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Abstract
Using James’ Distortion Theorems, researchers have inquired relations between spaces
containing nice copies of c0 or ℓ1 and the failure of the fixed point property for nonexpansive
mappings especially after the fact that every classical nonreflexive Banach space contains
an isometric copy of either ℓ1 or c0. For instance, finding asymptotically isometric (ai)
copies of ℓ1 or c0 inside a Banach space reveals the space’s failure of the fixed point
property for nonexpansive mappings. There has been many researches done using these
tools developed by James and followed by Dowling, Lennard, and Turett mainly to see
if a Banach space can be renormed to have the fixed point property for nonexpansive
mappings when there is failure.
In this paper, we introduce the concept of Banach spaces containing ai copies of ℓ1�0 and
give alternative methods of detecting them. We show the relations between spaces con-
taining these copies and the failure of the fixed point property for nonexpansive mappings.
Finally, we give some remarks and examples pointing our vital result: if a Banach space
contains an ai copy of ℓ1�0, then it contains an ai copy of ℓ1 but the converse does not
hold.
Mathematics Subject Classification (2010). 46B45, 47H09, 46B42, 46B10
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1. Introduction
A Banach space (X, ∥.∥) is said to have the fixed point property for nonexpansive

mappings if every self-map T of any closed, bounded, and convex domain C in that space
satisfying the condition ∥Tx − Ty∥ ≤ ∥x − y∥ for every x, y ∈ C has a fixed point.

It is a fact that either c0 or ℓ1 is almost isometrically embedded in any nonreflexive
Banach spaces with an unconditional basis (see e.g. [7]). Thus, all of the classical nonre-
flexive spaces fail the fixed point property for nonexpansive mappings; that is, there exists
a closed, bounded, and convex subset, and a nonexpansive self-map T defined on that set
such that T is fixed point free. This result depends on well-known facts (Theorems 1.c.12
in [10] and 1.c.5 in [11] ) stated by the following: a Banach lattice or a Banach space with
an unconditional basis is reflexive if and only if it contains no isomorphic copies of c0 or
ℓ1. Hence, if it can be shown that neither c0 nor ℓ1 can be renormed to have the fixed
point property, it would follow that the fixed point property in either a Banach lattice or
in a Banach space with an unconditional basis would imply reflexivity.

Email address: veyselnezir@yahoo.com
Received: 03.01.2019; Accepted: 18.06.2019

https://orcid.org/0000-0001-9640-8526


Asymptotically isometric copies of ℓ1�0 985

On this matter, for many years, researchers have asked the question whether or not
either ℓ1 or c0 can be renormed so that the resulting space has the fixed point property
for nonexpansive mappings. In the case of ℓ1, there is a fact suggesting the contrary by
Lin [9]. In [7], James showed that if a Banach space contains an isomorphic copy of ℓ1

(respectively, c0), then it contains almost isometric copies of ℓ1 (respectively, c0) and then
he provided a tool that helped researches investigate the question of whether ℓ1 or c0
can be renormed to have the fixed point property for nonexpansive mappings. Using and
strengthening this tool, Dowling, Lennard, and Turett, in several articles, have inquired
relations between spaces containing nice copies of c0 or ℓ1 and the failure of the fixed point
property for nonexpansive mappings.

Ai copies of the classical Banach spaces ℓ1 and c0 have applications in metric fixed
point theory because they arise naturally in many places. For example, every non-reflexive
subspace of L1[0, 1], every closed infinite dimensional subspace of ℓ1, and every equivalent
renorming of ℓ∞ contains an ai copy of ℓ1 and so all of these spaces fail the fixed point
property for nonexpansive mappings [3–5]. The concept of containing an ai copy of ℓ1 also
arises in the isometric theory of Banach spaces in an intriguing way: a Banach space X
contains an asymptotically isometric copy ℓ1 if and only if X∗ contains an isometric copy
of L1[0, 1] [2].

In this paper, we aim to obtain an alternative property for a Banach space to contain
an ai copy of ℓ1. In our recent study [14], we investigated a renorming of ℓ1 and noticed
that an equivalent renorming of ℓ1 turns out to produce a degenerate ℓ1-analog Lorentz-
Marcinkiewicz space ℓδ,1, where the weight sequence δ = (δn)n∈N = (2, 1, 1, 1, · · · ) is a
decreasing positive sequence in ℓ∞\c0, rather than in c0\ℓ1 (the usual Lorentz case). Our
aforementioned work inspired us to construct the notion of ai copy of ℓ1�0 which involves
the combination of the usual norms of ℓ1 and c0. Therefore, we prefer to use ℓ1�0 notation.

Then, following the researches by Dowling, Lennard, and Turett, first, we introduce
the concept of Banach spaces containing ai copies of ℓ1�0. Next, we provide alternative
methods of recognizing this property. Finally, we give some remarks and examples that
point our vital result: if a Banach space contains an ai copy of ℓ1�0, then it contains an
ai copy of ℓ1 but the converse does not hold.

2. Preliminaries
In this section, we recall James’ Distortion Theorems and some of the results given by

Dowling, Lennard, and Turett including their findings for the concept of Banach spaces
containing ai copy of ℓ1 and those containing ai copy of c0. Next, we give the definition
of our property. Then, in the following subsection, we show examples of Banach spaces
where this new property naturally arises.

Throughout the paper our scalar field is R, c0 represents the Banach space of scalar
sequences converging to 0 and ℓ1 stands for the Banach space of absolutely summable
sequences.

