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Abstract
In this paper, the relations between Lorentz-Schatten property of the direct sum of op-
erators and Lorentz-Schatten property of its coordinate operators are studied. Then, the
results are supported by applications.
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1. Introduction
The general theory of singular numbers and operator ideals was given by Pietsch [13,14]

and the case of linear compact operators was investigated by Gohberg and Krein [5].
However, the first result in this area can be found in the works of Schmidt [16] and
Schatten, von Neumann [15]. They used these concepts in the theory of non-selfadjoint
integral equations.

Later on, the main aim of mini-workshop held in Oberwolfach (Germany) was to present
and discuss some modern applications of the functional-analytic concepts of s−numbers
and operator ideals in areas like numerical analysis, theory of function spaces, signal
processing, approximation theory, probability of Banach spaces and statistical learning
theory (see [3]).

Let H be a Hilbert space, S∞(H) be a class of linear compact operators in H and sn(T )
be the n−th singular numbers of the operator T ∈ S∞(H). The Lorentz-Schatten operator
ideals are defined as

Sp,q(H) =
{

T ∈ S∞(H) :
∞∑

n=1
n

q
p

−1
sq

n(T ) < ∞
}

, 0 < p ≤ ∞, 0 < q < ∞

and

Sp,∞(H) =
{

T ∈ S∞(H) : sup
n≥1

n
1
p sn(T ) < ∞

}
, 0 < p ≤ ∞

in [1, 13,14,17].
Let α be a positive real number. If sn(T ) ∼ cn−α, c > 0, n → ∞ for any linear compact

operator T in a Hilbert space H, then for each p ∈
(

1
α , ∞

]
and q ∈ (0, ∞), T ∈ Sp,q(H). In
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this case, the necessary and sufficient condition for the series
∞∑

n=1
n

q
p

−1−αq to be convergent

is p >
1
α

. Moreover, the necessary and sufficient condition for T ∈ Sp,∞(H) is p ∈
[

1
α , ∞

]
.

The infinite direct sum of Hilbert spaces and the infinite direct sum of operators have
been studied in [4]. Namely, the infinite direct sum of Hilbert spaces Hn, n ≥ 1 and the
infinite direct sum of operators An in Hn, n ≥ 1 are defined as

H =
∞⊕

n=1
Hn =

{
u = (un) : un ∈ Hn, n ≥ 1,

∞∑
n=1

∥un∥2
Hn

< +∞
}

,

A =
∞⊕

n=1
An,

D(A) = {u = (un) ∈ H : un ∈ D(An), n ≥ 1, Au = (Anun) ∈ H} .

Recall that H is a Hilbert space with the norm induced by the inner product

(u, v)H =
∞∑

n=1
(un, vn)Hn , u, v ∈ H.

Our aim in this paper is to study the relations between Lorentz-Schatten property of
the direct sum of operators and Lorentz-Schatten property of its coordinate operators.

It should be noted that the analogous problems in special cases have been investigated
in [8].

The problem of belonging to the Schatten-von Neuman classes of the resolvent oper-
ators of the normal extensions of the minimal operator generated by the direct sum of
differential-operator expression for first order with suitable operator coefficients in the di-
rect sum of Hilbert spaces in finite interval has been studied in [7].

In [6,9], the same problem for normal and hyponormal extensions of the minimal oper-
ators generated by corresponding differential-operator expressions under some conditions
to operator coefficients in a finite interval has been investigated.

Later on, some more general Schatten-von Neumann classes of compact operators in
Hilbert spaces have been defined and characterized in [10] in terms of Berezin symbols.
In [2], the question raised by Nordgren and Rosenthal about the Schatten-von Neumann
class membership of operators in standard reproducing kernel Hilbert spaces in terms of
their Berezin symbols has been answered.

2. Lorentz-Schatten property of block diagonal operator matrices
Let Hn be a Hilbert space, An ∈ L(Hn) for n ≥ 1 and

H =
∞⊕

n=1
Hn, A =

∞⊕
n=1

An.

Recall that, in order to A ∈ L(H) the necessary and sufficient condition is sup
n≥1

∥An∥ < ∞.

