ideal J of A. Let i ∈ I. Then,
(0, i) = (α, α + k)(a, a) where α ∈ A and k ∈ I. Since a is a regular element of A, αa = 0
implies that α = 0. So (0, i) = (0, k)(a, a). Thus i = ka and so I = aI.

(2) ⇒ (1) Let K be a regular ideal of A ◃▹ I and let (a, a + i) ∈ K a regular element of
A ◃▹ I. By Lemma 2.20, a is a regular element of A and so ⟨(a, a + i)⟩ = (a, a + i)A ◃▹ I =
aA ◃▹ (iA + aI + iI)). Since I = aI, ⟨(a, a + i)⟩ = aA ◃▹ I. Hence 0 × I ⊆ ⟨(a, a + i)⟩ ⊆ K
and therefore K is a homogeneous ideal of A ◃▹ I. �
Remark 2.22. Let A be a ring and I be a proper regular ideal of A. Then there exists
a regular ideal of A ◃▹ I which is not homogeneous. Indeed, if we suppose that all regular
ideals of A ◃▹ I are homogeneous, then the ideal generated by (c, c), where c is a regular
element in I, is homogeneous. By the same argument in the proof of Lemma 2.21 we show
that I = cI and so c = cλ for some λ ∈ I (since c ∈ I). So, λ = 1 since c is regular.
Therefore, I = A which is absurd since I is a proper ideal of A.

Lemma 2.23. Let I and J be two ideals of a ring A. If I and J are finitely generated,
then J ◃▹ I is a finitely generated ideal of A ◃▹ I.

Proof. Assume J is generated by a family of elements {a1, a2 · · · , an} and I is generated
by a family of elements {k1, k2 · · · , kn}. Let (a, a + h) ∈ J ◃▹ I. Then, a =

∑n
i=1 αiai

where αi ∈ A for i = 1, · · · , n, and since h ∈ I, then h =
∑n

i=1 βiki where βi ∈ A for
i = 1, · · · , n. Hence,

(a, a + h) = (a, a) + (0, h) =
∑n

i=1(αi, αi)(ai, ai) +
∑n

i=1(βi, βi)(0, ki).

Hence J ◃▹ I is a finitely generated ideal of A ◃▹ I generated by

{(ai, ai)}i=1,··· ,n ∪ {(0, ki)}i=1,··· ,n.

�
Proof of Theorem 2.19. (1) Assume that I is a flat ideal of A. Then A ◃▹ I is a
faithfully flat A-module. Let J be a regular locally principal ideal of A. Then J⊗(A ◃▹ I) =
J(A ◃▹ I) since A ◃▹ I is a faithfully flat A-module. So J ⊗ (A ◃▹ I) = J(A ◃▹ I) = J ◃▹ JI
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by [11, Proposition 3.1(2)]. Since J is regular, then J ◃▹ JI is a regular ideal of A ◃▹ I. By
Proposition 2.1, J is a faithfully flat ideal of A and so J ⊗ (A ◃▹ I) = J ◃▹ JI is a faithfully
flat ideal of (A ◃▹ I). Thus it is locally principal by Proposition 2.1. Since (A ◃▹ I) is an
LPI ring, then J ⊗ (A ◃▹ I) = J ◃▹ JI is invertible which is equivalent to J ⊗ (A ◃▹ I)
is finitely generated. Since A ◃▹ I is a faithfully flat A-module, J is a finitely generated
ideal of A and so invertible. Hence A is an LPI ring.

(2) Let K be a regular locally principal ideal of A ◃▹ I. Then K is a homogeneous ideal
by Lemma 2.21. So K = J ◃▹ I for some ideal J of A. Let M be a maximal ideal of A.
Two cases are possible:
Case 1: I ⊆ M . Then M ◃▹ I is a maximal ideal of A ◃▹ I and so JM ◃▹ IM = (J ◃▹
I)M◃▹I = KM◃▹I ([12, Theorem 3.8]) is a principal ideal of (A ◃▹ I)M◃▹I . Hence JM is a
principal ideal of AM .
Case 2: I * M . Then JM = (J ◃▹ I)M◃▹I ([12, Theorem 3.5]) is a principal ideal of
(A ◃▹ I)M◃▹I . Hence JM is a principal ideal of AM .
In the both cases J is locally principal. So J is regular locally principal. Hence J is
invertible and so it is finitely generated. Thus J ◃▹ I is a finitely generated ideal of A ◃▹ I
by Lemma 2.23, and therefore, J ◃▹ I is invertible. Hence A ◃▹ I is an LPI ring. If
furthermore I is flat, then the converse follows from (1). �
Example 2.24. Let A = K nE where K is a field and E is an infinite dimensional vector
space over K and let I = 0 n F where F is a finite dimensional subspace of E . Then :

(1) A ◃▹ I is an LPI ring (by Theorem 2.19(2)).
(2) A ◃▹ I is not Noetherian (since A is not Noetherian by Example 2.18 and by

[12, Corollary 2.9]).
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