

RESEARCH ARTICLE

On total mean curvatures of foliated half-lightlike submanifolds in semi-Riemannian manifolds

Fortuné Massamba^{*}, Samuel Ssekajja

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209 South Africa

Abstract

We derive total mean curvature integration formulas of a three co-dimensional foliation \mathcal{F}^n on a screen integrable half-lightlike submanifold, M^{n+1} in a semi-Riemannian manifold \overline{M}^{n+3} . We give generalized differential equations relating to mean curvatures of a totally umbilical half-lightlike submanifold admitting a totally umbilical screen distribution, and show that they are generalizations of those given by [K. L. Duggal and B. Sahin, Differential geometry of lightlike submanifolds, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2010].

Mathematics Subject Classification (2010). 53C25, 53C40, 53C50

Keywords. half-lightlike submanifold, Newton transformation, foliation and mean curvature

1. Introduction

The rapidly growing importance of lightlike submanifolds in semi-Riemannian geometry, particularly Lorentzian geometry, and their applications to mathematical physics-like in general relativity and electromagnetism motivated the study of lightlike geometry in semi-Riemannian manifolds. More precisely, lightlike submanifolds have been shown to represent different black hole horizons (see [4] and [6] for details). Among other motivations for investing in lightlike geometry by many physicists is the idea that the universe we are living in can be viewed as a 4-dimensional hypersurface embedded in (4 + m)dimensional spacetime manifold, where m is any arbitrary integer. There are significant differences between lightlike geometry and Riemannian geometry as shown in [4] and [6], and many more references therein. Some of the pioneering work on this topic is due to Duggal-Bejancu [4], Duggal-Sahin [6] and Kupeli [7]. It is upon those books that many other researchers, including but not limited to [3,5,8–11], have extended their theories.

Lightlike geometry rests on a number of operators, like shape and algebraic invariants derived from them, such as trace, determinants, and in general the *r*-th mean curvature S_r . There is a great deal of work so far on the case r = 1 (see some in [4,6] and many more) and as far as we know, very little has been done for the case r > 1. This is partly due to the non-linearity of S_r for r > 1, and hence very complicated to study. A great

^{*}Corresponding Author.

Email addresses: massfort@yahoo.fr and Massamba@ukzn.ac.za (F. Massamba),

ssekajja.samuel.buwaga@aims-senegal.org (S. Ssekajja)

Received: 07.03.2017; Accepted: 18.03.2019

deal of research on higher order mean curvatures S_r in Riemannian geometry has been done with numerous applications, for instance see [2] and [1]. This gap has motivated our introduction of lightlike geometry of S_r for r > 1. In this paper we have considered a halflightlike submanifold admitting an integrable screen distribution, of a semi-Riemannian manifold. On it we have focused on a codimension 3 foliation of its screen distribution and thus derived integral formulas of its total mean curvatures (see Theorems 4.9 and 4.10). Furthermore, we have considered totally umbilical half-lightlike submanifolds, with a totally umbilical screen distribution and generalized Theorem 4.3.7 of [6] (see Theorem 5.2 and its Corollaries). The paper is organized as follows; In Section 2 we summarize the basic notions on lightlike geometry necessary for other sections. In Section 3 we give some basic information on Newton transformations of a foliation \mathcal{F} of the screen distribution. Section 4 focuses on integration formulae of \mathcal{F} and their consequences. In Section 5 we discus screen umbilical half-lightlike submanifolds and generalizations of some well-known results of [6].

2. Preliminaries

Let (M^{n+1}, g) be a two-co-dimensional submanifold of a semi-Riemannian manifold $(\overline{M}^{n+3}, \overline{g})$, where $g = \overline{g}|_{TM}$. The submanifold (M^{n+1}, g) is called a *half-lightlike* if the radical distribution $\operatorname{Rad} TM = TM \cap TM^{\perp}$ is a vector subbundle of the tangent bundle TM and the normal bundle TM^{\perp} of M, with rank one. Let S(TM) be a *screen distribution* which is a semi-Riemannian complementary distribution of $\operatorname{Rad} TM$ in TM, and also choose a *screen transversal bundle* $S(TM^{\perp})$, which is semi-Riemannian and complementary to $\operatorname{Rad} TM$ in TM^{\perp} . Then,

$$TM = \operatorname{Rad} TM \perp S(TM), \ TM^{\perp} = \operatorname{Rad} TM \perp S(TM^{\perp}).$$
 (2.1)

We will denote by $\Gamma(\Xi)$ the set of smooth sections of the vector bundle Ξ . It is well-known from [4] and [6] that for any null section E of Rad TM, there exists a unique null section N of the orthogonal complement of $S(TM^{\perp})$ in $S(TM)^{\perp}$ such that g(E, N) = 1, it follows that there exists a lightlike *transversal vector bundle* ltr(TM) locally spanned by N. Let $W \in \Gamma(S(TM^{\perp}))$ be a unit vector field, then $\overline{g}(N, N) = \overline{g}(N, Z) = \overline{g}(N, W) = 0$, for any $Z \in \Gamma(S(TM))$.

Let $\operatorname{tr}(TM)$ be complementary (but not orthogonal) vector bundle to TM in $T\overline{M}$. Then we have the following decompositions of $\operatorname{tr}(TM)$ and $T\overline{M}$

$$tr(TM) = ltr(TM) \perp S(TM^{\perp}), \qquad (2.2)$$

$$T\overline{M} = S(TM) \perp S(TM^{\perp}) \perp \{ \operatorname{Rad} TM \oplus ltr(TM) \}.$$
(2.3)

It is important to note that the distribution S(TM) is not unique, and is canonically isomorphic to the factor vector bundle TM/RadTM [4]. Let P be the projection of TMon to S(TM). Then the local Gauss-Weingarten equations of M are the following;

$$\overline{\nabla}_X Y = \nabla_X Y + B(X, Y)N + D(X, Y)W, \qquad (2.4)$$

$$\overline{\nabla}_X N = -A_N X + \tau(X) N + \rho(X) W, \qquad (2.5)$$

$$\overline{\nabla}_X W = -A_W X + \phi(X)N, \qquad (2.6)$$

$$\nabla_X PY = \nabla_X^* PY + C(X, PY)E, \qquad (2.7)$$

$$\nabla_X E = -A_E^* X - \tau(X)E, \qquad (2.8)$$

for all $E \in \Gamma(\operatorname{Rad} TM)$, $N \in \Gamma(ltr(TM))$ and $W \in \Gamma(S(TM^{\perp}))$, where ∇ and ∇^* are induced linear connections on TM and S(TM), respectively, B and D are called the local second fundamental forms of M, C is the local second fundamental form on S(TM). Furthermore, $\{A_N, A_W\}$ and A_E^* are the shape operators on TM and S(TM) respectively, and τ , ρ , ϕ and δ are differential 1-forms on TM. Notice that ∇^* is a metric connection on S(TM) while ∇ is generally not a metric connection. In fact, ∇ satisfies the following relation

$$(\nabla_X g)(Y, Z) = B(X, Y)\lambda(Z) + B(X, Z)\lambda(Y), \qquad (2.9)$$

for all $X, Y, Z \in \Gamma(TM)$, where λ is a 1-form on TM given $\lambda(\cdot) = \overline{g}(\cdot, N)$. It is well-known from [4] and [6] that B and D are independent of the choice of S(TM) and they satisfy

$$B(X,E) = 0, \quad D(X,E) = -\phi(X), \quad \forall X \in \Gamma(TM).$$
(2.10)

