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Abstract
In this paper, we construct a complex semi-symmetric metric F -connection on an anti-
Kähler manifold. First, we present some results concerning the torsion tensor of the
complex semi-symmetric metric F -connection. Finally, we find expressions of the curvature
tensor, the conharmonic curvature tensor and the Weyl projective curvature tensor of such
connection, and study their properties.
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1. Introduction
A linear connection ∇ on an n−dimensional differentiable manifold M is said to be

a semi-symmetric connection if its torsion is of the form: S(X, Y ) = p(Y )X − p(X)Y ,
where p is a 1−form. The connection ∇ is a metric connection if there is a Riemannian
metric g on M such that ∇g = 0, otherwise it is non-metric. If the connection ∇ is
both semi-symmetric and metric, then it is called a semi-symmetric metric connection.
Hayden [5] defined and studied semi-symmetric metric connections. After that, Yano [10]
proved the theorem: A Riemannian manifold admits a semi-symmetric metric connection
whose curvature tensor vanishes if and only if Riemannian manifold is conformally flat.
As a generalization of semi-symmetric metric connections, Yano and Imai [12] defined a
semi-symmetric metric F -connection on a Kähler manifold and obtained some results by
using the Bochner curvature tensor.

An anti-Kähler or Kähler-Norden manifold means a triplet (M, g, F ) which consists of
an n = 2m dimensional differentiable manifold M , an almost complex structure F and a
pseudo-Riemannian metric g such that g(FX, Y ) = g(X, FY ) and ∇F = 0 for all vector
field X and Y on M , where ∇ is the Levi-Civita connection of g. Such manifolds also refer
to as generalized B−manifolds [4] or as almost complex manifolds with Norden metric [1]
or as almost complex manifolds with B−metric [2].

An almost Hermitian manifold (M, g, F ) always admits a unique natural connection ∇C

with a torsion T C such that ∇CF = 0, ∇Cg = 0 and T C(FX, Y ) = T C(X, FY ) for all
vector fields X, Y on M . This connection known as the canonical Hermitian connection or
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the Chern connection. Analogously to the canonical Hermitian connection on an almost
Hermitian manifold, Ganchev and Mihova in [3] defined on an almost complex manifold
with Norden metric (M, g, F ) a natural connection ∇′ (i.e., ∇′F = 0, ∇′g = 0) with a
torsion T ′ satisfying T ′(X, Y, Z)+T ′(Y, Z, X)−T ′(FX, Y, FZ)−T ′(Y, FZ, FX) = 0. This
connection is called canonical and it is proved that it is unique on (M, g, F ).

In this paper, we define on an anti-Kähler manifold a canonical connection (i.e, a linear
connection such that the anti-Hermitian structures (g, F ) are parallel with respect to
it) with torsion S locally expressed by S k

ij = pjδk
i − piδ

k
j − ptF

t
j F k

i + ptF
t

i F k
j and

study its torsion and curvature properties. We are calling the canonical connection as
a complex semi-symmetric metric F -connection. Also, note that the torsion tensor S
of the complex semi-symmetric metric F -connection satisfies S(FX, Y ) = S(X, FY ) =
FS(X, Y ) for all vector fields X, Y on M . Hence we can say that the considered complex
semi-symmetric metric F -connection on an anti-Kähler manifold is different from the
canonical connections in [2, 3, 7]. This paper is organized as follows. In section 2, we
introduce anti-Kähler manifolds and give a brief account of information of pure tensors,
holomorphic tensors and Tachibana operator. Also we construct, using the method of
Hayden [5], a complex semi-symetric metric F - connection on an anti-Kähler manifold.
In the next section, we investigate conditions for the torsion tensor of the complex semi-
symmetric metric F -connection to be holomorphic and recurrent. In the last section, we
investigate expressions of the curvature tensor, the conharmonic curvature tensor and the
Weyl projective curvature tensor of such connection and study their properties. Also, an
example is presented.

2. A complex semi-symmetric metric F -connection
An anti-Kähler manifold is an n = 2m dimensional differentiable manifold Mn equipped

with a (1, 1)−tensor F = (F j
i ) and a pseudo-Riemannian metric tensor g = (gij) which

satisfy the following conditions:
F k

i F j
k = −δj

i , (2.1)

F k
i gkj = F k

j gki (2.2)

and
∇kF j

i = 0.

Here we use the notation ∇k to denote the operator of the Riemannian covariant derivation.
Throughout this paper, the notation ∇k will be used for the same purpose. The condition
(2.2) is purity condition of the pseudo-Riemannian metric g with respect to the almost
complex structure F . We also note that we get, as a consequence of (2.2), Fij = Fji. As
it is already known, the almost complex structure F satisfies additionally the condition
gklF

k
i F l

j = −gij and is trace-free, which can be written as gklFkl = 0, where Fkl = gjlF
j

k .
Such manifolds are an object of interest of geometers and physicists. In [6], it is proved
that the condition ∇kF j

i = 0 is equivalent to the holomorphicity (analyticity) of the anti-
Hermitian metric g, that is, (ϕF g)kij = 0, where ϕF is the Tachibana operator applied to
g.

Let (Mn, g, F ) be an anti-Kähler manifold. The following conditions hold [6, 8]:
i) The Levi-Civita connection on (Mn, g, F ) is pure with respect to F ;

ii) The Riemannian curvature tensor R on (Mn, g, F ) is pure with respect to F ;
iii) The Riemannian curvature tensor R is holomorphic: (ϕF R) t

kijl = 0, where ϕF is
the Tachibana operator applied to R.