Moreover, ∥A∥ = sup
n≥1

∥An∥ (see [11]).

It is known that if An ∈ S∞(Hn) for n ≥ 1, then the necessary and sufficient condition
for A ∈ S∞(H) is lim

n→∞
∥An∥ = 0 (see [12]).

The following result on singular numbers of the operator A ∈ S∞(H)

{sm(A) : m ≥ 1} =
∞∪

n=1
{sm(An) : m ≥ 1}

can be found in [8].
Throughout this paper, for the simplicity we assume that:
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(1) for any n, k ≥ 1 with n ̸= k, {sm(An) : m ≥ 1} ∩ {sm(Ak) : m ≥ 1} = ∅ or {0};
(2) for any n ≥ 1 in the sequence (sm(An)) , if for some k > 1, sk(An) > 0, then sk(An) <
sk−1(An).

Proposition 2.1. For n ≥ 1 there is a strongly increasing sequence k
(n)
m : N → N such

that s
k

(n)
m

(A) = sm(An) holds for m ≥ 1 and
∞∪

n=1

∞∪
m=1

{
k

(n)
m

}
= N. Moreover, it is clear

that k
(n)
m ≥ m for n, m ≥ 1.

Indeed, in the Hilbert space H =
∞⊕

n=1
Hn = l2(R), where Hn = (R, | . |), consider the

following infinite matrices with reel entries in forms

A =



a1
a2

a3 0
. . .

0 an

. . .


: H → H

and

B =



b1
b2

b3 0
. . .

0 bn

. . .


: H → H,

where for any n, m ≥ 1, n ̸= m, an ̸= am, an > 0 and bn = an + an+1
2

with property
lim

n→∞
an = 0.

In this case, A, B ∈ S∞(H) and the singular numbers of the operators A, B are given
in the following forms

{sm(An) : m ≥ 1} = {an : n ≥ 1} ,

{sm(Bn) : m ≥ 1} = {bn : n ≥ 1} ,

respectively. Then, by [12] it implies that T = A⊕B ∈ S∞(H⊕H) and {sm(T ) : m ≥ 1} =
{an, bn : n ≥ 1}. In this case, it is easy to see that

k(1)
m = 2m − 1, m ≥ 1,

k(2)
m = 2m, m ≥ 1.

Theorem 2.2. Let 0 < p, q < ∞. A ∈ Sp,q(H) if and only if the series
∞∑

n=1

∞∑
m=1

(
k(n)

m

) q
p

−1
sq

m(An)

is convergent.

Proof. If A ∈ Sp,q(H), it is clear that the series
∞∑

m=1
m

q
p

−1
sq

m(A)
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is convergent. From the structure of the set of the singular numbers of the operator A
and the important theorem on the convergent of the rearrangement series it is obtained
that the series ∞∑

n=1

∞∑
m=1

(
k(n)

m

) q
p

−1
sq

m(An)

is convergent. �

Conversely, if the series in the theorem is convergent, then
∞∑

m=1
m

q
p

−1
sq

m(A), which is

the rearrangement of the above series, is convergent. So, A ∈ Sp,q(H).

Now, in Theorem 2.3-2.5, we will investigate the problem of belonging to Lorentz-
Schatten classes of its coordinate operators, if the direct sum of operators belongs to
Lorentz-Schatten classes.
Theorem 2.3. Let A ∈ S∞(H) and 0 < p ≤ q < ∞. If A ∈ Sp,q(H), then An ∈ Sp,q(Hn)
for n ≥ 1.

Proof. In the special case 0 < p = q < ∞, the result has been proved in [8].

In the case of p < q, we have
m ≤ k(n)

m and s
k

(n)
m

(A) = sm(An)

for n, m ≥ 1. Consequently, for n ≥ 1 we get
∞∑

m=1
m

q
p

−1
sq

m(An) ≤
∞∑

m=1

(
k(n)

m

) q
p

−1
sq

m(An)

≤
∞∑

n=1

∞∑
m=1

(
k(n)

m

) q
p

−1
sq

m(An)

=
∞∑

m=1
m

q
p

−1
sq

m(A) < ∞.