The local second fundamental forms B, D and C are related to their shape operators by the following equations

$$g(A_E^*X, Y) = B(X, Y), \quad \overline{g}(A_E^*X, N) = 0,$$
 (2.11)

$$g(A_W X, Y) = \varepsilon D(X, Y) + \phi(X)\lambda(Y), \qquad (2.12)$$

$$g(A_N X, PY) = C(X, PY), \ \overline{g}(A_N X, N) = 0,$$
 (2.13)

$$\overline{g}(A_W X, N) = \varepsilon \rho(X), \text{ where } \varepsilon = \overline{g}(W, W),$$
 (2.14)

for all $X, Y \in \Gamma(TM)$. From equations (2.11) we deduce that A_E^* is S(TM)-valued, self-adjoint and satisfies $A_E^* E = 0$. Let \overline{R} denote the curvature tensor of \overline{M} , then

$$\overline{g}(R(X,Y)PZ,N) = g((\nabla_X A_N)Y,PZ) - g((\nabla_Y A_N)X,PZ) + \tau(Y)C(X,PZ) - \varepsilon\tau(X)C(Y,PZ)\{\rho(Y)D(X,PZ) - \rho(X)D(Y,PZ)\}, \quad \forall X,Y,Z \in \Gamma(TM).$$
(2.15)

A half-lightlike submanifold (M, g) of a semi-Riemannian manifold \overline{M} is said to be totally umbilical [6] if on each coordinate neighborhood \mathcal{U} there exist smooth functions \mathcal{H}_1 and \mathcal{H}_2 on ltr(TM) and $S(TM^{\perp})$ respect such that

$$B(X,Y) = \mathcal{H}_1 g(X,Y), \quad D(X,Y) = \mathcal{H}_2 g(X,Y), \quad \forall X,Y \in \Gamma(TM).$$
(2.16)

Furthermore, when M is totally umbilical then the following relations follows by straightforward calculations

$$A_E^* X = \mathcal{H}_1 P X, \ P(A_W X) = \varepsilon \mathcal{H}_2 P X, \ D(X, E) = 0, \ \rho(E) = 0,$$
 (2.17)

for all $X, Y \in \Gamma(TM)$.

Next, we suppose that M is a half-lightlike submanifold of \overline{M} , with an integrable screen distribution S(TM). Let M' be a leaf of S(TM). Notice that for any screen integrable half-lightlike M, the leaf M' of S(TM) is a co-dimension 3 submanifold of \overline{M} whose normal bundle is $\{\operatorname{Rad} TM \oplus l\operatorname{tr}(TM)\} \perp S(TM^{\perp})$. Now, using (2.4) and (2.7) we have

$$\overline{\nabla}_X Y = \nabla^*_X Y + C(X, PY)E + B(X, Y)N + D(X, Y)W, \qquad (2.18)$$

for all $X, Y \in \Gamma(TM')$. Since S(TM) is integrable, then its leave is semi-Riemannian and hence we have

$$\overline{\nabla}_X Y = \nabla_X^{*'} Y + h'(X, Y), \quad \forall X, Y \in \Gamma(TM'),$$
(2.19)

where h' and $\nabla^{*'}$ are second fundamental form and the Levi-Civita connection of M' in \overline{M} . From (2.18) and (2.19) we can see that

$$h'(X,Y) = C(X,PY)E + B(X,Y)N + D(X,Y)W,$$
(2.20)

for all $X, Y \in \Gamma(TM')$. Since S(TM) is integrable, then it is well-known from [6] that C is symmetric on S(TM) and also A_N is self-adjoint on S(TM) (see Theorem 4.1.2 for details). Thus, h' given by (2.20) is symmetric on TM'.

Let $L \in \Gamma({\text{Rad} TM \oplus ltr(TM)} \perp S(TM^{\perp}))$, then we can decompose L as

$$L = aE + bN + cW, (2.21)$$

for non-vanishing smooth functions on \overline{M} given by $a = \overline{g}(L, N)$, $b = \overline{g}(L, E)$ and $c = \varepsilon \overline{g}(L, W)$. Suppose that $\overline{g}(L, L) > 0$, then using (2.21) we obtain a unit normal vector \widehat{W} to M' given by

$$\widehat{W} = \frac{1}{\overline{g}(L,L)}(aE + bN + cW) = \frac{1}{\overline{g}(L,L)}L.$$
(2.22)

Next we define a (1,1) tensor $\mathcal{A}_{\widehat{W}}$ in terms of the operators A_E^* , A_N and A_W by

$$\mathcal{A}_{\widehat{W}}X = \frac{1}{\overline{g}(L,L)}(aA_E^*X + bA_NX + cA_WX), \qquad (2.23)$$

for all $X \in \Gamma(TM)$. Notice that $\mathcal{A}_{\widehat{W}}$ is self-adjoint on S(TM). Applying $\overline{\nabla}_X$ to \widehat{W} and using equations (2.23) (2.4) and (2.11)-(2.13), we have

$$g(\mathcal{A}_{\widehat{W}}X, PY) = -\overline{g}(\overline{\nabla}_X\widehat{W}, PY), \quad \forall X, Y \in \Gamma(TM).$$
(2.24)

Let $\nabla^{*\perp}$ be the connection on the normal bundle {Rad $TM \oplus ltr(TM)$ } $\perp S(TM^{\perp})$. Then from (2.24) we have

$$\overline{\nabla}_X \widehat{W} = -\mathcal{A}_{\widehat{W}} X + \nabla_X^{*\perp} \widehat{W}, \quad \forall X \in \Gamma(TM),$$
(2.25)

where

$$\begin{split} \nabla_X^{*\perp} \widehat{W} &= -\frac{1}{\overline{g}(L,L)} X(\overline{g}(L,L)) \widehat{W} + \frac{1}{\overline{g}(L,L)} \left[\{X(a) - a\tau(X)\} E \right. \\ &+ \{X(b) + b\tau(X) + c\phi(X)\} N + \{X(c) + aD(X,E) + b\rho(X)\} W \right]. \end{split}$$

