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Abstract
In this paper, we consider the submanifold M of a Kenmotsu manifold M̃ endowed with
torqued vector field T. Also, we study the submanifold M admitting a Ricci soliton of
both Kenmotsu manifold M̃ and Kenmotsu space form M̃(c). Indeed, we provide some
necessary conditions for which such a submanifold M is an η−Einstein. We have presented
some related results and classified. Finally, we obtain an important characterization which
classifies the submanifold M admitting a Ricci soliton of Kenmotsu space form M̃(c).
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1. Introduction

Hamilton introduced the concept of Ricci soliton, which is a natural generalization
of Einstein manifold, in 1982 [11]. This notion actually corresponds to the self-similar

solution of Hamilton’s Ricci flow: ∂

∂t
g = −2S̃, viewed as a dynamical system on the space

of Riemannian metrics modulo diffeomorphims and scaling, (for details, see [12]).
In the framework of the contact geometry, Sharma started the studying of the problem

of the Ricci solitons in K-contact manifolds in [18]. After this work, Ricci solitons have
been investiaged in some different classes of contact geometry. For instance, it is proved
by Ghosh that the constant curvature of a Kenmotsu 3−manifold as Ricci soliton is −1 in
[10]. Then, Perktaş and Keleş proved that if a 3−dimensional normal almost paracontact
metric manifold admits a Ricci soliton then it is shrinking in [17]. For more details, see
([1, 2, 8, 9, 16,19,21]).

Consider the following equation on a Riemannian manifold (M̃, g)
(£V g)(X, Y ) + 2S̃(X, Y ) + 2λg(X, Y ) = 0, (1.1)

where £V g is the Lie-derivative of the metric tensor g in the direction vector field V , S̃ is
the Ricci tensor of M̃ and λ is a constant. (M̃, g) is called a Ricci soliton if the equation
(1.1) holds for vector fields X, Y on M̃ . The vector field V is called the potential field of
Ricci soliton (M̃, g). If £V g = ρg, then potential field V is said to be conformal Killing,
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where ρ is a function. If ρ vanishes identically, then V is said to be Killing. Also, if V is
zero or Killing in (1.1), then the Ricci soliton is called trivial and in this case, the metric
is an Einstein. In addition, a Ricci soliton is called a gradient if the potential field V is
the gradient of a potential function −f (i.e., V = −∇f) and is called shrinking, steady or
expanding depending on λ < 0, λ = 0 or λ > 0, respectively.

On the other hand, Riemannian manifolds which admit torqued vector fields (as a
combination of concurrent and recurrent vector fields) were first defined by Chen in [6].
According to this definition, a nowhere zero vector field T on a Riemannian manifold
(M̃, g) is called torqued vector field, if it satisfies the following two conditions

∇̃XT = fX + α(X)T and α(T) = 0, (1.2)

where ∇̃ is the Levi-Civita connection on M̃ , for any X ∈ Γ(TM̃). The function f is
called the torqued function and 1−form α is called the torqued form of T. Here, Chen
characterized rectifying submanifolds for a Riemannian manifold endowed with torqued
vector field in [6]. Then, Chen proved that every Ricci soliton with torqued potential field
is an almost quasi-Einstein under some conditions (see [7]).

The paper is organized as follows:

In Section 2, we recall some basic notions which are going to be needed.

In Section 3, we consider the submanifold M of Kenmotsu manifold M̃ endowed with a
torqued vector field T and find that the characteristic vector field ξ of M̃ is never torqued
on the ambient space M̃ . Also, we give a necessary and sufficient condition for which the
tangential part T⊤ of T is torse-forming on M .

In Section 4, we deal with Kenmotsu space form M̃(c) endowed with a torqued vector
field T and give some characterizations on a submanifold admitting a Ricci soliton of M̃(c).

The last section is devoted to conclusion. Here, we present our results which are obtained
in this paper.

2. Preliminaries

In this section, we shall review some basic definitions and formulas of almost contact
metric manifolds from [3,4, 15,20] and [22].

