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Abstract
We improve some fixed point theorems by stating a fixed point result for semigroups of
monotone operators in the setting of ordered Banach spaces with a normal cone. We
illustrate the usefulness of our results by proving the existence and conditional unicity of
a solution of an initial value problem for discontinuous nonlinear functional-differential
equations under natural hypotheses involving the order structure of the underlying space.
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1. Introduction
Since semigroups of self-mappings generalize powers of a self-mapping, it is natural to

study their fixed points using the well-known technique of applying a contracting mapping
principle to some power of that self-mapping. We will, in this paper, use the following
generalized version of Banach contraction principle in the framework of partially ordered
metric spaces; see also [13, Th. 2.1] for the first result given in this direction.

Theorem 1.1 ([12, Theorems 2.2–2.5]). Let (X, d) be a complete metric space endowed
with a partial ordering ≤. Let T : X → X be a nondecreasing (order-preserving) mapping
with the contraction condition

∃k ∈ (0, 1) ∀x, y ∈ X (x ≤ y ⇒ d(Tx, Ty) ≤ kd(x, y)). (1.1)
Assume that (X, d, ≤) is such that one of the the following conditions holds:

for any nondecreasing sequence (xn) ⊂ X, if xn → x in X, then xn ≤ x ∀n ∈ N,
and there exists x0 ∈ X with x0 ≤ Tx0;

(1.2)
for any nonincreasing sequence (xn) ⊂ X, if xn → x in X, then x ≤ xn ∀n ∈ N,

and there exists x0 ∈ X with Tx0 ≤ x0.
(1.3)
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Assume furthermore that every pair of elements of X has a lower or an upper bound.
Then, T has a unique fixed point x∗ in X and the iterative sequence (T nx) converges to
x∗ for every x ∈ X.

Conditions (1.2) and (1.3) hold in the setting of ordered Banach spaces E, in which we
will improve the following two known fixed point theorems when we restrict our attention
to monotone operators T on a closed set C ⊂ E (this is so common since we deal in this
case with operators preserving the order structure) with a lower (resp. upper) fixed point,
i.e., x0 ∈ C with x0 ≤ Tx0 (resp. Tx0 ≤ x0). Fixed point results for operators having
lower or upper fixed points were considered in the literature to solve ordinary as well as
functional-differential equations with lower or upper solutions; see for instance [6,8,10,12].

Theorem 1.2 ([15, Theorem 1], [16, Theorem 1.2.12 ]). Let (E, ∥.∥) be a (real) Banach
space with a transitive binary relation ≺ and a mapping m : E → E satisfying the following
conditions:

(1) θ ≺ m (x) , x ∈ E and θ denotes the zero element in E.
(2) ∥m (x)∥ = ∥x∥ , x ∈ E.

Furthermore, assume that the norm on E is monotone, that is
θ ≺ x ≺ y ⇒ ∥x∥ ≤ ∥y∥ , x, y ∈ E. (1.4)

Let the operator T : E → E be given with the following contraction condition:
m (Tx − Ty) ≺ Am (x − y) , x, y ∈ E (1.5)

for some bounded linear operator A on E with the following properties:
(3) θ ≺ x ≺ y ⇒ Ax ≺ Ay.
(4) r (A) < 1, where r (A) stands for the spectral radius of A.

Then, T has a unique fixed point x∗ in E and the iterative sequence (T nx) converges to
x∗ for every x ∈ E.

Theorem 1.3 ([8, Theorem 3.1.14]). Let E be an ordered Banach space with a normal
generating cone E+ and T : E → E be an operator. If there exists a positive linear bounded
operator A : E → E, ∥A∥ < 1 such that

− A (x − y) ≤ Tx − Ty ≤ A (x − y) , x, y ∈ E, y ≤ x, (1.6)
then T has a unique fixed point x∗ in E and the iterative sequence (T nx) converges to x∗

for every x ∈ E.

We will improve the above theorems through the followings:
- We will consider semigroups of operators instead of a single one. In this case, the

notion of a lower (resp. upper) fixed point of an operator will be naturally extended to
the existence of an element with a monotone orbit for that semigroup of operators.