Example 2.1. Let $\overline{M} = (\mathbb{R}^5_1, \overline{g})$ be a semi-Riemannian manifold, where \overline{g} is of signature (-, +, +, +, +) with respect to canonical basis $(\partial x_1, \partial x_2, \partial x_3, \partial x_4, \partial x_5)$, where (x_1, \dots, x_5) are the usual coordinates on \overline{M} . Let M be a submanifold of \overline{M} and given parametrically by the following equations

$$\begin{aligned} x_1 = &\varphi_1, \ x_2 = \sin \varphi_2 \sin \varphi_3, \ x_3 = \varphi_1, \ x_4 = \cos \varphi_2 \sin \varphi_3, \\ x_5 = &\cos \varphi_3, \ \text{where} \ \varphi_2 \in [0, 2\pi] \ \text{and} \ \varphi_3 \in (0, \pi/2). \end{aligned}$$

Then we have $TM = \operatorname{span}\{E, Z_1, Z_2\}$ and $\operatorname{ltr}(TM) = \operatorname{span}\{N\}$, where

$$E = \partial x_1 + \partial x_3, \quad Z_1 = \cos \varphi_3 \partial x_2 - \sin \varphi_2 \sin \varphi_3 \partial x_5,$$

$$Z_2 = \cos \varphi_3 \partial x_4 - \cos \varphi_2 \sin \varphi_3 \partial x_5 \text{ and } N = \frac{1}{2} (-\partial x_1 + \partial x_3)$$

Also, by straightforward calculations, we have

 $W = \sin \varphi_2 \sin \varphi_3 \partial x_2 + \cos \varphi_2 \sin \varphi_3 \partial x_4 + \cos \varphi_3 \partial x_5.$

Thus, $S(TM^{\perp}) = \operatorname{span}\{W\}$ and hence M is a half-lightlike submanifold of \overline{M} . Furthermore we have $[Z_1, Z_2] = \cos \varphi_2 \sin \varphi_3 \partial x_2 - \sin \varphi_2 \sin \varphi_3 \partial x_4$, which leads to $[Z_1, Z_2] = \cos \varphi_2 \tan \varphi_3 Z_1 - \sin \varphi_2 \tan \varphi_3 Z_2 \in \Gamma(S(TM))$. Thus, M is a screen integrable half-lightlike submanifold of \overline{M} . Finally, it is easy to see that A_N is self-adjoint operator on S(TM).

In the next sections we shall consider screen integrable half-lightlike submanifolds of semi-Riemannian manifold \overline{M} and derive special integral formulas for a foliation of S(TM), whose normal vector is \widehat{W} and with shape operator $\mathcal{A}_{\widehat{W}}$.

3. Newton transformations of $\mathcal{A}_{\widehat{W}}$

Let $(\overline{M}^{m+3}, \overline{g})$ be a semi-Riemannian manifold and let (M^{n+1}, g) be a screen integrable half-lightlike submanifold of \overline{M} . Then S(TM) admits a foliation and let \mathcal{F} be a such foliation. Then, the leaves of \mathcal{F} are co-dimension three submanifolds of \overline{M} , whose normal bundle is $S(TM)^{\perp}$. Let \widehat{W} be unit normal vector to \mathcal{F} such that the orientation of \overline{M} coincides with that given by \mathcal{F} and \widehat{W} . The Levi-Civita connection $\overline{\nabla}$ on the tangent bundle of \overline{M} induces a metric connection ∇' on \mathcal{F} . Furthermore, h' and $\mathcal{A}_{\widehat{W}}$ are the second fundamental form and shape operator of \mathcal{F} . Notice that $\mathcal{A}_{\widehat{W}}$ is self-adjoint on $T\mathcal{F}$ and at each point $p \in \mathcal{F}$ has n real eigenvalues (or principal curvatures) $\kappa_1(p), \cdots, \kappa_n(p)$. Attached to the shape operator $\mathcal{A}_{\widehat{W}}$ are n algebraic invariants

$$S_r = \sigma_r(\kappa_1, \cdots, \kappa_n), \ 1 \le r \le n,$$

where $\sigma_r: M^{\prime n} \to \mathbb{R}$ are symmetric functions given by

$$\sigma_r(\kappa_1, \cdots, \kappa_n) = \sum_{1 \le i_1 < \cdots < i_r \le n} \kappa_{i_1} \cdots \kappa_{i_r}.$$
(3.1)

Then, the characteristic polynomial of $\mathcal{A}_{\widehat{W}}$ is given by

$$\det(\mathcal{A}_{\widehat{W}} - t\mathbb{I}) = \sum_{\alpha=0}^{n} (-1)^{\alpha} S_r t^{n-\alpha},$$

where \mathbb{I} is the identity in $\Gamma(T\mathcal{F})$. The normalized *r*-th mean curvature H_r of M' is defined by

$$H_r = {\binom{n}{r}}^{-1} S_r$$
 and $H_0 = 1$. (a constant function 1).

In particular, when r = 1 then $H_1 = \frac{1}{n} \operatorname{tr}(\mathcal{A}_{\widehat{W}})$ which is the *mean curvature* of a \mathcal{F} . On the other hand, H_2 relates directly with the (intrinsic) scalar curvature of \mathcal{F} . Moreover, the functions S_r (H_r respectively) are smooth on the whole M and, for any point $p \in \mathcal{F}$, S_r coincides with the *r*-th mean curvature at p. In this paper, we shall use S_r instead of H_r .

Next, we introduce the Newton transformations with respect to the operator $\mathcal{A}_{\widehat{W}}$. The Newton transformations $T_r: \Gamma(T\mathcal{F}) \to \Gamma(T\mathcal{F})$ of a foliation \mathcal{F} of a screen integrable half-lightlike submanifold M of an (n+3)-dimensional semi-Riemannian manifold \overline{M} with respect to $\mathcal{A}_{\widehat{W}}$ are given by by the inductive formula

$$T_0 = \mathbb{I}, \quad T_r = (-1)^r S_r \mathbb{I} + \mathcal{A}_{\widehat{W}} \circ T_{r-1}, \quad 1 \le r \le n.$$

$$(3.2)$$

By Cayley-Hamiliton theorem, we have $T_n = 0$. Moreover, T_r are also self-adjoint and commutes with $\mathcal{A}_{\widehat{W}}$. Furthermore, the following algebraic properties of T_r are well-known (see [2], [1] and references therein for details).

$$tr(T_r) = (-1)^r (n-r) S_r, (3.3)$$

$$\operatorname{tr}(\mathcal{A}_{\widehat{W}} \circ T_r) = (-1)^r (r+1) S_{r+1}, \tag{3.4}$$

$$\operatorname{tr}(\mathcal{A}_{\widehat{W}}^2 \circ T_r) = (-1)^{r+1} (-S_1 S_{r+1} + (r+2) S_{r+2}), \tag{3.5}$$

$$\operatorname{tr}(T_r \circ \nabla'_X \mathcal{A}_{\widehat{W}}) = (-1)^r X(S_{r+1}) = (-1)^r \overline{g}(\nabla' S_{r+1}, X),$$
(3.6)

for all $X \in \Gamma(T\overline{M})$. We will also need the following divergence formula for the operators T_r

$$\operatorname{div}^{\nabla'}(T_r) = \operatorname{tr}(\nabla' T_r) = \sum_{\beta=1}^n (\nabla'_{Z_\beta} T_r) Z_\beta, \qquad (3.7)$$

where $\{Z_1, \dots, Z_n\}$ is a local orthonormal frame field of $T\mathcal{F}$.