That is,
c0 :=

{
x = (xn)n∈N : each xn ∈ R and lim

n−→∞
xn = 0

}
such that its usual norm is given by ∥x∥∞ := sup

n∈N
|xn|, for all x = (xn)n∈N ∈ c0; and

ℓ1 :=
{

x = (xn)n∈N : each xn ∈ R and ∥x∥1 :=
∞∑

n=1
|xn| < ∞

}
.

Furthermore, in the paper, we will be using canonical basis (en)n∈N, given by 1 in its
nth coordinate, and 0 in all other coordinates for each n ∈ N, which is an unconditional
basis for both (c0, ∥ · ∥∞) and (ℓ1, ∥ · ∥1).
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Theorem 2.1. [7] If a Banach space (X, ∥ · ∥) contains an isomorphic copy of ℓ1, then
there exists a sequence (xn)n in X such that for every ε > 0 and for all (an)n ∈ ℓ1,

(1 − ε)
∞∑

n=1
|an| ≤

∥∥∥∥∥
∞∑

n=1
anxn

∥∥∥∥∥ ≤
∞∑

n=1
|an| .

Theorem 2.2. [7] If a Banach space (X, ∥ · ∥) contains an isomorphic copy of c0, then
there exists a sequence (xn)n in X such that for every ε > 0 and for all (an)n ∈ ℓ1,

(1 − ε) sup
n

|an| ≤
∥∥∥∥∥

∞∑
n=1

anxn

∥∥∥∥∥ ≤ sup
n

|an| .

Definition 2.3. [3] We call a Banach space (X, ∥ · ∥) contains an ai copy of ℓ1 if there
exist a sequence (xn)n in X and a null sequence (εn)n in (0, 1) so that

∞∑
n=1

(1 − εn)|an| ≤
∥∥∥∥∥

∞∑
n=1

anxn

∥∥∥∥∥ ≤
∞∑

n=1
|an| ,

for all (an)n ∈ ℓ1.

Definition 2.4. [4] We call a Banach space (X, ∥ · ∥) contains an ai copy of c0 if there
exist a sequence (xn)n in X and a null sequence (εn)n in (0, 1) so that

sup
n

(1 − εn)|an| ≤
∥∥∥∥∥

∞∑
n=1

anxn

∥∥∥∥∥ ≤ sup
n

|an| ,

for all (an)n ∈ c0.

Then we can give the following theorem as the summary of the results in papers [3, 4].

Theorem 2.5. If a Banach space (X, ∥ · ∥) contains an ai copy of ℓ1 or an ai copy of c0,
then X fails the fixed point property for nonexpansive mappings.

The following is the definition of our construction.

Definition 2.6. We will say that a Banach space (X, ∥ · ∥) contains an ai copy of ℓ1�0 if
there is a null sequence (εn)n in (0, 1) and a sequence (xn)n in X such that

sup
n∈N

(1 − εn) |an| +
∞∑

n=1
(1 − εn) |an| ≤

∥∥∥∥∥ ∞∑
n=1

an xn

∥∥∥∥∥ ≤ sup
n∈N

|an| +
∞∑

n=1
|an| ,

for all (an)n ∈ ℓ1.

2.1. The space and its fixed point properties behind the notion of ai copy
of ℓ1�0

In this section, we introduce some renormings of ℓ1 and we notice that the resulting
spaces are some degenerate Lorentz-Marinkiewicz spaces.

As we stated in the introduction section, we have recently constructed an equivalent
renorming of ℓ1 which turns out to produce a degenerate ℓ1-analog Lorentz-Marcinkiewicz
space ℓδ,1. In the same work [14], we obtained its isometrically isomorphic predual ℓ0

δ,∞
and dual ℓδ,∞, corresponding degenerate c0-analog and ℓ∞-analog Lorentz-Marcinkiewicz
spaces, respectively. Then, we investigated some types of fixed point properties such as
weak and regular fixed point properties.

Furthermore, very recently in [15], generalizing our work [14] by constructing an-
other equivalent norm on ℓ1 and obtaining our generalized degenerate ℓ1-analog Lorentz-
Marcinkiewicz space ℓδ,1, where the weight sequence δ = (δn)n∈N = (α + β, β, β, · · · ) for
β ≥ α > 0, we have showed that ℓδ,1 has the weak fixed point property but fails to have
the fixed point property for nonexpansive mappings.
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Now, we will consider these two new spaces after reminding definitions of Lorentz-
Marcinkiewicz spaces because our results derive from these renormings of ℓ1 space.

We should note that in the author’s Ph.D. thesis [13], written under supervisor of Chris
Lennard, the usual Lorentz-Marcienkiewicz spaces and their fixed point properties were
studied; hence, we can give definitions of the usual Lorentz-Marcienkiewicz spaces below
to understand how different the degenerate ones are.

Let w ∈ (c0\ℓ1)+, w1 = 1, and (wn)n∈N be decreasing; that is, consider a scalar sequence
given by w = (wn)n∈N, wn > 0, ∀n ∈ N such that 1 = w1 ≥ w2 ≥ w3 ≥ · · · ≥ wn ≥ wn+1 ≥
. . . , ∀n ∈ N with wn −→ 0 as n −→ ∞ and

∞∑
n=1

wn = ∞. This sequence is called a weight

sequence. For example, wn = 1
n , ∀n ∈ N.