- As a less restrictive contraction condition than (1.5) and (1.6), we will consider the
following one:

− A (x − y) ≤ Tx − Ty ≤ A (x − y) , x, y ∈ C, y ≤ x, (1.7)
where A is some positive bounded linear operator on E with r (A) < 1. While conditions of
Theorem 1.2 and Theorem 1.3 (see for the latter theorem [8, p 118]) imply necessarily the
uniform continuity of the operator T , such operator is not necessarily continuous under
conditions of our main theorems (hence, our results are stated for discontinuous operators
in general).

- Comparing (1.5) and (1.7) , one observes that the structure of the underlying space is
relaxed by avoiding the mapping m on E. In this case, monotonicity of the norm of E, or
its weak alternative, namely, the normality of the cone of E will suffice to state our fixed
point results. This fact is motivated by the following example from [2, Example 3].
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Let us recall first that a cone K of an ordered normed vector space (E, ∥.∥ , ≤) is said
to be normal, if there exists a constant N > 0 such that

θ ≤ x ≤ y ⇒ ∥x∥ ≤ N ∥y∥ , x, y ∈ E,

equivalently, if E admits an equivalent monotone norm, i.e., an equivalent norm satisfying
condition (1.4) for the partial order relation of E; see [1, Theorem 2.38]. Moreover, K
is said to be generating if the vector subspace generated by K coincides with E, i.e.,
E = K − K. Lattice cones of the classical function spaces that are Banach lattices are
special examples of normal and generating cones. More details on cone theory can be
found in [1, 8].

Example 1.4. Let l2 be equipped with its standard inner product norm ∥.∥ and the
ordering ≤ given by the closed positive cone,

K = {(xk)∞
k=1 : x2k−1 ≥ kx2k ≥ 0 for all k} .

It follows from [2, Example 3] that the ordered normed vector space E = K − K is a
vector lattice that admits no equivalent absolute norm |||.||| (i.e. ||| |x| ||| = |||x|||, x ∈ E,
where |x| := x∨−x the join of {x, −x}), and hence no equivalent norm satisfying condition
(2) of Theorem 1.2, where m : E → E is given by m (x) = |x| (which is the so common
case in function spaces). However, since K is a subset of the standard cone l+2 ⊂ l2 with
respect to which the norm ∥.∥ is monotone, the latter is also monotone with respect to
the cone K.

The last section of the paper is devoted to the application of our results in solving the
order counterpart of the following initial value problem for nonlinear functional-differential
equations:{

u′ (t) = f (t, u (h1 (t)) , ..., u (hr (t)) , u′ (t)) for a.e. t ∈ [0, R] (resp. ∀t ∈ [0, R] );
u (0) = 0,

(1.8)
where R > 0, the unknown u belongs to AC [0, R] (resp. C1 [0, R]) the space of real-valued
absolutely continuous (resp. continuously differentiable) functions on [0, R] ,

(t, x1, ..., xr+1) → f(t, x1, ..., xr+1)

is a given real-valued function defined on the set [0, R] × Rr+1 and Lebesgue measurable
with respect to t for all (x1, ..., xr+1) ∈ Rr+1, and hi : [0, R] → [0, R] are continuous
functions. This means solving Problem (1.8) under suitable hypotheses involving the
order structure of the underlying space, while the same problem has been studied in [15, p
183] under hypotheses that do not involve this structure; see also [16, p 49].

The essential order-type hypothesis here is the existence of a lower or an upper solution
of Problem (1.8) that will generate its solution. This problem is said to have a lower
solution if there exists u0 ∈ AC [0, R] (resp. C1 [0, R]) such that{

u′
0 (t) ≤ f (t, u0 (h1 (t)) , ..., u0 (hr (t)) , u′

0 (t)) for a.e. t ∈ [0, R] (resp. ∀t ∈ [0, R] );
u0 (0) ≤ 0.