4. Integration formulas for \mathcal{F}

This section is devoted to derivation of integral formulas of foliation \mathcal{F} of S(TM) with a unit normal vector \widehat{W} given by (2.22). By the fact that $\overline{\nabla}$ is a metric connection then $\overline{g}(\overline{\nabla}_{\widehat{W}}\widehat{W},\widehat{W}) = 0$. This implies that the vector field $\overline{\nabla}_{\widehat{W}}\widehat{W}$ is always tangent to \mathcal{F} . Our main goal will be to compute the divergence of the vectors $T_r \overline{\nabla}_{\widehat{W}}\widehat{W}$ and $T_r \overline{\nabla}_{\widehat{W}}\widehat{W} + (-1)^r S_{r+1}\widehat{W}$. The following technical lemmas are fundamentally important to this paper. Let $\{E, Z_i, N, W\}$, for $i = 1, \dots, n$ be a quasi-orthonormal field of frame of $T\overline{M}$, such that $S(TM) = \operatorname{span}\{Z_i\}$ and $\epsilon_i = \overline{g}(Z_i, Z_i)$.

Lemma 4.1. Let M be a screen integrable half-lightlike submanifold of \overline{M}^{n+3} and let M' be a foliation of S(TM). Let $\mathcal{A}_{\widehat{W}}$ be its shape operator, where \widehat{W} is a unit normal vector to \mathfrak{F} . Then

$$\overline{g}((\nabla'_X \mathcal{A}_{\widehat{W}})Y, Z) = \overline{g}(Y, (\nabla'_X \mathcal{A}_{\widehat{W}})Z), \overline{g}((\nabla'_X T_r)Y, Z) = \overline{g}(Y, (\nabla'_X T_r)Z),$$

for all $X, Y, Z \in \Gamma(T\mathcal{F})$.

Proof. By simple calculations we have

$$\overline{g}((\nabla'_X \mathcal{A}_{\widehat{W}})Y, Z) = \overline{g}(\nabla'_X(\mathcal{A}_{\widehat{W}}Y), Z) - \overline{g}(\nabla'_X Y, \mathcal{A}_{\widehat{W}}Z).$$
(4.1)

Using the fact that ∇' is a metric connection and the symmetry of $\mathcal{A}_{\widehat{W}}$, (4.1) gives

$$\overline{g}((\nabla'_X \mathcal{A}_{\widehat{W}})Y, Z) = \overline{g}(Y, \nabla'_X(\mathcal{A}_{\widehat{W}}Z)) - \overline{g}(Y, \mathcal{A}_{\widehat{W}}(\nabla'_X Z)).$$
(4.2)

Then, from (4.2) we deduce the first relation of the lemma. A proof of the second relation follows in the same way, which completes the proof. \Box

Lemma 4.2. Let M be a screen integrable half-lightlike submanifold of \overline{M} and let \mathcal{F} be a co-dimension three foliation of S(TM). Let $\mathcal{A}_{\widehat{W}}$ be its shape operator, where \widehat{W} is a unit normal vector to \mathcal{F} . Denote by \overline{R} the curvature tensor of \overline{M} . Then

$$\operatorname{div}^{\nabla'}(T_0) = 0,$$

$$\operatorname{div}^{\nabla'}(T_r) = \mathcal{A}_{\widehat{W}} \operatorname{div}^{\nabla'}(T_{r-1}) + \sum_{i=1}^n \epsilon_i (\overline{R}(\widehat{W}, T_{r-1}Z_i)Z_i)',$$

where $(\overline{R}(\widehat{W}, X)Z)'$ denotes the tangential component of $\overline{R}(\widehat{W}, X)Z$ for $X, Z \in \Gamma(T\mathcal{F})$. Equivalently, for any $Y \in \Gamma(T\mathcal{F})$ then

$$\overline{g}(\operatorname{div}^{\nabla'}(T_r), Y) = \sum_{j=1}^r \sum_{i=1}^n \epsilon_i \overline{g}(\overline{R}(T_{r-1}Z_i, \widehat{W})(-\mathcal{A}_{\widehat{W}})^{j-1}Y, Z_i).$$
(4.3)

Proof. The first equation of the lemma is obvious since $T_0 = \mathbb{I}$. We turn to the second relation. By direct calculations using the recurrence relation (3.2) we derive

$$\operatorname{div}^{\nabla'}(T_r) = (-1)^r \operatorname{div}^{\nabla'}(S_r \mathbb{I}) + \operatorname{div}^{\nabla'}(\mathcal{A}_{\widehat{W}} \circ T_{r-1})$$
$$= (-1)^r \nabla' S_r + \mathcal{A}_{\widehat{W}} \operatorname{div}^{\nabla'}(T_{r-1}) + \sum_{i=1}^n \epsilon_i (\nabla'_{Z_i} \mathcal{A}_{\widehat{W}}) T_{r-1} Z_i.$$
(4.4)

Using Codazzi equation

$$\overline{g}(\overline{R}(X,Y)Z,\widehat{W}) = \overline{g}((\nabla'_Y \mathcal{A}_{\widehat{W}})X,Z) - \overline{g}((\nabla'_X \mathcal{A}_{\widehat{W}})Y,Z),$$

for any $X, Y, Z \in \Gamma(T\mathcal{F})$ and Lemma 4.1, we have

$$\overline{g}((\nabla'_{Z_i}\mathcal{A}_{\widehat{W}})Y,T_{r-1}Z_i) = \overline{g}((\nabla'_Y\mathcal{A}_{\widehat{W}})Z_i,T_{r-1}Z_i) + \overline{g}(\overline{R}(Y,Z_i)T_{r-1}Z_i,\widehat{W})$$
$$= \overline{g}(T_{r-1}(\nabla'_Y\mathcal{A}_{\widehat{W}})Z_i,Z_i) + \overline{g}(\overline{R}(\widehat{W},T_{r-1}Z_i)Z_i,Y),$$
(4.5)

for any $Y \in \Gamma(T\mathcal{F})$. Then applying (4.4) and (4.5) we get

$$\overline{g}(\operatorname{div}^{\nabla'}(T_r), Y) = (-1)^r \overline{g}(\nabla' S_r, Y) + \operatorname{tr}(T_{r-1}(\nabla'_Y \mathcal{A}_{\widehat{W}})) + \overline{g}(\operatorname{div}^{\nabla'}(T_{r-1}), Y) + \overline{g}(Y, \sum_{i=1}^n \epsilon_i \overline{R}(\widehat{W}, T_{r-1}Z_i)Z_i).$$
(4.6)

Then, applying (4.6) and (3.6) we get the second equation of the lemma. Finally, (4.3) follows immediately by an induction argument.