Definition 2.7. lw,∞ :=

x = (xn)n∈N ∈ c0

∣∣∣∣∣∣∣∣∥x∥w,∞ := sup
n∈N

n∑
j=1

xj
⋆

n∑
j=1

wj

< ∞

 .

Here, x⋆ represents the decreasing rearrangement of the sequence x, which is the se-
quence of |x| = (|xj |)j∈N, arranged in a non-increasing order, followed by infinitely many
zeros when |x| has only finitely many non-zero terms. This space is non-separable and an
analogue of ℓ∞ space.

Definition 2.8. l0w,∞ :=

x = (xn)n∈N ∈ c0

∣∣∣∣∣∣∣∣lim sup
n−→∞

n∑
j=1

xj
⋆

n∑
j=1

wj

= 0

 .

This is a separable subspace of ℓw,∞ and an analogue of c0 space.

Definition 2.9. lw,1 :=
{

x = (xn)n∈N ∈ c0

∣∣∣∣∣∥x∥w,1 :=
∞∑

j=1
wj xj

⋆ < ∞
}

.

This is a separable subspace of ℓw,∞ and an analogue of ℓ1 space with following facts:
(ℓ0

w,∞)⋆ ∼= lw,1 and (ℓw,1)⋆ ∼= lw,∞ where the star denotes the dual of a space while ∼=
denotes isometrically isomorphic.

More information about these spaces can be seen in [10,12].

Now, we will introduce our construction given in [14]. For all x = (xn)n∈N ∈ ℓ1, we

define ~x~ := ∥x∥1 + ∥x∥∞ =
∞∑

n=1
|xn| + sup

n∈N
|xn| . Clearly ~ · ~ is an equivalent norm on

ℓ1 with ∥x∥1 ≤ ~x~ ≤ 2∥x∥1, ∀x ∈ ℓ1. Note that ∀x ∈ ℓ1, ~x~ = 2x∗
1 + x∗

2 + x∗
3 + x∗

4 + · · ·
where z∗ is the decreasing rearrangement of |z| = (|zn|)n∈N, ∀z ∈ c0. Let δ1 := 2, δ2 :=
1, δ3 := 1, · · · , δn := 1, ∀n ≥ 4. We see that (ℓ1,~ ·~) is a (degenerate) Lorentz space ℓδ,1,
where the weight sequence δ = (δn)n∈N is a decreasing positive sequence in ℓ∞\c0, rather
than in c0\ℓ1 (the usual Lorentz case).

Generalizing this construction, in [15], we constructed another equivalent norm as the
following: let β ≥ α > 0. For all x = (xn)n∈N ∈ ℓ1, we define ~x~ := β∥x∥1 + α∥x∥∞ =

β
∞∑

n=1
|xn| + α sup

n∈N
|xn| . Clearly ~ · ~ is an equivalent norm on ℓ1 with β∥x∥1 ≤ ~x~ ≤

(α + β)∥x∥1, ∀x ∈ ℓ1. Note that ∀x ∈ ℓ1, ~x~ = β
(

α+β
β x∗

1 + x∗
2 + x∗

3 + x∗
4 + · · ·

)
where

z∗ is the decreasing rearrangement of |z| = (|zn|)n∈N, ∀z ∈ c0. Let δ1 := (α + β), δ2 :=
β, δ3 := β, · · · , δn := β, ∀n ≥ 4. Then, we see that (ℓ1,~ · ~) is a (degenerate) Lorentz
space ℓδ,1.
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This suggests that ℓ0
δ,∞ = (c0, ∥ · ∥) is an isometric predual of (ℓ1,~ · ~) where for all

z ∈ c0,

∥z∥ := sup
n∈N

n∑
j=1

z∗
j

n∑
j=1

δj

= sup
n∈N

1
α + nβ

n∑
j=1

z∗
j .

But there is a way to re-write ∥z∥ without using decreasing rearrangements of |z|. This
may help with calculations involving this norm.

Fix z ∈ c0, arbitrary. Note that ∀n ∈ N,
n∑

j=1
z∗

j = sup
K⊆N

#(K)=n

∑
i∈K

|zi|, where #(K) is the

number of elements in K for all finite subsets K ⊆ N.
Thus, ∥z∥ = sup

n∈N

1
α+nβ sup

K⊆N
#(K)=n

∑
i∈K

|zi| = sup
n∈N

sup
K⊆N

#(K)=n

1
α+#(K)β

∑
i∈K

|zi|.

Hence, for all z ∈ c0,

∥z∥ = sup
∅≠K⊆N

#(K)<∞

1
α + #(K)β

∑
i∈K

|zi|. (2.1)

Also, note that the formula (2.1) can be extended to ℓ∞: ∀w = (wi)i∈N ∈ ℓ∞, we define

∥w∥ := sup
∅≠K⊆N

#(K)<∞

1
α + #(K)β

∑
i∈K

|wi|. (2.2)

It is easy to see that dual space of (ℓ1,~ · ~) is isometrically isomorphic to (ℓ∞, ∥ · ∥);
i.e., (ℓ1,~ · ~)∗ ∼= (ℓ∞, ∥ · ∥).

In the following sections, we will see that our new notion is related with these spaces.

3. Main results
In this section, we will give our main results. Recall that we introduced our property in

the Definition 2.6. We will show that our property is an alternative property for a Banach
space to contain an ai copy of ℓ1 and to do that, we will be working on its generalized
version introduced below.