Hence, An ∈ Sp,q(Hn) for n ≥ 1. �

Theorem 2.4. Let 0 < q < p < ∞ and for n ≥ 1, sup
m≥1

(
k

(n)
m

m

)
≤ γ < ∞. If A ∈ Sp,q(H),

then An ∈ Sp,q(Hn) for n ≥ 1.

Proof. Under the assumptions in the theorem, we have
∞∑

m=1
m

q
p

−1
sq

m(An) =
∞∑

m=1

(
m

k
(n)
m

) q
p

−1 (
k(n)

m

) q
p

−1
sq

m(An)

≤ sup
m≥1

(
k

(n)
m

m

)1− q
p ∞∑

m=1

(
k(n)

m

) q
p

−1
sq

m(An)

≤ γ
1− q

p

∞∑
n=1

∞∑
m=1

(
k(n)

m

) q
p

−1
sq

m(An)

= γ
1− q

p

∞∑
j=1

j
q
p

−1
sq

j(A) < ∞.

Therefore, An ∈ Sp,q(Hn) for n ≥ 1. �
Now, we will investigate the case of q = ∞.
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Theorem 2.5. Let 0 < p ≤ ∞. If A ∈ Sp,∞(H), then An ∈ Sp,∞(Hn) for n ≥ 1.

Proof. Since A ∈ Sp,∞(H), we have sup
m≥1

m
1
p sm(A) < ∞. Hence, sup

m≥1

(
k

(n)
m

) 1
p sm(An) <

∞. On the other hand, we get

sup
m≥1

m
1
p sm(An) = sup

m≥1

(
k(n)

m

) 1
p sm(An)

(
m

k
(n)
m

) 1
p

≤ sup
m≥1

(
k(n)

m

) 1
p sm(An) < ∞.

Then, An ∈ Sp,∞(Hn) for n ≥ 1. �

Now, in Theorem 2.6-2.8, we will investigate the problem of belonging to Lorentz-
Schatten classes of the direct sum of operators, if its coordinate operators belong to
Lorentz-Schatten classes.

Theorem 2.6. Let 0 < q ≤ p < ∞. If An ∈ Sp,q(Hn) for n ≥ 1 and the series
∞∑

n=1

∞∑
m=1

m
q
p

−1
sq

m(An) is convergent, then A ∈ Sp,q(H).

Proof. For 0 < q ≤ p < ∞, we have
∞∑

m=1
m

q
p

−1
sq

m(A) =
∞∑

n=1

∞∑
m=1

(
k(n)

m

) q
p

−1
sq

k
(n)
m

(A)

=
∞∑

n=1

∞∑
m=1

(
k

(n)
m

m

) q
p

−1

m
q
p

−1
sq

m(An)

≤
∞∑

n=1

∞∑
m=1

m
q
p

−1
sq

m(An) < ∞.

This completes the proof. �

Theorem 2.7. Let 0 < p < q < ∞, for n ≥ 1
∞∑

m=1
m

q
p

−1
sq

m(An) ≤ βn < ∞, sup
m≥1

(
k

(n)
m

m

)
≤

γn < ∞ and
∞∑

n=1
γ

q
p

−1
n βn < ∞. If An ∈ Sp,q(Hn) for n ≥ 1, then A ∈ Sp,q(H).

Proof. The validity of this claim is clear from the following inequality
∞∑

m=1
m

q
p

−1
sq

m(A) =
∞∑

n=1

∞∑
m=1

(
k(n)

m

) q
p

−1
sq

k
(n)
m

(A)

=
∞∑

n=1

∞∑
m=1

(
k

(n)
m

m

) q
p

−1

m
q
p

−1
sq

m(An)

≤
∞∑

n=1

(
sup
m≥1

(
k

(n)
m

m

)) q
p

−1 ∞∑
m=1

m
q
p

−1
sq

m(An)

≤
∞∑

n=1
γ

q
p

−1
n βn.

�

Now, we will investigate in the case of q = ∞.
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Theorem 2.8. Let 0 < p < ∞, for n ≥ 1 αn = sup
m≥1

(
k

(n)
m

m

) 1
p

< ∞, γn = sup
m≥1

m
1
p sm(An)

and sup
n≥1

αnγn < ∞. If An ∈ Sp,∞(Hn) for n ≥ 1, then A ∈ Sp,∞(H).