An upper solution is defined similarly with the reversed inequalities. Assuming the
existence of a lower (resp. upper) solution u0 of Problem (1.8), we are able to localize
its solution in the order interval of functions satisfying u0 (t) ≤ u (t) , t ∈ [0, R] (resp.
u (t) ≤ u0 (t) , t ∈ [0, R]). Solutions of nonlinear integro-differential equations having a
lower or an upper solution have been studied in the literature in many works; see for
instance [8, 10,12].

Also, the assumption of continuity of the function f in [15, Theorem 3] is replaced here
with its increasing monotonicity with respect to (x1, ..., xr+1) on Rr+1 (see Sec. 4). The
lack of continuity in problems for nonlinear functional-differential equations may appear
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in many situations and motivations for this kind of problems which were developed in
[3, Chap. 4].

As a consequence, we prove the existence of a positive solution of Problem (1.8) under
some natural hypotheses. Positive solutions of nonlinear integro-differential equations have
been, in their turn, studied intensively in the literature; see for instance [4, 7, 11,14].

2. Preliminaries
Throughout the paper, C will denote a nonempty and closed subset of a (non-trivial)

ordered Banach space E, i.e., a real Banach space E with an ordering ≤ induced by a
closed cone in E that will be denoted by E+. The norm of E will be denoted by ∥.∥ .
For x ∈ E, the intervals [x), (x] are the closed sets defined by [x) = {z ∈ E : x ≤ z} ,
(x] = {z ∈ E : z ≤ x} . For two vectors x, y ∈ E, if x ≤ y or y ≤ x then x and y are said
to be comparable.

The term operator on C will mean a self-mapping of C. An operator T on C is said to
be monotone, if it is order-preserving, i.e., for every x, y ∈ C,

x ≤ y ⇒ Tx ≤ Ty.
Note that a linear operator A on E is monotone if and only if A is a positive operator,
i.e.,

θ ≤ x ⇒ θ ≤ Ax, x ∈ E.

In the sequel, the Banach space of bounded linear operators on E and the set of positive
bounded linear operators on E will be denoted by B (E) and B+ (E) respectively. The
spectral radius of A ∈ B (E) is defined by

r (A) = max {|λ| : λ ∈ σ (A)}
where σ (A) := σ (Ac) the spectrum of Ac and Ac ∈ B (Ec) is the complexification of A
defined on the complex Banach space Ec, the complexification of E, by

Ac (x + iy) = Ax + iAy, x, y ∈ E.

The spectral radius of A is given in terms of its norm via the following formula (well-
known as Gelfand’s formula):

r (A) = lim
n→∞

∥An∥
1
n = inf

n∈N
∥An∥

1
n .

In the setting of ordered Banach spaces, it is more convenient to calculate the spectral
radius of a positive operator A ∈ B (E) through its local spectral radius r (A, x) at some
element x ∈ E. This is defined for an operator A ∈ B (E) by

r (A, x) = lim sup
n→∞

∥Anx∥
1
n .

The details are in the following lemma which will be useful in proving some forthcoming
results.

Lemma 2.1 ([5, Proposition 5]). Let the cone E+ be normal and generating, A ∈ B+ (E) ,
and x0 ∈ E+\ {θ} such that A is bounded from above by x0, that is, for every x ∈ E+

there is a positive number n (x) with Ax ≤ n (x) x0. Then, r (A) = r (A, x0) .

Let us consider now a commutative semitopological semigroup S, i.e., a semigroup with
a Hausdorff topology such that for each s ∈ S, the mapping t → st is continuous from
S into S. This includes particularly the discrete case S = (N∪ {0} , +) . We will use the
notation sn to mean the nth power of s ∈ S. Since S is commutative, then S will be
directed by the binary relation ≼ defined on S by the following:

s ≼ t if {s} ∪ sS ⊇ {t} ∪ tS. (2.1)
More on semitopological semigroups and their properties can be found in [9].
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A family T = {Ti}i∈S of operators on C is said to be a semigroup if it satisfies the
following:

(1) TsTt = Tst for all s, t ∈ S;
(2) the mapping s → Tsx is continuous from S into C, for every x ∈ C.

For a family T = {Ti}i∈S of operators on a nonempty set C, an element x ∈ C is said
to be a fixed point of T if it is a fixed point of Ti for every i ∈ S, i.e., Tix = x for every
i ∈ S.