Let M̃ be an (2n + 1)−dimensional almost contact metric manifold with an almost
contact metric structure (φ, ξ, η, g) such that φ is a tensor field of type (1, 1), ξ is a vector
field (called the characteristic vector field) of type (0, 1), 1− form η is a tensor field of
type (1, 0) on M̃ and the Riemannian metric g satisfies the following relations:

φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0, η(X) = g(X, ξ) (2.1)

and

g(φX, φY ) = g(X, Y ) − η(X)η(Y ), g(φX, Y ) = −g(X, φY ) (2.2)

for any X, Y ∈ Γ(TM̃).

If the following condition is satisfied for an almost contact metric manifold (M̃, φ, ξ, η, g),
then it is called a Kenmotsu manifold

(∇̃Xφ)Y = g(φX, Y )ξ − η(Y )φX, (2.3)

where ∇̃ is the Levi-Civita connection on M̃ , for any X, Y ∈ Γ(TM̃). From (2.3), for a
Kenmotsu manifold we also have

∇̃Xξ = X − η(X)ξ. (2.4)



On submanifolds of Kenmotsu manifold with Torqued vector field 845

On the other hand, a Kenmotsu manifold M̃ with constant φ−sectional curvature c is
said to be a Kenmotsu space form and it is denoted by M̃(c). The curvature tensor R̃ of
a Kenmotsu space form is given by

R̃(X, Y )Z = c − 3
4

{
g(Y, Z)X − g(X, Z)Y

}
+c + 1

4

{[
η(X)Y − η(Y )X

]
η(Z)

+
[
g(X, Z)η(Y ) − g(Y, Z)η(X)

]
ξ

+g(φY, Z)φX − g(φX, Z)φY − 2g(φX, Y )φZ
}

(2.5)

for any X, Y, Z ∈ Γ(TM̃).
Let M be isometrically immersed submanifold of Kenmotsu manifold M̃ . For any

X, Y ∈ Γ(TM), we have
∇̃XY = ∇XY + h(X, Y ), (2.6)

where ∇̃ and ∇ stand for the Levi-Civita connections on M̃ and M , respectively. Then,
the equality (2.6) is called the Gauss formula and h is called the second fundamental
form of M . Also, if the second fundamental form h vanishes identically in (2.6), then the
submanifold M is called totally geodesic. Similarly, one has

∇̃U V = −AV U + ∇⊥
U V, (2.7)

where AV and ∇⊥ denote the shape operator and the normal connection of M in the
ambient space M̃ , respectively, for any U ∈ Γ(TM) and V ∈ Γ(TM⊥). Using (2.4) and
(2.6), it follows that

∇Xξ = X − η(X)ξ, (2.8)
h(X, ξ) = 0, (2.9)

where ∇ is the Levi-Civita connection of M .
Also, it is well known that the relation between second fundamental form h and the

shape operator AV are related by
g(AV X, Y ) = g(h(X, Y ), V ) (2.10)

for any X, Y ∈ Γ(TM). Here, we denote by the same symbol g the Riemannian metric
induced by g on M̃ .

The equation of Gauss is given by
g(R(X, Y )Z, W ) = g(R̃(X, Y )Z, W ) + g(h(X, W ), h(Y, Z))

−g(h(X, Z), h(Y, W )) (2.11)
for any X, Y, Z, W ∈ Γ(TM).

We denote by H the mean curvature vector, that is,

H(p) = 1
n

n∑
i=1

h(ei, ei),

where {e1, e2, ..., en = ξ} is an orthonormal basis of the tangent space TpM , p ∈ M . As it
is known, M is called minimal if H vanishes identically.

The submanifold M is ω−umbilical with respect to a normal vector field ω if its shape
operator satisfies Aω = µI, where µ is a function on M and I is the identity map.

Furthermore, the submanifold M is said to be totally umbilical if and only if one has
h(X, Y ) = g(X, Y )H (2.12)
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for any X, Y ∈ Γ(TM), where h and H denote the second fundamental form and the mean
curvature vector, respectively.

The scalar curvature r of (M, g) is defined by

r =
n∑

i=1
S(ei, ei),

where {e1, e2, ..., en = ξ} is an orthonormal frame of TM and S is the Ricci tensor of M .