Definition 3.1. We will say that a Banach space (X, ∥·∥) contains an ai copy of ℓ1(β)�0(α)

if there exist β ≥ α > 0, a null sequence (εn)n in (0, 1) and a sequence (xn)n in X so that

α sup
n∈N

(1 − εn) |an| + β
∞∑

n=1
(1 − εn) |an| ≤

∥∥∥∥∥ ∞∑
n=1

an xn

∥∥∥∥∥ ≤ α sup
n∈N

|an| + β
∞∑

n=1
|an| ,

for all (an)n ∈ ℓ1.

Note that indeed the Definition 2.6 implies Definition 3.1. Now using the Definition
2.6, the next theorem conclude that If a Banach Space (X, ∥ · ∥) contains an ai copy of
ℓ1�0 then it fails to have the fixed point property for ∥ · ∥-nonexpansive mappings, but we
will also prove the same conclusion by a direct way.

Theorem 3.2. If a Banach Space (X, ∥ · ∥) contains an ai copy of ℓ1(β)�0(α) for some
β ≥ α > 0 then it contains an ai copy of ℓ1 and it fails to have the fixed point property for
∥ · ∥-nonexpansive mappings.
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Proof. Indeed, suppose there exist β ≥ α > 0 and a null sequence (εn)n in (0, 1), and a
sequence (xn)n in X such that for all (an)n ∈ ℓ1,

α sup
n∈N

(1 − εn) |an| + β
∞∑

n=1
(1 − εn) |an| ≤

∥∥∥∥∥ ∞∑
n=1

an xn

∥∥∥∥∥ ≤ α sup
n∈N

|an| + β
∞∑

n=1
|an| . (3.1)

Fix an increasing sequence (mi)i in N and define for each k ∈ N, Mk :=
k∑

i=1
mi with

M0 := 0 and yk = 1
β(1+mk)

Mk∑
n=Mk−1+1

xn.

Then by (3.1), we get for each k ∈ N,

∥yk∥ ≤ 1
β

1
mk + 1

(α + β(Mk − Mk−1)) = 1
mk + 1

(
α

β
+ mk

)
≤ 1

mk + 1
(1 + mk) = 1,

and thus, for all (an)n ∈ ℓ1,
∥∥∥∥ ∞∑

n=1
an yn

∥∥∥∥ ≤
∞∑

n=1
|an|.

On the other hand, we have∥∥∥∥∥ ∞∑
n=1

an yn

∥∥∥∥∥ = α

β

∥∥∥∥∥∥
∞∑

n=1
an

1
mn + 1

Mn∑
j=Mn−1+1

xj

α

∥∥∥∥∥∥
≥ α

β


α sup

n∈N
|an|

(
1

mn+1
Mn∑

j=Mn−1+1

(1−εj)
α

)

+β
∞∑

n=1
|an|

(
1

mn+1
Mn∑

j=Mn−1+1

(1−εj)
α

)


≥
∞∑

n=1
|an|

 1
mn + 1

Mn∑
j=Mn−1+1

(1 − εj)


≥

∞∑
n=1

|an|
(

mn

mn + 1
(1 − εMn−1+1)

)
.

Hence, since lim
k→∞

mk = ∞, there exists a null sequence (ε′
n)n in (0, 1) such that for all

k ∈ N, 1 − ε
′
k = mk

mk+1(1 − εMk−1+1) and therefore (yk)k is an ai ℓ1 sequence in X. �

Remark 3.3. One can also prove that if a Banach Space (X, ∥ · ∥) contains an ai copy of
ℓ1�0 then it fails to have the fixed point property for ∥ · ∥-nonexpansive mappings without
using the fact given in previous theorem by a similar method to Theorem 1.2 in [3].

The following result gives alternative methods of recognizing ai copies of ℓ1�0.

Theorem 3.4. A Banach space (X, ∥ · ∥) contains an ai copy of ℓ1(β)�0(α) for some β ≥
α > 0 if and only if there is a sequence (xn)n in X such that

(1) there are constants A ≥ α+β
β

and 0 < r ≤ R ≤ r(2βA−(α+β))+
√

(α+β−2βA)2r2+8(α+β)2r2

4(α+β) so that for all (an)n ∈ ℓ1,

r

(
α sup

n∈N
|an| + β

∞∑
n=1

|an|
)

≤
∥∥∥∥∥

∞∑
n=1

anxn

∥∥∥∥∥ ≤ R

(
α sup

n∈N
|an| + β

∞∑
n=1

|an|
)

,

and
(2) lim

n→∞
∥xn∥ = (R+r)(α+β)

2A .
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Proof. Suppose that (X, ∥ · ∥) contains an ai copy of ℓ1(β)�0(α) for some β ≥ α > 0.
Then there are a null sequence (εn)n in (0, 1) and a sequence (yn)n in X such that for all
(an)n ∈ ℓ1,

α sup
n∈N

(1 − εn)|an| + β
∞∑

n=1
(1 − εn)|an| ≤

∥∥∥∥∥
∞∑

n=1
anyn

∥∥∥∥∥ ≤ α sup
n∈N

|an| + β
∞∑

n=1
|an| .

Let xn = (1 − εn)−1yn for each n ∈ N.
Then for all (an)n ∈ ℓ1,

α sup
n∈N

|an| + β
∞∑

n=1
|an| ≤

∥∥∥∥∥
∞∑

n=1
anxn

∥∥∥∥∥
≤ α sup

n∈N
(1 − εn)−1|an| + β

∞∑
n=1

(1 − εn)−1|an|

≤ 1
1 − ε1

(
α sup

n∈N
|an| + β

∞∑
n=1

|an|
)

.