3. Main results
We formulate the following lemma, generalizing the lemma in [15, p 179], that will be

used in the proof of our main result. Its proof is simple and therefore omitted.

Lemma 3.1. A sufficient condition for a commuting family T = {Ti}i∈S of operators on
a nonempty set to have a unique fixed point x∗ is that x∗ is the unique fixed point of some
operator from the family Ti0 , where i0 ∈ S.

Theorem 3.2. Let the cone E+ be normal, S be a commutative semitopological semigroup
and T = {Ts}s∈S be a semigroup of monotone operators on C. Assume that

(1) there exists s0 ∈ S such that Ts0 satisfies the contraction condition (1.7) with
respect to some operator A ∈ B+ (E);

(2) there exists x0 ∈ C such that its orbit {Tsx0}s∈S is an increasing (resp. decreasing)
net.

Then T has a unique fixed point x∗ in C0 = C ∩ [y0) (resp. C0 = C ∩ (y0]), where
y0 = Ts0x0. Moreover, if C is bounded, then lims ∥Tsx − x∗∥ = 0 for every x ∈ C, x and
x∗ are comparable.

Proof. Assume that the net {Tsx0}s∈S is increasing (the other case can be dealt in a
similar way). Then for every s ∈ S, Ts maps C0 into itself. Indeed, since s0 ≼ ss0, s ∈ S
and Ts is monotone, then

Ts0x0 ≤ Tss0x0 ≤ Tsx,

so Tsx ∈ C0 for every x ∈ C0. Now, if x, y ∈ C with y ≤ x, one has
θ ≤ Ts0x − Ts0y ≤ A (x − y) . (3.1)

Again, since Ts0y ≤ Ts0x, then
θ ≤ T 2

s0x − T 2
s0y ≤ A (Ts0x − Ts0y) .

Applying the operator A to the inequality (3.1), we get
θ ≤ T 2

s0x − T 2
s0y ≤ A2 (x − y) .

Proceeding inductively, we have
θ ≤ T n

s0x − T n
s0y ≤ An (x − y) (3.2)

for each n ∈ N. Since the cone E+ is normal, we may assume that the norm ∥.∥ is
monotone. It follows that∥∥T n

s0x − T n
s0y
∥∥ ≤ ∥An (x − y)∥ ≤ ∥An∥ ∥x − y∥ , (3.3)

for each n ∈ N and for every x, y ∈ C with y ≤ x. Since r (A) < 1, by Gelfand’s formula
there exists n0 ∈ N such that ∥An0∥ < 1. Assuming 0 < ∥An0∥ < 1, then we are in position
to apply Theorem 1.1 for the mapping T n0

s0 |C0 : C0 → C0 to infer that T n0
s0 has a unique

fixed point x∗ in C0, where C0 is endowed with the metric induced by the norm of E and
y0 ≤ T n0

s0 y0 (as the net {Tsx0}s∈S is increasing). Since Ts maps C0 into itself for every
s ∈ S, then we infer from Lemma 3.1 that x∗ is the unique fixed point of T in C0. Now, if
An0 = 0 then it follows from (3.2) that T n0

s0 is the constant mapping on C0 equal to T n0
s0 y0.
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Since y0 ≤ T n0
s0 y0, then clearly T n0

s0 y0 is the unique fixed point of T n0
s0 in C0. Therefore, by

the same above argument T n0
s0 y0 is the unique fixed point of T in C0.

Assume now that C is bounded with a diameter M ≥ 0. Let x ∈ C, x and x∗ be
comparable, t0 = sn0

0 , and k = ∥An0∥. We will show that for every ε > 0 there exists
n ∈ N such that ∥∥∥Ttn

0 sx − x∗
∥∥∥ < ε for every s ∈ S. (3.4)

Let ε > 0 and choose n ∈ N with knM < ε. Since the operators of T are monotone, for
every s ∈ S, from (3.3) one has∥∥∥Ttn