Now, we recall some definitions from ([7, 14,22]), as follows:

A Riemannian manifold (M̃, g) is called η−Einstein if there exists two real constants a
and b such that the Ricci curvature tensor field S̃ satisfies

S̃(X, Y ) = ag(X, Y ) + bη(X)η(Y )

for any X, Y ∈ Γ(TM̃). If the constant b is equal to zero, then M̃ becomes an Einstein.

The Ricci tensor S̃ of a Kenmotsu manifold (M̃, g) is called η−parallel if it satisfies

(∇̃X S̃)(φY, φZ) = 0

such that

(∇̃X S̃)(φY, φZ) = ∇̃X S̃(φY, φZ) − S̃(∇̃XφY, φZ) − S̃(φY, ∇̃XφZ)

for any X, Y, Z ∈ Γ(TM̃).

A vector field v on a Riemannian manifold (M̃, g) is called torse-forming if it satisfies

∇̃Xv = fX + α(X)v, (2.13)

where f is a function, α is a 1−form and ∇̃ is the Levi-Civita connection on M̃ , for any
X ∈ Γ(TM̃). The 1−form α is called the generating form and the function f is called the
conformal scalar of v.

If the 1−form α in (2.13) vanishes identically, then the vector field v is called concircular
[5]. If f = 1 and α = 0, then the vector field v is called concurrent [23]. The vector field
v is called recurrent if it satisfies (2.13) with f = 0. Also, if f = α = 0, the vector field v
in (2.13) is called parallel.

Let M̃ be a Kenmotsu manifold endowed with a torqued vector field T and ϕ : M → M̃
be an isometric immersion. Then, we get

T = T⊤ + T⊥, (2.14)

where T⊤ and T⊥ the tangential and normal components of T on M̃ , respectively.

3. The submanifolds admitting Ricci soliton of Kenmotsu manifolds
In this section, we deal with the submanifold M of Kenmotsu manifold M̃ endowed

with torqued vector field T.

From now on, we make the following:

Assumption. Throughout the paper, we suppose that the characteristic vector field ξ is
tangent to M .

Theorem 3.1. Let M̃ be a Kenmotsu manifold endowed with a torqued vector field T.
Then, the characteristic vector field ξ is never torqued vector field on M̃ .
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Proof. Since T is a torqued vector field on M̃ , then we have
∇̃XT = fX + α(X)T and α(T) = 0, (3.1)

where ∇̃ stands for the Levi-Civita connection on M̃ , for any X ∈ Γ(TM̃).
Suppose that ξ is a torqued vector field on M̃ . Using ξ instead of T in equation (3.1),

one has
∇̃Xξ = fX + α(X)ξ and α(ξ) = 0. (3.2)

Also, taking the inner product of (3.2) with ξ, we have
α(X) = −fη(X).

Therefore, the equation (3.2) reduces to
∇Xξ = f(X − η(X)ξ). (3.3)

It follows from (2.8) and (3.3),
f = 1 and α(X) = −η(X) (3.4)

are found.
On the other hand, if we take the characteristic vector field X = ξ in (3.4), then we

find
α(ξ) = −1 (3.5)

which is a contradiction. Hence, ξ is never torqued vector field on Kenmotsu manifold
M̃ . �

The next example supports Theorem 3.1, as follows:

Example 3.2. ([13]). We consider the three-dimensional Riemannian manifold
M̃ = {(x, y, z) ∈ R3, (x, y, z) ̸= (0, 0, 0)},

and the linearly independent vector fields

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = −z

∂

∂z
,

where (x, y, z) are the Cartesian coordinates in R3. Let g be the Riemannian metric
defined by

g(ei, ei) = 1
g(ei, ej) = 0 for i ̸= j.

and is given by

g = 1
z2

{
dx ⊗ dx + dy ⊗ dy + dz ⊗ dz

}
.

Also, let η, φ be the 1− form and the (1, 1)−tensor field, respectively defined by
η(Z, e3) = 1, φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0

for any Z ∈ Γ(TM̃). Hence, (M̃, φ, ξ, η, g) becomes an almost contact metric manifold
with the characteristic vector field e3 = ξ.

By direct calculations, we have
[e1, e2] = 0, [e1, e3] = e1 and [e2, e3] = e2.