Proof. This result is clear from the following relation

sup
m≥1

m
1
p sm(A) = sup

n,m≥1

(
k(n)

m

) 1
p s

k
(n)
m

(A)

= sup
n,m≥1

(
k(n)

m

) 1
p sm(An)

≤ sup
n≥1

sup
m≥1

(
k

(n)
m

m

) 1
p

sup
m≥1

m
1
p sm(An)


= sup

n≥1
αnγn < ∞.

�
Theorem 2.9. Let 0 < pn, qn < ∞, An ∈ Spn,qn(Hn) for n ≥ 1 and p = sup

n≥1
pn < ∞, q =

sup
n≥1

qn < ∞. Then, A ∈ Sp,q(H) if and only if the series
∞∑

n=1

∞∑
m=1

(
k

(n)
m

) q
p

−1
sq

m(An) is

convergent.

Proof. From the result in [1], we have An ∈ Sp,q(Hn) for n ≥ 1. Therefore, the validity
of this claim is implied by Theorem 2.2. �
Remark 2.10. Using this method, the analogous researches for the following operators

B =



0 B1
0 B2

0 B3 0
. . . . . .

0 0 Bn

. . . . . .


: H =

∞⊕
n=1

Hn → H

and

C =



0
C1 0

C2 0 0
. . . . . .

0 Cn 0
. . . . . .


: H =

∞⊕
n=1

Hn → H

can be studied.
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3. Examples
In this section, we provide some examples as applications of our theorems.

Example 3.1. In the Hilbert space H =
∞⊕

n=1
Hn = l2(C), where Hn := (C, | . |), n ≥ 1,

consider the following diagonal infinite matrix with complex entries

A =



a1
a2

a3 0
. . .

0 an

. . .


: H → H

under the condition |an| < r < 1, n ≥ 1. Then, lim
n→∞

an = 0. In this case, A ∈ S∞(H). If
we define An := an for n ≥ 1, then sm(An) = |λ(An)| = {|an|, 0} , m ≥ 1.
Hence, the singular numbers of the operator A are given as

{sm(A) : m ≥ 1} = {|an| : n ≥ 1} .

On the other hand, for n ≥ 1 and 0 < q ≤ p < ∞ we get
∞∑

m=1
m

q
p

−1
sq

m(An) = |an|q.

Then, An ∈ Sp,q(Hn), n ≥ 1, 0 < q ≤ p < ∞. Therefore, we have
∞∑

n=1

∞∑
m=1

m
q
p

−1
sq

m(An) =
∞∑

n=1
|an|q < ∞.

Hence, by Theorem 2.6, A ∈ Sp,q(H).

Example 3.2. Let Hn := (C2, | . |2), H :=
∞⊕

n=1
Hn = l2(C2), An =

(
0 α2n−1

α2n 0

)
for

n ≥ 1, 0 < |α| < 1 and A =
∞⊕

n=1
An : H → H. Then A ∈ S∞(H) (see [12]).

In this case, for n ≥ 1 we get
∥An∥ = |α|2n−1,

{sm(An) : m ≥ 1} = {|α|2n−1, |α|2n}
and

{sm(A) : m ≥ 1} = {|α|n : n ≥ 1}.

On the other hand, for n ≥ 1 and 0 < q ≤ p < ∞ we obtain
∞∑

m=1
m

q
p

−1
sq

m(An) = |α|(2n−1)q + 2
q
p

−1|α|2nq < ∞.

Hence, An ∈ Sp,q(Hn), n ≥ 1, 0 < q ≤ p < ∞. Therefore, we have
∞∑

n=1

∞∑
m=1

m
q
p

−1
sq

m(An) =
∞∑

n=1

(
|α|(2n−1)q + 2

q
p

−1|α|2nq
)

= |α|q

1 − |α|2q

(
1 + 2

q
p

−1|α|q
)

< ∞.

Hence, by Theorem 2.6, A ∈ Sp,q(H).
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