0 sx − x∗
∥∥∥ =

∥∥∥Ttn
0 sx − Ttn

0 sx∗
∥∥∥

≤ kn ∥Tsx − Tsx∗∥
≤ knM < ε,

as desired. Now, if s ∈ S with tn
0 ≼ s, then s ∈ {tn

0 } ∪ tn
0 S. Therefore, it suffices to show

the case s ∈ tn
0 S. Let (sα) ⊂ S be a net with limα tn

0 sα = s. It follows from (3.4) and the
continuity of s → Tsx from S into C that ∥Tsx − x∗∥ ≤ ε, that is lims ∥Tsx − x∗∥ = 0.
This ends the proof. �
Remark 3.3. (1) It is easy to see that in the particular case S = (N∪ {0} , +) and
Tn := T n, T : C → C is a monotone operator, condition (2) of the above theorem is
equivalent to x0 is a lower (resp. upper) fixed point of T, and hence it is a natural
extension of the existence of a lower (resp. upper) fixed point of a single operator to the
case of a semigroup of operators.

(2) The hypothesis of boundedness in the above theorem is realised if there exist two
elements x0, z0 ∈ C, x0 ≤ z0, such that the orbits {Tsx0}s∈S , {Tsz0}s∈S are an increasing
and a decreasing nets respectively. Indeed, by the arguments as shown before, for every
s ∈ S, Ts maps the (closed) order interval [Ts0x0, Ts0z0] ∩ C into itself, and in this case T

has a unique fixed point x∗ in C0 = C ∩ [Ts0x0, Ts0z0]. Note that each order interval [x, y]
of E, x ≤ y, is bounded since the cone E+ is normal; see [1, Theorem 2.40].

As a consequence of our main theorem, taking the particular case S = (N∪ {0} , +) and
Tn := T n, T : C → C, we get an improvement of Theorem 1.2 and Theorem 1.3 in case
the operator T is assumed to be monotone with a lower (resp. upper) fixed point.
Corollary 3.4. Let the cone E+ be normal, T be a monotone operator on C with a lower
(resp. upper) fixed point x0 ∈ C. Assume that there exists a positive integer n0 such
that the power T n0 satisfies the contraction condition (1.7) with respect to some operator
A ∈ B+ (E). Then, T has a unique fixed point x∗ in C0 = C ∩ [x0) (resp. C0 = C ∩ (x0]).
Moreover, if C is bounded, then the iterative sequence (T nx) converges to x∗ for every
x ∈ C, x and x∗ are comparable.

4. An initial value problem for functional-differential equations
In this section, we illustrate the applicability of our results by using Corollary 3.4 to

solve Problem (1.8) under some natural order-type hypotheses. So, we will assume that
(H1) Problem (1.8), u ∈ AC [0, R] admits a lower solution u0 with u′

0 (t) ≥ a for almost
all t ∈ [0, R] and for some a ∈ R+, and the function

f
(
., u0 (h1 (.)) − u0 (0) , ..., u0 (hr (.)) − u0 (0) , u′

0 (.)
)

belongs to L1[0, R], the Lebesgue space of real-valued integrable functions on [0, R].
Moreover, the function f is assumed to be increasing with respect to (x1, ..., xr+1) on

Rr+1, that is
(H2) for all (t, x1, ..., xr+1) , (t, y1, ..., yr+1) ∈ [0, R] × Rr+1 we have

x1 ≤ y1, x2 ≤ y2, ..., xr+1 ≤ yr+1 ⇒ f (t, x1, ..., xr+1) ≤ f (t, y1, ..., yr+1) .
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On the other hand, the hypothesis in [15, Theorem 3] consisting of the standard Lips-
chitz condition of f

|f (t, x1, ..., xr+1) − f (t, y1, ..., yr+1)| ≤
r+1∑
i=1

Li (t) |xi − yi| (4.1)

for all (t, x1, ..., xr+1) , (t, y1, ..., yr+1) ∈ [0, R] ×Rr+1, the Li’s are continuous and positive
functions on the interval [0, R], will be weakened to the Lipschitz condition:

(H3) for all (t, x1, ..., xr+1) , (t, y1, ..., yr+1) ∈ [0, R]×Rr+1 with x1 ≥ y1 ≥ x0, x2 ≥ y2 ≥
x0, ..., xr+1 ≥ yr+1 ≥ x0, we have

f (t, x1, ..., xr+1) − f (t, y1, ..., yr+1) ≤
r+1∑
i=1

Li (t) (xi − yi) (4.2)

where x0 = min (a, aH) and H = minr
i=1 mint∈[0,R] hi (t) .