Notice that when the ambient manifold is a space form of constant sectional curvature, then $(\overline{R}(\widehat{W}, X)Y)' = 0$, for each $X, Y \in \Gamma(T\mathcal{F})$. Hence, from Lemma (4.2) we have $\operatorname{div}^{\nabla'}(T_r) = 0$.

Lemma 4.3. Let M be a screen integrable half-lightlike submanifold of \overline{M} and let \mathcal{F} be a co-dimension three foliation of S(TM). Let $\mathcal{A}_{\widehat{W}}$ be its shape operator, where \widehat{W} is a unit normal vector to \mathcal{F} . Let $\{Z_i\}$ be a local field such $(\nabla'_X Z_i)p = 0$, for $i = 1, \dots, n$ and any vector field $X \in \Gamma(T\overline{M})$. Then at $p \in \mathcal{F}$ we have

$$g(\nabla'_{Z_i}\overline{\nabla}_{\widehat{W}}\widehat{W}, Z_j) = g(\mathcal{A}_{\widehat{W}}^2 Z_i, Z_j) - \overline{g}(\overline{R}(Z_i, \widehat{W}) Z_j, \widehat{W}) - \overline{g}((\nabla'_{\widehat{W}} \mathcal{A}_{\widehat{W}}) Z_i, Z_j) + g(\overline{\nabla}_{\widehat{W}}\widehat{W}, Z_i)g(Z_j, \overline{\nabla}_{\widehat{W}}\widehat{W})$$

Proof. Applying $\overline{\nabla}_{Z_i}$ to $g(\overline{\nabla}_{\widehat{W}}\widehat{W}, Z_j)$ and $\overline{g}(\widehat{W}, \overline{\nabla}_{\widehat{W}}Z_j)$ in turn and then using the two resulting equations, we have

$$-\overline{g}(\overline{\nabla}_{\widehat{W}}\widehat{W}, \overline{\nabla}_{Z_i}Z_j) = g(\overline{\nabla}_{Z_i}\overline{\nabla}_{\widehat{W}}\widehat{W}, Z_j) + \overline{g}(\overline{\nabla}_{Z_i}\widehat{W}, \overline{\nabla}_{\widehat{W}}Z_j) + \overline{g}(\widehat{W}, \overline{\nabla}_{Z_i}\overline{\nabla}_{\widehat{W}}Z_j).$$

$$(4.7)$$

Furthermore, by direct calculations using $(\nabla'_X Z_i)p = 0$ we have

$$\overline{g}((\nabla_{\widehat{W}}'\mathcal{A}_{\widehat{W}})Z_i, Z_j) = \overline{g}(\overline{\nabla}_{\widehat{W}}\widehat{W}, \overline{Z_i}Z_j) + \overline{g}(\widehat{W}, \overline{\nabla}_{\widehat{W}}\overline{Z_i}Z_j)$$

and hence

$$g(\mathcal{A}_{\widehat{W}}^{2}Z_{i}, Z_{j}) - \overline{g}(\overline{R}(Z_{i}, \widehat{W})Z_{j}, \widehat{W}) - \overline{g}((\nabla_{\widehat{W}}^{\prime}\mathcal{A}_{\widehat{W}})Z_{i}, Z_{j})$$

$$= g(\mathcal{A}_{\widehat{W}}^{2}Z_{i}, Z_{j}) - \overline{g}(\overline{R}(Z_{i}, \widehat{W})Z_{j}, \widehat{W})$$

$$- \overline{g}(\overline{\nabla}_{\widehat{W}}\widehat{W}, \overline{Z_{i}}Z_{j}) - \overline{g}(\widehat{W}, \overline{\nabla}_{\widehat{W}}\overline{Z_{i}}Z_{j})$$

$$= g(\mathcal{A}_{\widehat{W}}^{2}Z_{i}, Z_{j}) - \overline{g}(\overline{\nabla}_{Z_{i}}Z_{j}, \overline{\nabla}_{\widehat{W}}\widehat{W})$$

$$- \overline{g}(\overline{\nabla}_{Z_{i}}\overline{\nabla}_{\widehat{W}}Z_{j}, \widehat{W}) + \overline{g}(\overline{\nabla}_{[Z_{i},\widehat{W}]}Z_{j}, \widehat{W}).$$
(4.8)

Now, applying (4.7), the condition at p and the following relations

$$\overline{\nabla}_{Z_i}\widehat{W} = \sum_{k=1}^n \epsilon_k \overline{g}(\overline{\nabla}_{Z_i}\widehat{W}, Z_k) Z_k, \quad \overline{\nabla}_{\widehat{W}} Z_j = \overline{g}(\overline{\nabla}_{\widehat{W}} Z_j, \widehat{W})\widehat{W}$$

and $g(\mathcal{A}_{\widehat{W}}^2 Z_i, Z_j) = -\sum_{k=1}^n \epsilon_k \overline{g}(\overline{\nabla}_{Z_i} \widehat{W}, Z_k) \overline{g}(\overline{\nabla}_{Z_k} Z_j, \widehat{W})$ to the last line of (4.8) and the fact that S(TM) is integrable we get

$$g(\mathcal{A}_{\widehat{W}}^2 Z_i, Z_j) - \overline{g}(\overline{R}(Z_i, \widehat{W}) Z_j, \widehat{W}) - \overline{g}((\nabla'_{\widehat{W}} \mathcal{A}_{\widehat{W}}) Z_i, Z_j) = g(\nabla'_{Z_i} \overline{\nabla}_{\widehat{W}} \widehat{W}, Z_j) - g(\overline{\nabla}_{\widehat{W}} \widehat{W}, Z_i) g(Z_j, \overline{\nabla}_{\widehat{W}} \widehat{W}),$$

from which the lemma follows by rearrangement.

Notice that, using parallel transport, we can always construct a frame field from the above lemma.

Proposition 4.4. Let M be a screen integrable half-lightlike submanifold of an indefinite almost contact manifold \overline{M} and let \mathfrak{F} be a foliation of S(TM). Then

$$\begin{split} \operatorname{div}^{\nabla'}(T_r \overline{\nabla}_{\widehat{W}} \widehat{W}) &= \overline{g}(\operatorname{div}^{\nabla'}(T_r), \overline{\nabla}_{\widehat{W}} \widehat{W}) + (-1)^{r+1} \widehat{W}(S_{r+1}) \\ &+ (-1)^{r+1} (-S_1 S_{r+1} + (r+2) S_{r+2}) - \sum_{i=1}^n \epsilon_i \overline{g}(\overline{R}(Z_i, \widehat{W}) T_r Z_i, \widehat{W}) \\ &+ \overline{g}(\overline{\nabla}_{\widehat{W}} \widehat{W}, T_r \overline{\nabla}_{\widehat{W}} \widehat{W}), \end{split}$$

where $\{Z_i\}$ is a field of frame tangent to the leaves of \mathcal{F} .