Also, since (α + β) ≤ ∥xn∥ ≤ (α+β)
1−εn

by the inequality above, lim
n→∞

∥xn∥ = (α + β).

Hence, conditions (1) and (2) hold for r = 1, R = 1
1−ε1

and A =
1+ 1

1−ε1
2 .

Conversely, assume that conditions (1) and (2) hold.
Then, there are constants A ≥ α+β

β and

0 < r ≤ R ≤ r(2βA−(α+β))+
√

(α+β−2βA)2r2+8(α+β)2r2

4(α+β) so that for all (an)n ∈ ℓ1 ,

r

(
α sup

n∈N
|an| + β

∞∑
n=1

|an|
)

≤
∥∥∥∥∥

∞∑
n=1

anxn

∥∥∥∥∥ ≤ R

(
α sup

n∈N
|an| + β

∞∑
n=1

|an|
)

,

and lim
n→∞

∥xn∥ = (R+r)(α+β)
2A .

Then, lim
n→∞

∥ 2rA
r+Rxn∥ = (α + β)r and for all (an)n ∈ ℓ1,

since R ≤ r(2βA−(α+β))+
√

(α+β−2βA)2r2+8(α+β)2r2

4(α+β) ≤ (2A − 1)r,

r

(
α sup

n∈N
|an| + β

∞∑
n=1

|an|
)

≤ 2r2A

r + R

(
α sup

n∈N
|an| + β

∞∑
n=1

|an|
)

≤
∥∥∥∥∥

∞∑
n=1

an
2rA

r + R
xn

∥∥∥∥∥
≤ 2rRA

r + R

(
α sup

n∈N
|an| + β

∞∑
n=1

|an|
)

.

Now, define yn := 2rA
r+Rxn, ∀n ∈ N.

Note that lim
n→∞

∥yn∥ = (α + β)r and for all n ∈ N, (α + β)r ≤ ∥yn∥ ≤ 2(α+β)rRA
r+R .

Fix a null sequence (εn)n in (0, 1).
Then, since for all n ∈ N, 2r ≤ ∥yn∥ ≤ 2(α+β)rRA

r+R and lim
n→∞

∥yn∥ = (α + β)r, passing
to a subsequence of (εn)n as well, we can suppose that there exists a subsequence (ynk

)k

such that (α + β)r ≤ ∥ynk
∥ ≤ (α + β)r(1 + εk) ≤ 2r(α+β)RA

r+R for all k ∈ N.
Now, define zk := ynk

(α+β)r(1+εk) = 2Axnk
(r+R)(α+β)(1+εk) for all k ∈ N.
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Then, since ∥zk∥ ≤ 1 for all k ∈ N (from the inequality above), we have∥∥∥∥∥
∞∑

n=1
anzn

∥∥∥∥∥ ≤
∞∑

n=1
|an| for all (an)n ∈ ℓ1 .

Now, consider the sequence (uk)k given by uk := xnk
2R + βzk

2 , ∀k ∈ N.
Then, for all (an)n ∈ ℓ1 ,

α sup
n∈N

|an| + β
∞∑

n=1
|an| ≥

∥∥∥∥∥
∞∑

n=1
anun

∥∥∥∥∥ . (3.2)

Also, for all (an)n ∈ ℓ1,∥∥∥∥∥
∞∑

k=1
anun

∥∥∥∥∥ =
∥∥∥∥∥

∞∑
k=1

ak

(
xnk

2R
+ βzk

2

)∥∥∥∥∥
=

∥∥∥∥∥
∞∑

k=1
ak

( 1
2R

+ βA

(α + β)(1 + εk)(r + R)

)
xnk

∥∥∥∥∥
≥ rα sup

n∈N
|an|

((1 + εn)
2R

+ βA

(α + β)(r + R)

) 1
(1 + εn)

+rβ
∞∑

n=1
|an|

((1 + εn)
2R

+ βA

(α + β)(r + R)

) 1
(1 + εn)

≥
(

r

2R
+ βAr

(α + β)(r + R)

)(
α sup

n∈N

|an|
(1 + εn)

+ β
∞∑

n=1

|an|
(1 + εn)

)

≥ α sup
n∈N

|an|
(1 + εn)

+ β
∞∑

n=1

|an|
(1 + εn)

≥ α sup
n∈N

|an|(1 − εn) + β
∞∑

n=1
|an|(1 − εn)

since R ≤ r(2βA−(α+β))+
√

(α+β−2βA)2r2+8(α+β)2r2

4(α+β) .
Thus, from two inequalities above, we have

α sup
n∈N

|an|(1 − εn) + β
∞∑

n=1
|an|(1 − εn) ≤

∥∥∥∥∥
∞∑

n=1
anyn

∥∥∥∥∥
≤ α sup

n∈N
|an| + β

∞∑
n=1

|an|

for all (an)n ∈ ℓ1.
Hence, (X, ∥ · ∥) contains an ai copy of ℓ1(β)�0(α) for some β ≥ α > 0. �
By taking α = β = 1 in Theorem 3.4, we arrive at the following corollary.