On the other hand, using Koszul’s formula for the Riemannian metric g, we have:
∇̃e1e3 = e1, ∇̃e2e3 = e2, ∇̃e3e3 = 0 (3.6)



848 H. İ. Yoldaş, Ş. E. Meriç, E. Yaşar

and others
∇̃e1e2 = ∇̃e2e1 = ∇̃e3e1 = ∇̃e3e2 = 0, ∇̃e1e1 = ∇̃e2e2 = −e3. (3.7)

Therefore, the manifold M̃ is a 3−dimensional Kenmotsu manifold. Now, we suppose that
e3 = ξ is a torqued vector field on M̃ . Then,

∇̃e1ξ = fe1 + α(e1)ξ and α(ξ) = 0 (3.8)
∇̃e2ξ = fe2 + α(e2)ξ and α(ξ) = 0 (3.9)
∇̃e3ξ = fe3 + α(e3)ξ and α(ξ) = 0. (3.10)

are satisfied. From (3.6), (3.8), (3.9) and (3.10), we get
f = 1 and α(e3) = α(ξ) = −1 ̸= 0, (3.11)

which is a contradiction. Therefore, e3 = ξ is never torqued vector field on Kenmotsu
manifold M̃ .

Considering Theorem 3.1, we get the following:

Remark 3.3. Let M be a submanifold endowed with a torqued vector field T of a Ken-
motsu manifold M̃ . Then, the characteristic vector field ξ is never torqued on M .

Next, we have the following theorem.

Theorem 3.4. Let M be a submanifold of a Kenmotsu manifold M̃ endowed with a
torqued vector field T. The submanifold M is totally geodesic if and only if the tangential
component T⊤ of T is a torse-forming vector field on M whose conformal scalar is the
restriction of the torqued function and whose generating form is the restriction of the
torqued function of T on M .

Proof. Since T is a torqued vector field on the ambient space M̃ , it follows from (1.2),
(2.14) and the formulas of Gauss and Weingarten, one has

∇XT⊤ + h(X,T⊤) − AT⊥X + ∇⊥
XT⊥ = fX + α(X)T⊤ + α(X)T⊥, (3.12)

where ∇ stands for the Levi-Civita connection on M , for any X ∈ Γ(TM). By comparing
the tangential and normal components of (3.12), we get

h(X,T⊤) + ∇⊥
XT⊥ = α(X)T⊥,

∇XT⊤ − AT⊥X = fX + α(X)T⊤. (3.13)
If M is a totally geodesic submanifold of M̃ , then the equation (3.13) becomes

∇XT⊤ = fX + α(X)T⊤, (3.14)
which implies that T⊤ is a torse-forming on M . The proof of the converse part is straight-
forward. �

Considering the equality (3.13), we have the following cases:
From now on, we suppose that the submanifold M admits a Ricci soliton in Theorem 3.4.

Case I: If we take T⊤ ∈ Γ(D), then from (2.4), (2.9), (2.10) and (3.13) we get

g(∇XT⊤, ξ) = g(fX, ξ), (3.15)
where TM = D ⊕ Span{ξ}, for any X ∈ Γ(TM). Since the Riemannian metric g is
non-degenere, we have

∇XT⊤ = fX, (3.16)
which shows that the vector field T⊤ is a concircular on M .
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On the other hand, from the definition of Lie-derivative and (3.16) one has
(£T⊤g)(X, Y ) = g(∇XT⊤, Y ) + g(∇Y T

⊤, X)
= 2fg(X, Y ) (3.17)

for any X, Y ∈ Γ(TM), which means that the vector field T⊤ is a conformal Killing. Also,
from (1.1) and (3.17), we obtain

S(X, Y ) = −(λ + f)g(X, Y ),
where S is the Ricci tensor of M . Hence, M is an Einstein.

Case II: If we take T⊤ ∈ Γ(D), then it follows from (3.15), we have
g(∇XT⊤, ξ) = 0 (3.18)

for any X ∈ Γ(D). As a consequence of the equation (3.18), T⊤ is a parallel vector field
on distribution D and thus, T⊤ is a D−Killing vector field.