Proof. From (3.7), we deduce that

$$\operatorname{div}^{\nabla'}(T_r Z) = \overline{g}(\operatorname{div}^{\nabla'}(T_r), Z) + \sum_{i=1}^n \epsilon_i \overline{g}(\nabla'_{Z_i} Z, T_r Z_i),$$
(4.9)

for all $Z \in \Gamma(T\mathcal{F})$. Then using (4.9), Lemmas 4.2 and 4.3, we obtain the desired result. Hence the proof.

From Proposition 4.4 we have

Theorem 4.5. Let M be a screen integrable half-lightlike submanifold of an indefinite almost contact manifold \overline{M} and let \mathcal{F} be a co-dimension three foliation of S(TM). Then

$$\operatorname{div}^{\nabla}(T_{r}\overline{\nabla}_{\widehat{W}}\widehat{W}) = \overline{g}(\operatorname{div}^{\nabla'}(T_{r}), \overline{\nabla}_{\widehat{W}}\widehat{W}) + (-1)^{r+1}\widehat{W}(S_{r+1}) + (-1)^{r+1}(-S_{1}S_{r+1} + (r+2)S_{r+2}) - \sum_{i=1}^{n} \epsilon_{i}\overline{g}(\overline{R}(Z_{i},\widehat{W})T_{r}Z_{i},\widehat{W}).$$

Proof. A proof follows easily from Proposition 4.4 by recognizing the fact that

$$\operatorname{div}^{\nabla}(T_r \overline{\nabla}_{\widehat{W}} \widehat{W}) = \operatorname{div}^{\nabla'}(T_r \overline{\nabla}_{\widehat{W}} \widehat{W}) - \overline{g}(\overline{\nabla}_{\widehat{W}} \widehat{W}, T_r \overline{\nabla}_{\widehat{W}} \widehat{W}),$$

which completes the proof.

Theorem 4.6. Let M be a screen integrable half-lightlike submanifold of \overline{M} and let \mathcal{F} be a co-dimension three foliation of S(TM). Then,

$$\operatorname{div}^{\nabla}(T_{r}\overline{\nabla}_{\widehat{W}}\widehat{W} + (-1)^{r}S_{r+1}\widehat{W}) = \overline{g}(\operatorname{div}^{\nabla'}(T_{r}), \overline{\nabla}_{\widehat{W}}\widehat{W}) + (-1)^{r+1}(r+2)S_{r+2} - \sum_{i=1}^{n}\epsilon_{i}\overline{g}(\overline{R}(Z_{i},\widehat{W})T_{r}Z_{i},\widehat{W})$$

Proof. By straightforward calculations we have

$$S_{1} = \operatorname{tr}(\mathcal{A}_{\widehat{W}})$$
$$= -\sum_{i=1}^{n} \epsilon_{i} \overline{g}(\overline{\nabla}_{Z_{i}} \widehat{W}, Z_{i})$$
$$= -\sum_{i=1}^{n+1} \epsilon_{i} \overline{g}(\overline{\nabla}_{Z_{i}} \widehat{W}, Z_{i})$$
$$= -\operatorname{div}^{\overline{\nabla}}(\widehat{W}),$$

where $Z_{n+1} = \widehat{W}$. From this equation we deduce

$$\operatorname{div}^{\nabla}(S_{r+1}\widehat{W}) = -S_1 S_{r+1} + \widehat{W}(S_{r+1}).$$
(4.10)

Then from (4.10) and Theorem 4.5 we get our assertion, hence the proof.

Next, we let dV denote the volume form \overline{M} . Then from Theorem 4.6 we have the following

Corollary 4.7. Let M be a screen integrable half-lightlike submanifold of a compact semi-Riemannian manifold \overline{M} and let \mathcal{F} be a co-dimension three foliation of S(TM). Then

$$\int_{\overline{M}} \overline{g}(\operatorname{div}^{\nabla'}(T_r), \overline{\nabla}_{\widehat{W}}\widehat{W})dV = \int_{\overline{M}} ((-1)^r (r+2)S_{r+2} + \sum_{i=1}^n \epsilon_i \overline{g}(\overline{R}(Z_i, \widehat{W})T_r Z_i, \widehat{W})dV$$

Setting r = 0 in the above corollary we get

Corollary 4.8. Let M be a screen integrable half-lightlike submanifold of a compact semi-Riemannian manifold \overline{M} and let \mathcal{F} be a co-dimension three foliation of S(TM) with mean curvatures S_r . Then for r = 0 we have

$$\int_{\overline{M}} 2S_2 dV = \int_{\overline{M}} \overline{Ric}(\widehat{W}, \widehat{W}) dV,$$

where $\overline{Ric}(\widehat{W}, \widehat{W}) = \sum_{i=1}^n \epsilon_i \overline{g}(\overline{R}(Z_i, \widehat{W}) \widehat{W}, Z_i).$

Notice that the equation in Corollary 4.8 is the lightlike analogue of (3.5) in [2] for co-dimension one foliations on Riemannian manifolds.

Next, we will discuss some consequences of the integral formulas developed so far.

A semi-Riemannian manifold \overline{M} of constant sectional curvature c is called a *semi-Riemannian space form* [4,6] and is denoted by $\overline{M}(c)$. Then, the curvature tensor \overline{R} of $\overline{M}(c)$ is given by

$$\overline{R}(\overline{X},\overline{Y})\overline{Z} = c\{\overline{g}(\overline{Y},\overline{Z})\overline{X} - \overline{g}(\overline{X},\overline{Z})\overline{Y}\}, \quad \forall \overline{X},\overline{Y},\overline{Z} \in \Gamma(T\overline{M}).$$
(4.11)

Theorem 4.9. Let M be a screen integrable half-lightlike submanifold of a compact semi-Riemannian space form $\overline{M}(c)$ of constant sectional curvature c. Let \mathcal{F} be a co-dimension three foliation of its screen distribution S(TM). If V is the total volume of \overline{M} , then

$$\int_{\overline{M}} S_r dV = \begin{cases} 0, & r = 2k+1, \\ c^{\frac{r}{2}} \binom{\frac{n}{2}}{\frac{r}{2}} V, & r = 2k, \end{cases}$$
(4.12)

for positive integers k.