Finally, we make the estimate hi (t) ≤ t, t ∈ [0, R] satisfying by the functions hi in
[15, Theorem 3] less restrictive. This is

(H4) the functions hi, Li satisfy the estimates
(a) h (t) := supr

i=1 hi (t) ≤ ctα, t ∈ [0, R] , where c > 0, α ∈ (0, 1] are some
constants;

(b) Lr (1 − α) c
1

1−α + Lr+1 < 1 if α ̸= 1 and Lr+1 < 1 if α = 1 and c ≤ 1, where
Lr := maxr

i=1

(
max[0,R] Li (t)

)
r and Lr+1 := max[0,R] Lr+1 (t).

The following theorem provides a solution of Problem (1.8), u ∈ AC [0, R] under the
above-mentioned hypotheses.

Theorem 4.1. Under the hypotheses (H1) − (H4) , Problem (1.8), u ∈ AC [0, R] has a
unique solution with u′ (t) ≥ u′

0 (t) for a.e. t ∈ [0, R] (and hence u (t) ≥ u0 (t) , t ∈ [0, R]).

In what follows, we let E = L1 [0, R] be endowed with its standard norm and the
ordering ≤ induced by the cone

E+ = {u : u (t) ≥ 0 for a.e. t ∈ [0, R]} .

We will use the following lemma that provides an estimation of the spectral radius of a
Voltera-type operator on E.

Lemma 4.2. Let A ∈ B (E) be the operator defined by

Au (t) = L

h(t)∫
0

u (s) ds, t ∈ [0, R],

where L > 0 is some constant. Then, r (A) ≤ L (1 − α) c
1

1−α if α ̸= 1 and r (A) = 0 if
α = 1 and c ≤ 1.

Proof. Let u1 ∈ E be the constant function equal to 1. Since the cone E+ is normal
and generating, A ∈ B+ (E) and Au ≤ L ∥u∥ u1 for every u ∈ E+, then by Lemma 2.1
r (A) = r (A, u1). Now, for t ∈ [0, R] we see from h (t) ≤ ctα that

A (u1) (t) = L

h(t)∫
0

u1 (s) ds ≤ L

ctα∫
0

ds = Lctα.

Again, we have

A2 (u1) (t) = L

h(t)∫
0

Au1 (s) ds ≤ L

ctα∫
0

Lcsαds = L2 c1+α+1

α + 1
tα(α+1),
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and by induction, we have

An (u1) (t) ≤ Ln c1+α+1+...+αn−1+...+α+1

(α + 1) (α2 + α + 1) ... (αn−1 + ... + α + 1)
tα(αn−1+...+α+1)

for every n ≥ 1. Therefore, we have

∥An (u1)∥ ≤ Ln c1+α+1+...+αn−1+...+α+1

(α + 1) (α2 + α + 1) ... (αn + ... + α + 1)
Rαn+...+α+1

for every n ≥ 1. Let an be the right hand side in the last inequality. If α ̸= 1, then
an+1
an

= L
cαn+...+α+1

αn+1 + ... + α + 1
Rαn+1 → L (1 − α) c

1
1−α

as n → ∞, from which we get a
1
n
n → L (1 − α) c

1
1−α as n → ∞. Hence,

r (A, u1) = lim sup
n→∞

∥An (u1)∥
1
n ≤ lim

n→∞
a

1
n
n = L (1 − α) c

1
1−α ,

as desired. Similarly, we have r (A) = 0 if α = 1 and c ≤ 1. �
Remark 4.3. The above lemma remains similarly true in the standard Banach lattice
E = C ([0, R]) of real-valued continuous functions on [0, R] , where the ordering of functions
is the pointwise ordering.