On the other side, using (1.1) and (3.18) the Ricci tensor SD of the distribution D

SD(X, Y ) = −λg(X, Y )
is found. Therefore, the distribution D is an Einstein.

Case III: If we use ξ instead of T⊤ in (3.14), we have
∇Xξ = fX + α(X)ξ (3.19)

for any X ∈ Γ(TM). Taking the inner product of (3.19) with ξ, we get
g(∇Xξ, ξ) = fη(X) + α(X)

which yields
α(X) = −fη(X).

It is easy to see that α(ξ) ̸= 0. So, ξ is a torse-forming on M .
Using the equality (3.13), we have the following:

Corollary 3.5. Let M be a submanifold of a Kenmotsu manifold M̃ endowed with a
torqued vector field T. If M is T⊥−umbilical, then T⊤ is a torse-forming on M .

The next theorem gives a characterization as follows:

Theorem 3.6. Let M̃ be a Kenmotsu manifold endowed with a torqued vector field T and
M be a submanifold admitting a Ricci soliton of M̃ . Then, (M, g, ξ, λ) is an η−Einstein.

Proof. If we take ξ instead of T⊤ in (3.13), we have
∇Xξ − AT⊥X = fX + α(X)ξ. (3.20)

From the equalities (2.4), (2.6) and (3.20), we get
AT⊥X = (1 − f)X − (η(X) + α(X))ξ. (3.21)

Also, if we use the relations (2.1), (2.10) and (3.21), one has
g(h(X, Y ),T⊥) = (1 − f)g(X, Y ) − (η(X) + α(X))η(Y ). (3.22)

Interchanging the roles of X and Y in (3.22) gives
g(h(Y, X),T⊥) = (1 − f)g(Y, X) − (η(Y ) + α(Y ))η(X). (3.23)

Since h and g are symmetric, from (3.22) and (3.23) we have
2g(h(X, Y ),T⊥) = 2(1 − f)g(X, Y ) − 2η(X)η(Y )

−α(X)η(Y ) − α(Y )η(X) (3.24)
for any X, Y ∈ Γ(TM).
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On the other hand, from the definition of Lie-derivative and (2.1), (2.10), (3.20) and
(3.24), we obtain

(£ξg)(X, Y ) = g(∇Xξ, Y ) + g(∇Y ξ, X)
= g(fX + α(X)ξ + AT⊥X, Y )

+ g(fY + α(Y )ξ + AT⊥Y, X)
= 2g(X, Y ) − 2η(X)η(Y ). (3.25)

Since M is a submanifold admitting a Ricci soliton and from the equalities (1.1) and
(3.25), the Ricci tensor S of M

S(X, Y ) = −(λ + 1)g(X, Y ) + η(X)η(Y ) (3.26)

is satisfied. This means M is an η-Einstein. �

As a consequence of Theorem 3.6, we can state the followings:

Corollary 3.7. Let M̃ be a Kenmotsu manifold endowed with a torqued vector field T and
M be a submanifold admitting a Ricci soliton as its potential field ξ of M̃ . Then, M has
η−parallel Ricci tensor.

Corollary 3.8. Let M̃ be a Kenmotsu manifold endowed with a torqued vector field T and
M be a n−dimensional submanifold admitting a Ricci soliton as its potential field ξ of M̃ .
Then, M has constant scalar curvature r given by

r = 1 − n(λ + 1).

4. Ricci solitons in Kenmotsu space form with torqued vector field
In this section, we investigate the submanifolds admitting a Ricci soliton of Kenmotsu

space form M̃(c) endowed with torqued vector field T.

Now, we are ready to give the next theorem as follows:

Theorem 4.1. Let M̃(c) be a Kenmotsu space form and M be a n−dimensional subman-
ifold of M̃(c). If M is totally umbilical and the mean curvature ∥H∥ is constant, then M
is η−Einstein.