Corollary 3.5. A Banach space (X, ∥ · ∥) contains an ai copy of ℓ1�0 if and only if there
is a sequence (xn)n in X such that

(1) there are constants A ≥ 2 and 0 < r ≤ R ≤ r(A−1)+
√

(A−1)2r2+8r2

4 such that for all
(an)n ∈ ℓ1,

r

(
sup
n∈N

|an| +
∞∑

n=1
|an|

)
≤
∥∥∥∥∥

∞∑
n=1

anxn

∥∥∥∥∥ ≤ R

(
sup
n∈N

|an| +
∞∑

n=1
|an|

)
,

and
(2) lim

n→∞
∥xn∥ = R+r

A .
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4. Some examples and remarks
In this section, we present important examples such that the final example points our

vital result: if a Banach space contains an ai copy of ℓ1�0, then it contains an ai copy of
ℓ1 but the converse does not hold.

But firstly, we would like to give some interesting remarks noting a confusion may
occur as follows. From our definition of ai copy of ℓ1�0, one could ask what would be the
isomorphic copy of ℓ1�0 which could be confused with the concept of isomorphic copy of
ℓ1 ⊕ c0.

As a result of valuable discussions with Lennard [8], we will provide the following
remarks with examples. First, we can define a Banach space containing an isomorphic
copy of ℓ1 ⊕ c0 as below but we leave further applications open.

Definition 4.1. We say that a Banach space (X, ∥ · ∥) contains an isomorphic copy Y of
ℓ1 ⊕ c0 if ∃(xn)n∈N ∈ X and (zn)n∈N ∈ X with [xn]n∈N ∩ [zn]n∈N = {0} (where [xn]n∈N
and [zn]n∈N are closed linear spans of {xn n ∈ N} and {zn n ∈ N}, respectively) and
0 < A ≤ B < ∞ such that ∀s = (sn)n∈N ∈ ℓ1 and ∀t = (tn)n∈N ∈ c0,

A

( ∞∑
n=1

|sn| + sup
n

|tn|
)

≤
∥∥∥∥∥

∞∑
n=1

snxn +
∞∑

n=1
tnzn

∥∥∥∥∥ ≤ B

( ∞∑
n=1

|sn| + sup
n

|tn|
)

.

Note that V := [xn]n∈N is an isomorphic copy of ℓ1 inside (X, ∥ · ∥) and W := [zn]n∈N
is an isomorphic copy of c0 inside (X, ∥ · ∥) such that V ∩ W = {0}.

Remark 4.2. From the Definition 4.1, one can obtain that if a Banach space (X, ∥ · ∥)
contains an isomorphic copy Y of ℓ1 ⊕ c0, by letting sn = tn and by re-labelling xn + zn,
∀n ∈ N, then

there exist constants 0 < r ≤ R < ∞ and there exists a sequence
(xn)n in Y so that
1
2r

( ∞∑
n=1

|an| + sup
n

|an|
)

≤
∥∥∥∥ ∞∑

n=1
anxn

∥∥∥∥
≤ 1

2R

( ∞∑
n=1

|an| + sup
n

|an|
)

 (4.1)

where A = r
2 and B = R

2 .

Remark 4.3. Let (X, ∥ · ∥) be a Banach space. Then, we cannot obtain conclusions
similarly to those of James’ Theorem from statement (4.1).

That is, generally statement (4.1) does not imply the following statement: if ε > 0,
then there exists a sequence (xn)n in X so that

1
2

(1 − ε)
( ∞∑

n=1
|an| + sup

n
|an|

)
≤
∥∥∥∥∥

∞∑
n=1

anxn

∥∥∥∥∥ ≤ 1
2

( ∞∑
n=1

|an| + sup
n

|an|
)

,

for all (an)n ∈ ℓ.
Indeed, two statements above are very different.
Now consider (X, ∥ · ∥) = (ℓ1, ∥ · ∥1). Let xn = en, ∀n ∈ N.
Then, X satisfies (4.1):

1
2

( ∞∑
n=1

|an| + sup
n

|an|
)

≤
∥∥∥∥∥

∞∑
n=1

anxn

∥∥∥∥∥
1

≤
∞∑

n=1
|an| + sup

n
|an|,

for all (an)n ∈ ℓ1.
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Then, fix ε ∈
(
0, 1

6

)
and assume ∃(zn = xn

∼)n in (ℓ1, ∥ · ∥1) such that

∀(an)n ∈ ℓ1,
1
2

(1 − ε)
( ∞∑

n=1
|an| + sup

n
|an|

)
≤

∥∥∥∥∥
∞∑

n=1
anzn

∥∥∥∥∥
1

(4.2)

≤ 1
2

( ∞∑
n=1

|an| + sup
n

|an|
)

.

Then, easily it can be seen that
1 − ε ≤ ∥zn∥1 ≤ 1, ∀n ∈ N. (4.3)

We note that (en)n is a Schauder basis for (ℓ1, ∥ · ∥1).
By the Bessaga-Pełczyński Selection Principle [1, p.46] with xn = en, x∗

n ∈ ℓ∞ ∼=
(ℓ1)∗ & yn = zn and using also (4.3), there exists a subsequence (znk

)k∈N of (zn)n∈N
that is equivalent to a block basic sequence (qk)k∈N of (ek)k∈N which can be written as

qk =
mk+1∑
mk+1

αkek where mk ∈ N, 1 ≤ m1 < m2 < m3 < · · · and each αk ∈ R.