Proof. By setting $\overline{X} = Z_i$, $\overline{Y} = \widehat{W}$ and $Z = T_r Z_i$ in (4.11) we deduce that

$$\overline{R}(Z_i,\widehat{W})T_rZ_i = -cg(Z_i,T_rZ_i)\widehat{W}.$$

Then substituting this equation in Corollary 4.7 we obtain

$$\int_{\overline{M}} \overline{g}(\operatorname{div}^{\nabla'}(T_r), \overline{\nabla}_{\widehat{W}}\widehat{W})dV = \int_{\overline{M}} ((-1)^r (r+2)S_{r+2} - c\operatorname{tr}(T_r))dV$$

Since \overline{M} is of constant sectional curvature c, then Lemma 4.2 implies that $T_r = 0$ for any r and hence the above equation simplifies to

$$(r+2)\int_{\overline{M}} S_{r+2}dV = c(n-r)\int_{\overline{M}} S_rdV.$$
 (4.13)

Since $S_1 = -\operatorname{div}^{\overline{\nabla}}(\widehat{W})$ and that \overline{M} is compact, then $\int_{\overline{M}} S_1 dV = 0$. Using this fact together with (4.13), mathematical induction gives $\int_{\overline{M}} S_r dV = 0$ for all r = 2k + 1 (i.e., r odd).

For r even we will consider r = 2m and n = 2l (i.e., both M and \overline{M} are odd dimensional). With these conditions, (4.13) reduces to

$$\int_{\overline{M}} S_{2m+2} dV = c \frac{l-m}{1+m} \int_{\overline{M}} S_{2m} dV.$$
(4.14)

Now setting $m = 0, 1, \cdots$ and $S_0 = 1$ in (4.14) we obtain

$$\int_{\overline{M}} S_2 dV = c l V, \quad \int_{\overline{M}} S_4 dV = c^2 \frac{(l-1)l}{2} V,$$

and more generally

$$\int_{\overline{M}} S_{2k} dV = c^k \frac{(l-k+1)(l-k+2)(l-k+3)\cdots l}{k!} V.$$
(4.15)

Hence, our assertion follows from 4.15, which completes the proof.

Next, when \overline{M} is Einstein i.e., $\overline{Ric} = \mu \overline{g}$ we have the following.

Theorem 4.10. Let M be a screen integrable half-lightlike submanifold of an Einstein compact semi-Riemannian manifold \overline{M} . Let \mathcal{F} be a co-dimension three foliation of its screen distribution S(TM) with totally umbilical leaves. If V is the total volume of \overline{M} , then

$$\int_{\overline{M}} S_r dV = \begin{cases} 0, & r = 2k+1, \\ \left(\frac{\mu}{n}\right)^{\frac{n}{2}} \begin{pmatrix} \frac{n}{2} \\ \frac{r}{2} \end{pmatrix} V, & r = 2k, \end{cases}$$
(4.16)

for positive integers k.

Proof. Suppose that $\mathcal{A}_{\widehat{W}} = \frac{1}{n} S_r \mathbb{I}$. Then by direct calculations using the formula for T_r we derive $T_r = (-1)^{r+1} \frac{(n-r)}{n} S_r \mathbb{I}$. Then, under the assumptions of the theorem we obtain $\overline{Ric}(\widehat{W}, \overline{\nabla}_{\widehat{W}}\widehat{W}) = 0$ and $\overline{Ric}(\widehat{W}, \widehat{W}) = \mu$ and hence, Corollary 4.7 reduces to

$$n(r+2)\int_{\overline{M}} S_{r+2}dV = \lambda(n-r)\int_{\overline{M}} S_rdV.$$
(4.17)

Notice that (4.17) is similar to (4.13) and hence following similar steps as in the previous theorem we get $\int_{\overline{M}} S_r dV = 0$ for r odd and for r even we get

$$\int_{\overline{M}} S_{2k} dV = \left(\frac{\mu}{n}\right)^k \frac{(l-k+1)(l-k+2)(l-k+3)\cdots l}{k!} V,$$

the proof.

which complete the proof.

5. Screen umbilical half-lightlike submanifolds

In this section we consider totally umbilical half-lightlike submanifolds of semi-Riemannian manifold, with a totally umbilical screen distribution and thus, give a generalized version of Theorem 4.3.7 of [6] and its Corollaries, via Newton transformations of the operator A_N .

A screen distribution S(TM) of a half-lightlike submanifold M of a semi-Riemannian manifold \overline{M} is said to be totally umbilical [6] if on any coordinate neighborhood \mathcal{U} there exist a function K such that

$$C(X, PY) = Kg(X, PY), \quad \forall X, Y \in \Gamma(TM).$$
(5.1)

In case K = 0, we say that S(TM) is totally geodesic. Furthermore, if S(TM) is totally umbilical then by straightforward calculations we have

$$A_N X = P X, \quad C(E, P X) = 0, \quad \forall X \in \Gamma(T M).$$
(5.2)

Let $\{E, Z_i\}$, for $i = 1, \dots, n$, be a quasi-orthonormal frame field of TM which diagonalizes A_N . Let l_0, l_1, \dots, l_n be the respective eigenvalues (or principal curvatures). Then as before, the *r*-th mean curvature S_r is given by

$$S_r = \sigma_r(l_0, \dots, l_n)$$
 and $S_0 = 1$

The characteristic polynomial of A_N is given by

$$\det(A_N - t\mathbb{I}) = \sum_{\alpha=0}^n (-1)^\alpha S_r t^{n-\alpha},$$

where \mathbb{I} is the identity in $\Gamma(TM)$. The normalized *r*-th mean curvature H_r of M is defined by $\binom{n}{r}H_r = S_r$ and $H_0 = 1$. The Newton transformations $T_r : \Gamma(TM) \to \Gamma(TM)$ of A_N are given by the inductive formula

$$T_0 = \mathbb{I}, \quad T_r = (-1)^r S_r \mathbb{I} + A_N \circ T_{r-1}, \quad 1 \le r \le n.$$
 (5.3)

By Cayley-Hamiliton theorem, we have $T_{n+1} = 0$. Also, T_r satisfies the following properties.

$$tr(T_r) = (-1)^r (n+1-r)S_r, (5.4)$$

$$tr(A_N \circ T_r) = (-1)^r (r+1) S_{r+1}, \tag{5.5}$$

$$\operatorname{tr}(A_N^2 \circ T_r) = (-1)^{r+1} (-S_1 S_{r+1} + (r+2) S_{r+2}), \tag{5.6}$$

$$\operatorname{tr}(T_r \circ \nabla_X A_N) = (-1)^r X(S_{r+1}), \tag{5.7}$$

for all $X \in \Gamma(TM)$.