Proof. Let {e1, e2, ..., en−1, ξ} be an orthonormal basis of TpM , p ∈ M . From the defini-
tion of the Ricci tensor, we have

S(Y, Z) =
n−1∑
i=1

g(R(ei, Y )Z, ei) + g(R(ξ, Y )Z, ξ), (4.1)

where R is the Riemann curvature tensor of the submanifold M .
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If we put X = W = ei in (2.11) and use the equalities (2.1), (2.2), (2.5), (2.9) and
(2.12), then one has

n−1∑
i=1

g(R(ei, Y )Z, , ei) =
n−1∑
i=1

g(R̃(ei, Y )Z, ei) − g(h(ei, ei), h(Y, Z))

+g(h(ei, Z), h(Y, ei))

=
n−1∑
i=1

c − 3
4

{
g(Y, Z)g(ei, ei) − g(ei, Z)g(Y, ei)

}
+c + 1

4

{
3g(ei, φY )g(φZ, ei) − η(Y )η(Z)g(ei, ei)

}
+

n−1∑
i=1

(
g(ei, Z)g(Y, ei) − (g(ei, ei)g(Y, Z)

)
∥H∥2

= c − 3
4

{
(n − 2)g(Y, Z) + η(Y )η(Z)

}
+c + 1

4

{
3g(Y, Z) − (n + 2)η(Y )η(Z)

}
+

(
(n − 2)g(Y, Z)) + η(Y )η(Z)

)
∥H∥2 . (4.2)

Similarly, taking X = W = ξ in (2.11), we get
g(R(ξ, Y )Z, ξ) = g(R̃(ξ, Y )Z, ξ) = η(Y )η(Z) − g(Y, Z) (4.3)

for any Y, Z ∈ Γ(TM). Then, using (4.2) and (4.3) in (4.1), the Ricci tensor S of M

S(Y, Z) =
(c(n + 1) − 3n + 5

4
+ (n − 2)∥H∥2

)
g(Y, Z)

−
(c(n + 1) + n + 1

4
− ∥H∥2

)
η(Y )η(Z) (4.4)

is obtained which means that M is an η−Einstein. This completes the proof. �
Theorem 4.2. Let M̃(c) be a Kenmotsu space form endowed with a torqued vector field
T and M be an n−dimensional (n > 1) totally umbilical submanifold admitting a Ricci
soliton of M̃ . Then, M has a constant mean curvature.

Proof. If we put Y = Z = ξ in (3.26) and using (2.1) and (2.2), we get
S(ξ, ξ) = −λ. (4.5)

Similarly, if we take Y = Z = ξ in (4.4) and also using (2.1) and (2.2), then we have
S(ξ, ξ) = (1 − n)(1 − ∥H∥2 ). (4.6)

Since M is a Ricci soliton, from the equalities (4.5) and (4.6),

∥H∥2 = 1 − λ

n − 1
(4.7)

is obtained which completes the proof of the theorem. �

Using the equality (4.7), we can state the following corollary:

Corollary 4.3. Let M̃(c) be a Kenmotsu space form endowed with a torqued vector field
T and M be an n−dimensional (n > 1) totally umbilical submanifold admitting a Ricci
soliton of M̃ . Then, we have the following:
i) If ∥H∥ < 1, then the Ricci soliton (M, g, ξ, λ) is expanding.
ii) If ∥H∥ > 1, then the Ricci soliton (M, g, ξ, λ) is shrinking.
iii) The Ricci soliton (M, g, ξ, λ) is steady if and only if ∥H∥ = 1.
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5. Conclusion
Ricci soliton is a natural generalization of Einstein manifold. This notion corresponds

to the self-similar solution of Hamilton’s Ricci flow. Over the last decades, the geometry of
Ricci solitons has been studied by many mathematicians. In 2008, Sharma applied Ricci
solitons to K−contact manifolds and launched the study of Ricci solitons. Since then,
Ricci solitons have been studied. In this paper, we deal with the submanifold admitting a
Ricci soliton of a Kenmotsu manifold endowed with torqued vector field T. We find that
the characteristic vector field ξ is never torqued on submanifold M of Kenmotsu manifold
M̃ . We obtain a necessary and sufficient condition for the tangential part T⊤ of T to
be a torse-forming on M . Also, we prove that if M admits a Ricci soliton, then it is an
η−Einstein. Finally, we study the submanifold M admitting a Ricci soliton of a Kenmotsu
space form M̃(c) endowed with a torqued vector field T and obtain that if M admits a
Ricci soliton as its potential field ξ, then it is an expanding.
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