Moreover, one can show that in (ℓ1, ∥ · ∥1), by passing to a subsequence if necessary, we
can choose (qk)k∈N so that εk := ∥znk

− qk∥1 −→ 0 as k −→ ∞ and (♣) εn ∈ (0, ε), ∀n ∈
N.

Fix an arbitrary (bj)j∈N ∈ ℓ1. From (4.2),∥∥∥∥∥
∞∑

k=1
bkznk

∥∥∥∥∥
1

≤ 1
2

( ∞∑
k=1

|bk| + sup
k

|bk|
)

. (4.4)

Also,∥∥∥∥∥
∞∑

k=1
bkqk

∥∥∥∥∥
1

=
∞∑

k=1
|bk|∥qk∥1 ≥

∞∑
k=1

|bk|
(
∥znk

∥1 − εk

)
≥

∞∑
k=1

|bk| (1 − ε − ε)

by (♣) and (4.3).
Furthermore, from the last inequality and (4.4),

(1 − 2ε)
∞∑

k=1
|bk| ≤

∥∥∥∥∥
∞∑

k=1
bkqk

∥∥∥∥∥
1

≤
∥∥∥∥∥

∞∑
k=1

bkznk

∥∥∥∥∥
1

+
∥∥∥∥∥

∞∑
k=1

bk(qk − znk
)
∥∥∥∥∥

1

≤ 1
2

( ∞∑
k=1

|bk| + sup
k

|bk|
)

+
∞∑

k=1
|bk|εk

≤ 1
2

∞∑
k=1

|bk| + 1
2

sup
k

|bk| + ε
∞∑

k=1
|bk|.

Thus,
∞∑

k=1
|bk| ≤ 1

1 − 6ε
sup

k
|bk|, ∀b = (bk)k∈N ∈ ℓ1.

Now, fix N ∈ N arbitrary and let b :=

 1
N

,
1
N

, · · · ,
1
N︸ ︷︷ ︸

N times

, 0, 0, · · · , 0, · · ·

.

Then, ∥b∥1 =
∞∑

k=1
|bk| = 1 and ∥b∥∞ = sup

k
|bk| = 1

N .

Therefore, 1 ≤ 1
1−6ε

1
N , ∀N ∈ N but this is clearly a contradiction.
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Now we will consider examples of spaces containing ai copy of ℓ1�0 and those of not
containing an ai copy of ℓ1�0.

Example 4.4. Clearly, the degenerate Lorentz-Marcinkiewicz space (ℓ1,~·~) = (ℓδ,1,~·~)
given in section 2.1 with the weight sequence δ := (2, 1, 1, 1, ...) contains an ai copy of ℓ1�0

and in fact is an isometric copy.

Now, in the next example, we will consider Lin’s norm in generalized form firstly con-
structed by Dowling, Johnson, Lennard, and Turett [6].

Example 4.5. Dowling, Johnson, Lennard, and Turett [6] constructed the following equiv-
alent norm ~ · ~∼ on ℓ1 and showed that

(
ℓ1, ~ · ~∼) does not contain an ai copy of ℓ1

and later Lin [9] showed that ℓ1 can be renormed to have the fixed point property for
nonexpansive mappings with a special version of the norm ~ · ~∼.

Now consider the norm ~ · ~∼ as follows: for x = (ξk)k ∈ ℓ1, write ~x~∼ := sup
k∈N

γk

∞∑
j=k

|ξj |

where γk ↑k 1, γk is strictly increasing. Then, we can show that
(
ℓ1, ~ · ~∼) does not con-

tain an asymptotically isometric copy of ℓ1�0 either.

Proof. We use the similar ideas expressed in [6] and by contradiction, assume
(
ℓ1, ~ · ~∼)

does contain an ai copy of ℓ1�0.
That is, there exists a null sequence (εn)n in (0, 1) and a sequence (xn)n in ℓ1 such that

1
2

sup
n∈N

(1 − εn) |tn| + 1
2

∞∑
n=1

(1 − εn) |tn| ≤

�
�
�
�
�

∞∑
n=1

tn xn

�
�
�
�
�

∼

(4.5)

≤ 1
2

sup
n∈N

|tn| + 1
2

∞∑
n=1

|tn| ,

for every (tn)n∈N ∈ ℓ1.
Without loss of generality we suppose that (xn)n is disjointly supported and that by

passing to a subsequence, we can assume that (xn) converges weak* (and so it is pointwise)
to some y ∈ ℓ1.

Next, replacing xn by the ~ · ~∼-normalization of
(

x2n−x2n−1
2

)
n

satisfying (4.5), we can
suppose that y = 0.

By the proof of the Bessaga-Pełczyński Theorem [1], we may pass to an essentially
disjointly supported subsequence of xn. Hence, when it is normalized and truncated this
subsequence appropriately, we get a disjointly supported sequence satisfying (4.5). Also,
by passing to subsequences if necessary, we may suppose that εn < 1

3n for all n ∈ N.
Let (m(k))k∈N0

with m(0) = 0 and (ξk)k∈N a sequence of scalars such that for each

k ∈ N, yk =
m(k)∑

j=m(k−1)+1
ξjej . Using the triangular inequality of the norm, for each K ∈ N,
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we get
K − KεK

2
+ K + 1 − ε1 − KεK

2
≤ ~x1 + KxK~

∼

≤ sup
1 ≤ j ≤ m(1)

m(K − 1) + 1 ≤ i ≤ m(K)


γj


m(1)∑
k=j

|ξk|

+K
m(K)∑

k=m(K−1)+1
|ξk|

 ,

Kγi

m(K)∑
k=i

|ξk|



≤ sup
1 ≤ j ≤ m(1)

m(K − 1) + 1 ≤ i ≤ m(K)



γj

m(1)∑
k=j

|ξk|

+Kγm(1)
m(K)∑

k=m(K−1)+1
|ξk|,

Kγi

m(K)∑
k=i

|ξk|


.