Proof of Theorem 4.1. It is easily shown that Problem (1.8), u ∈ AC [0, R] and u′ (t) ≥
u′

0 (t) for a.e. t ∈ [0, R] is equivalent to the following integral-functional equation: z (t) = f(t,
h1(t)∫

0
z (s) ds,

h2(t)∫
0

z (s) ds, ...,
hr(t)∫

0
z (s) ds, z (t))

z (t) ≥ z0 (t) , for a.e. t ∈ [0, R], z, z0 ∈ E,

(4.3)

where u (t) =
t∫

0
z (s) ds and u0 (t) =

t∫
0

z0 (s) ds + u0 (0) , t ∈ [0, R]. Define the operator T

on the interval [z0) of E by

Tz (t) = f(t,
h1(t)∫
0

z (s) ds,

h2(t)∫
0

z (s) ds, ...,

hr(t)∫
0

z (s) ds, z (t)), t ∈ [0, R]. (4.4)

It follows easily from the hypotheses (H1) − (H3) that T is a monotone operator on [z0)
with z0 as a lower fixed point. Furthermore, for every z, w ∈ [z0) with w ≤ z, from (H3) ,
one has

Tz (t) − Tw (t) ≤
r∑

i=1
Li (t)

hi(t)∫
0

(z − w) (s) ds + Lr+1 (z − w) (t)

≤ Lr

h(t)∫
0

(z − w) (s) ds + Lr+1 (z − w) (t)

= (A + Lr+1I) (z − w) (t) ,

for almost all t ∈ [0, R], where I is the identity operator of E and A ∈ B+ (E) is the
operator of Lemma 4.2 with respect to the constant Lr. Since σ (A + Lr+1I) = σ (A) +
Lr+1, it follows from Lemma 4.2 and the hypothesis (H4) that

r (A + Lr+1I) ≤ r (A) + Lr+1 < 1.

Therefore, applying Corollary 3.4, we see that T has a unique fixed point z ∈ [z0), that
is z is the unique solution of (4.3). This completes the proof. �
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We get as a consequence a positive solution of Problem (1.8), u ∈ AC [0, R] under
natural hypotheses.

Corollary 4.4. Assume that the hypotheses (H2) , (H4) are satisfied, that the Lipschitz
condition (4.2) is satisfied for all (t, x1, ..., xr+1) , (t, y1, ..., yr+1) ∈ [0, R] ×Rr+1

+ with x1 ≥
y1, x2 ≥ y2, ..., xr+1 ≥ yr+1, and that the function f (., 0, ..., 0) belongs to (L1[0, R])+.
Then, Problem (1.8), u ∈ AC [0, R] has a unique solution with a positive derivative (and
hence the solution u is itself positive).

Proof. It follows from the hypotheses that Problem (1.8), u ∈ AC [0, R] has the (every-
where) null function as a lower solution. The desired conclusion follows from Theorem
4.1. �

In case the function f is assumed to be continuous on [0, R] × Rr+1, we get similar
results for Problem (1.8), u ∈ C1 [0, R]. We omit the proofs since they follow by similar
arguments applied in the setting of the standard Banach lattice E = C [0, R].

Theorem 4.5. Assume that f is continuous on [0, R] × Rr+1, that Problem (1.8), u ∈
C1 [0, R] has a lower solution u0 with u′

0 (t) ≥ a for every t ∈ [0, R] and for some a ∈ R+,
and that the hypotheses (H2) − (H4) are satisfied. Then, Problem (1.8) , u ∈ C1 [0, R] has
a unique solution with u′ (t) ≥ u′

0 (t), t ∈ [0, R] (and hence u (t) ≥ u0 (t) , t ∈ [0, R]).

Corollary 4.6. Assume that f is continuous on [0, R] × Rr+1, that the hypotheses (H2) ,
(H4) are satisfied, that the Lipschitz condition (4.2) is satisfied for all (t, x1, ..., xr+1) ,
(t, y1, ..., yr+1) ∈ [0, R] × Rr+1

+ with x1 ≥ y1, x2 ≥ y2, ..., xr+1 ≥ yr+1, and that the
function f (., 0, ..., 0) belongs to (C[0, R])+. Then, Problem (1.8), u ∈ C1 [0, R] has a
unique solution with a positive derivative (and hence the solution u is itself positive).