Proposition 5.1. Let (M, g) be a totally umbilical half-lightlike submanifold of a semi-Riemannian manifold \overline{M} of constant sectional curvature c. Then

$$g(\operatorname{div}^{\nabla}(T_{r}), X) = (-1)^{r-1}\lambda(X)E(S_{r}) - \tau(X)\operatorname{tr}(A_{N} \circ T_{r-1}) - c\lambda(X)\operatorname{tr}(T_{r-1}) + g(\operatorname{div}^{\nabla}(T_{r-1}), A_{N}X) + g((\nabla_{E}A_{N})T_{r-1}E, X) + \sum_{i=1}^{n} \epsilon_{i}\{-\lambda(X)B(Z_{i}, A_{N}(T_{r-1}Z_{i})) + \varepsilon\tau(Z_{i})C(X, T_{r-1}Z_{i})\{\rho(X)D(Z_{i}, T_{r-1}Z_{i}) - \rho(Z_{i})D(X, T_{r-1}Z_{i})\}\},$$

for any $X \in \Gamma(TM)$.

g

Proof. From the recurrence relation (5.3), we derive

$$(\operatorname{div}^{\nabla}(T_{r}), X) = (-1)^{r} P X(S_{r}) + g((\nabla_{E} A_{N}) T_{r-1} E, X) + g(\operatorname{div}^{\nabla}(T_{r-1}), A_{N} X) + \sum_{i=1}^{n} \epsilon_{i} g((\nabla_{Z_{i}} A_{N}) T_{r-1} Z_{i}, X), \qquad (5.8)$$

for any $X \in \Gamma(TM)$. But

$$g((\nabla_{Z_i}A_N)T_{r-1}Z_i, X) = g(T_{r-1}Z_i, (\nabla_{Z_i}A_N)X) + g(\nabla_{Z_i}A_N(T_{r-1}Z_i), X) - g(\nabla_{Z_i}(A_NX), T_{r-1}Z_i) + g(A_N(\nabla_{Z_i}X), T_{r-1}Z_i) - g(A_N(\nabla_{Z_i}T_{r-1}Z_i), X),$$
(5.9)

for all $X \in \Gamma(TM)$.

Then applying (2.9) to (5.9) while considering the fact that A_N is screen-valued, we get $g((\nabla_{Z_i}A_N)T_{r-1}Z_i, X) = g(T_{r-1}Z_i, (\nabla_{Z_i}A_N)X) - \lambda(X)B(Z_i, A_N(T_{r-1}Z_i)).$ (5.10)

Furthermore, using (2.15) and (4.11), the first term on the right hand side of (5.10) reduces to

$$g(T_{r-1}Z_i, (\nabla_{Z_i}A_N)X) = -c\lambda(X)g(Z_i, T_{r-1}Z_i) + g((\nabla_XA_N)Z_i, T_{r-1}Z_i) - \tau(X)C(Z_i, T_{r-1}Z_i) + \varepsilon\tau(Z_i)C(X, T_{r-1}Z_i)\{\rho(X)D(Z_i, T_{r-1}Z_i) - \rho(X)D(X, T_{r-1}Z_i)\},$$
(5.11)

for any $X \in \Gamma(TM)$. Finally, replacing (5.11) in (5.10) and then put the resulting equation in (5.8) we get the desired result.

Next, from Proposition 5.1 we have the following.

Theorem 5.2. Let (M, g) be a half-lightlike submanifold of a semi-Riemannian manifold $\overline{M}(c)$ of constant curvature c, with a proper totally umbilical screen distribution S(TM). If M is also totally umbilical, then the r-th mean curvature S_r , for $r = 0, 1, \dots, n$, with respect to A_N are solution of the following differential equation

$$E(S_{r+1}) - \tau(E)(r+1)S_{r+1} - c(-1)^r(n+1-r)S_r = \mathcal{H}_1(r+1)S_{r+1}.$$

Proof. Replacing X with E in the Proposition 5.1 and then using (2.16) and (5.2) we obtain, for all $r = 0, 1, \dots, n$,

$$E(S_{r+1}) - (-1)^r \tau(E) \operatorname{tr}(A_N \circ T_r) - c(-1)^r \operatorname{tr}(T_r) = (-1)^r \mathcal{H}_1 \operatorname{tr}(A_N \circ T_r),$$

from which the result follows by applying (5.4) and (5.5).

Corollary 5.3. Under the hypothesis of Theorem 5.2, the induced connection ∇ on M is a metric connection, if and only if, the r-th mean curvature S_r with respect to A_N are solution of the following equation

$$E(S_{r+1}) - \tau(E)(r+1)S_{r+1} - c(-1)^r(n+1-r)S_r = 0.$$

Also the following holds.

Corollary 5.4. Under the hypothesis of Theorem 5.2, $\overline{M}(c)$ is a semi-Euclidean space, if and only if, the r-th mean curvature S_r with respect to A_N are solution of the following equation

$$E(S_{r+1}) - \tau(E)(r+1)S_{r+1} = \mathcal{H}_1(r+1)S_{r+1}.$$

Notice that Theorem 5.2 and Corollary 5.3 are generalizations of Theorem 4.3.7 and Corollary 4.3.8, respectively, given in [6].

Acknowledgment. This work is based on the research supported wholly by the National Research Foundation of South Africa (Grant Numbers: 95931 and 106072).

References

- K. Andrzejewski, W. Kozlowski and K. Niedzialomski, Generalized Newton transformation and its applications to extrinsic geometry, Asian J. Math. 20 (2), 293–322, 2016.
- [2] K. Andrzejewski and Pawel G. Walczak, The Newton transformation and new integral formulae for foliated manifolds, Ann. Glob. Anal. Geom. 37 (2), 103–111, 2010.
- [3] C. Calin, Contributions to geometry of CR-submanifold, Ph.D. thesis, University of Iasi (Romania), 1998.
- [4] K.L. Duggal and A. Bejancu, Lightlike submanifolds of semi-Riemannian manifolds and applications, Mathematics and Its Applications, Kluwer Academic Publishers, 1996.
- K.L. Duggal and B. Sahin, Screen conformal half-lightlike submanifolds, Int. J. Math. Math. Sci. 2004 (68), 3737–3753, 2004.

- [6] K.L. Duggal and B. Sahin, Differential geometry of lightlike submanifolds. Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2010.
- [7] D.N. Kupeli, Singuler semi-Riemannian geometry, Mathematics and Its Applications, Vol. 366, Kluwer Academic Publishers, 1996.
- [8] F. Massamba, Totally contact umbilical lightlike hypersurfaces of indefinite Sasakian manifolds, Kodai Math. J. 31, 338–358, 2008.
- F. Massamba, On semi-parallel lightlike hypersurfaces of indefinite Kenmotsu manifolds, J. Geom. 95, 73–89, 2009.
- [10] F. Massamba and S. Ssekajja, Some remarks on quasi generalized CR-null geometry in indefinite nearly cosymplectic manifolds, Int. J. Math. Math. Sci. Art. ID 9613182, 10 pp, 2016.
- [11] E. Yasar, A.C. Coken, and A. Yucesan, Lightlike hypersurfaces in semi-Riemannian manifold with semi-symmetric non-metric connection, Math. Scand. 102 (2), 253– 264, 2008.