Thus,
K − KεK

2
+ K + 1 − ε1 − KεK

2

≤ sup
1 ≤ j ≤ m(1)

m(K − 1) + 1 ≤ i ≤ m(K)



K
γm(1)

γm(K−1)+1

×γm(K−1)+1
m(K)∑

k=m(K−1)+1
|ξk|

+γj

m(1)∑
k=j

|ξk|, Kγi

m(K)∑
k=i

|ξk|


.

Therefore, K + 1−ε1
2 − KεK ≤ max

{
1 + K

γm(1)
γm(K−1)+1

, K
}

for all K ∈ N.

But since ε1 < 1
3 and KεK < 1

3 , we have K+ 1−ε1
2 −KεK > K, and so 1+ 1

2K − ε1
2K −εK ≤

1
K + γm(1)

γm(K−1)+1
, for all K ∈ N.

Thus, we get a contradiction by letting K → ∞ since we would have 1 ≤ γm(1). �

Our final example shows that there exists a Banach space that contains an ai copy of
ℓ1 but it does not contain any ai copy of ℓ1�0.

Example 4.6. We can show that if a Banach space (X, ∥.∥) contains an ai copy of ℓ1�0,
then it contains a sequence (xn)n∈N such that there exists a null sequence (εn)n∈N in (0, 1)
satisfying the condition

∞∑
n=1

(1 − εn) |an|
4n

+
∞∑

n=1
(1 − εn) |an|

2n
≤
∥∥∥∥∥

∞∑
n=1

anxn

∥∥∥∥∥ ≤
∞∑

n=1

|an|
4n

+
∞∑

n=1

|an|
2n

for all (an)n∈N ∈ ℓ1. It can be noticed that behind this notion, there is a-nother degenerate
Lorentz-Marcinkiewicz space ℓδ,1 with the weight sequence δ :=

(
1

4n + 1
2n

)
n∈N

. Let’s call
the Banach space containing this type of sequence the Banach space that contains an ai
copy of ℓδ,1 for δ =

(
1

4n + 1
2n

)
n∈N

. Obviously, if a Banach space (X, ∥.∥) contains an ai

copy of ℓδ,1 for δ =
(

1
4n + 1

2n

)
n∈N

, it contains an ai copy of ℓ1.
Considering degenerate Lorentz-Marcinkiewicz space ℓδ,1; or say, (ℓ1, ∥.∥) with the norm

given by ∥x∥ =
∞∑

n=1

|ξn|
4n +

∞∑
n=1

|ξn|
2n , ∀x = (ξn)n∈N ∈ ℓ1, we obtain an important result which
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shows our notion is different from ai ℓ1 sequence. Indeed, we can see that (ℓ1, ∥.∥) does
not contain an ai copy of ℓ1�0 while clearly that it contains an ai copy of ℓ1.

Proof. First of all, indeed, if a Banach space (X, ∥.∥) contains an ai copy of ℓ1�0, then
using the proof method in Theorem 3.2, but considering α = β = 1 and

yk =
(

1
4n + 1

2n

)
1

β(1+mk)

Mk∑
n=Mk−1+1

xn there, we obtain that (X, ∥.∥) contains an ai copy

of ℓδ,1 for δ =
(

1
4n + 1

2n

)
n∈N

.
Next, as the most important part of our example which shows the difference of our

notion from ai ℓ1 sequences, we consider the degenerate Lorentz-Marcinkiewicz space ℓδ,1

with the weight sequence δ =
(

1
4n + 1

2n

)
n∈N

. Then, we will apply the same proof method
as the proof of previous example to see (ℓ1, ∥.∥) does not contain any ai copy of ℓ1�0.

We assume for the contradiction that (ℓ1, ∥.∥) does contain any ai copy of ℓ1�0 and we
can skip all the details in the previous proof until the inequality part where the norm is
essentially used. So considering the difference of our norm, we get the following inequality:
for each K ∈ N, we get

K − KεK

2
+ K + 1 − ε1 − KεK

2
≤ ∥x1 + KxK∥

≤
m(1)∑
k=1

( 1
4n

+ 1
2n

)
|ξk| + K

m(K)∑
k=m(K−1)+1

( 1
4n

+ 1
2n

)
|ξk|

≤ 3
4

m(1)∑
k=1

|ξk| + K

( 1
4m(K−1)+1 + 1

2m(K−1)+1

) m(K)∑
k=m(K−1)+1

|ξk| .

Therefore, K + 1−ε1
2 − KεK ≤ 3

4 + K
(

1
4m(K−1)+1 + 1

2m(K−1)+1

)
for all K ∈ N.

But since ε1 < 1
3 and KεK < 1

3 , we have K + 1−ε1
2 − KεK > K and so

1 + 1
2K

− ε1
2K

− εK ≤ 3
4K

+
( 1

4m(K−1)+1 + 1
2m(K−1)+1

)
, for all K ∈ N.

Thus, we get a contradiction by letting K → ∞ since we would have 1 ≤ 3
4 . �
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