5. Concluding remarks
(1) The case α = 1 and c ≤ 1 in Theorem 4.5 is the order counterpart of [15, Theorem

3]. Moreover, since there are many functions f which satisfy the Lipschitz condition (4.2)
without the standard one (4.1), we see the need of Corollary 3.4 instead of Theorem 1.2 to
get a fixed point of the operator defined by (4.4). Indeed, as a simple example, consider
the discontinuous function f : [0, R] × R2 → R defined by

f(t, x, y) =
{ 1

2x + 1 if x > −1,
1 − x2 if x ≤ −1,

and let h1(t) = t for every t ∈ [0, R]. In this case, the null function on [0, R] is a lower
solution of Problem (1.8), u ∈ AC [0, R], all the hypotheses (H1) − (H4) are fulfilled, and
Problem (1.8), u ∈ AC [0, R] and u′ (t) ≥ 0 for a.e t ∈ [0, R] reduces to the simple initial
value problem

u′ (t) = 1
2

u (t) + 1 for a.e. t ∈ [0, R], u(0) = 0,

which has a unique solution u ∈ AC [0, R] with a positive derivative.
(2) On the other hand, the following easy situation illustrates the need of Corollary

3.4 instead of Theorem 1.1 or Theorem 1.3. Let R2 be endowed with their Euclidean
norm and coordinatewise ordering. Let T : R2 → R2 be equal to A =

(
0 1
0 0

)
. Clearly,

all conditions of Corollary 3.4 are fulfilled and (0, 0) is the unique fixed point of T . In
particular, the pair T, A satisfies the contraction condition (1.7). However, it is easy to see
that the contraction condition of Theorem 1.1 fails and that for any operator B ∈ B+ (R2)
with ∥B∥ < 1, the pair T, B does not satisfy the contraction condition of Theorem 1.3.

(3) Theorems 4.1 and 4.5 can be stated under slight suitable modifications if we assume
the existence of an upper solution instead of a lower solution of Problem (1.8) .
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(4) The monotone iterative sequences of approximate solutions for Problem
(1.8).

This is for the case when this problem admits simultaneously a lower and an upper
solutions u0 and v0 with a ≤ u′

0 (t) ≤ v′
0 (t) ≤ b for almost all (resp. for all) t ∈ [0, R] and

for some a, b ∈ R+. If the other hypotheses of Theorem 4.1 (resp. 4.5) hold true for both
the lower and the upper solutions u0 and v0 (with the suitable modifications for the upper
solution v0) and if we keep the notations of the proof of Theorem 4.1, then the operator
T is now defined on the order interval [z0, w0] of L1 [0, R] (resp. C1 [0, R]), where w0 is
generated similarly from the upper solution v0, with z0 and w0 as a lower and an upper
fixed points, respectively. In this case, the latter two theorems provide a unique solution
u of Problem (1.8) with u′

0 (t) ≤ u′ (t) ≤ v′
0 (t) for almost all (resp. for all) t ∈ [0, R] (and

hence u0 (t) ≤ u (t) ≤ v0 (t), t ∈ [0, R]). Define the sequences of functions on [0, R]
(
f(n)

)
and

(
f (n)

)
by f(0) (t) = z0 (t) , f (0) (t) = w0 (t) , and inductively by

f(n) (t) = f(t,
h1(t)∫
0

f(n−1) (s) ds, ...,

hr(t)∫
0

f(n−1) (s) ds, f(n−1) (t)),

f (n) (t) = f(t,
h1(t)∫
0

f (n−1) (s) ds, ...,

hr(t)∫
0

f (n−1) (s) ds, f (n−1) (t)).

It follows easily from f(n) = T nz0, f (n) = T nw0, and Corollary 3.4 that the monotone

sequences of functions
(

.∫
0

f(n) (s) ds

)
and

(
.∫

0
f (n) (s) ds

)
converge uniformly on [0, R] to

the solution of Problem (1.8) .
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