For any (p, q)−tensor K, purity and holomorphicity are defined as follows:
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Definition 2.1. If A (p, q)−tensor K = ( K
j1j2...jp

i1i2...iq
) satisfies the condition

K
j1...jp

mi2...iq
F m

i1 = K
j1...jp

i1m...iq
F m

i2 = ... = Kj1...jp
i1i2...mF m

iq
=

K
mj2...jp

i1...iq
F j1

m = K
j1m...jp

i1...iq
F j2

m = ... = Kj1j2...m
i1...iq

F jp
m ,

then the tensor K is called as a pure tensor with respect to the tensor F , where F = (F j
i )

is a (1, 1)−tensor. The Tachibana operator ϕF applied to the pure (p, q)−tensor K is
given by [9]

(ϕF K)j1...jp

ki1...iq
(2.3)

= F m
k ∂mt

j1...jp

i1...iq
− ∂k (K ◦ F )j1...jp

i1...iq

+
q∑

λ=1
(∂iλ

F m
k ) K

j1...jp

i1...m...iq
+

p∑
µ=1

(
∂kF jµ

m − ∂mF
jµ

k

)
Ki1...m...ir

j1...js
,

where
(K ◦ F )j1...jp

i1...iq
= K

j1...jp

mi2...iq
F m

i1 = ... = Kj1...jp
i1i2...mF m

iq

= K
mj2...jp

i1...iq
F j1

m = ... = Kj1j2...m
i1...iq

F jp
m .

If the pure tensor K satisfies ϕF K = 0, then it is called as a ϕ−tensor. If the (1, 1)−tensor
F is a complex structure, then a ϕ−tensor is a holomorphic (analytic) tensor [9] (for
Tachibana operator and its applications, see [8] and [11]).

A linear connection ∇ on (Mn, g, F ) is said to be a metric F -connection if the following
conditions are satisfied:

i) ∇hgij = 0, (2.4)
ii) ∇hF j

i = 0,

where ∇h denotes the operator of covariant derivation with respect to ∇. We consider a
complex semi-symmetric metric F -connection ∇ whose torsion tensor is in the form:

S k
ij = pjδk

i − piδ
k
j − ptF

t
j F k

i + ptF
t

i F k
j , (2.5)

where pi are local components of any 1−form p.
Let Γk

ij be the components of the complex semi-symmetric metric F -connection ∇. If
we put

Γk
ij = Γk

ij + T k
ij , (2.6)

where Γk
ij are the components of the Levi-Civita connection ∇ of g and T k

ij are the com-
ponents of a (1, 2)−tensor field T on Mn, then the torsion tensor S of ∇ is given by

S k
ij = Γk

ij − Γk
ji = T k

ij − T k
ji .

Because the connection (2.6) must be provided the first formula of (2.4), by employing
the method proposed by Hayden in [5], we find

T k
ij = pjδk

i − pkgij − ptF
t

j F k
i + ptF

ktFij ,

where pk = pig
ik, F kt = F t

i gik and Fij = F k
i gjk. Hence the connection (2.6) becomes

Γk
ij = Γk

ij + pjδk
i − pkgij − ptF

t
j F k

i + ptF
ktFij . (2.7)

Also, using (2.7) we can easily verify

∇kF j
i = 0.

Consequently, the components Γk
ij of the complex semi-symmetric metric F -connection ∇

are in the form (2.7).
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3. Torsion properties of the complex semi-symmetric metric F -connection
This section is devoted to the properties of the torsion tensor of the complex semi-

symmetric metric F -connection ∇.
Proposition 3.1. On an anti-Kähler manifold (Mn, g, F ) equipped with the connection
(2.7), the torsion tensor S of the connection (2.7) is pure with respect to F .
Proof. By using (2.1) and (2.5), it follows that Sk

mjF m
i = Sk

imF m
j = Sm

ij F k
m , that is, the

torsion tensor S is pure. �
An F -connection is pure if and only if its torsion tensor is pure [8]. Thus we can say

that the connection (2.7) is pure with respect to F .
Theorem 3.2. On an anti-Kähler manifold (Mn, g, F ) equipped with the connection (2.7),
the torsion tensor S of the connection (2.7) is a holomorphic tensor if the 1−form p is
holomorphic.
Proof. Let (Mn, g, F ) be an anti-Kähler manifold and ∇ be its Levi-Civita connection
with components Γh

ij .
If we apply the Tachibana operator ϕF to the torsion tensor S of the connection (2.7),

we get
(ϕF S) l

kij (3.1)
= F m

k (∂mSl
ij) − ∂k(Sm

ij F l
m)

= F m
k (∇mSl

ij + Γs
miS

l
sj + Γs

mjSl
is − Γl

msSs
ij)

−F l
m(∇kSm

ij + Γs
kiS

m
sj + Γs

kjSm
is − Γm

ksSs
ij)

= F m
k (∇mSl

ij) − F l
m(∇kSm

ij ).
Substitution (2.5) into (3.1) gives

(ϕF S) l
kij = [F m

k (∇mpj) − F m
j (∇kpm)]δl

i − [F m
k (∇mpi) − F m

i (∇kpm)]δl
j

+[F m
k F s

i (∇mps) + ∇kpi]F l
j − [F m

k F s
j (∇mps) + ∇kpj ]F l

i .

On the other hand, for the 1−form p, we calculate
(ϕF p)kj = F m

k (∂mpj) − ∂k(F m
j pm)

= F m
k (∇mpj + Γs

mjps) − F m
j (∇kpm + Γs

kmps)
= F m

k (∇mpj) − F m
j (∇kpm).

From this, we can say that the 1−form p is holomorphic if and only if
F m

k (∇mpj) = F m
j (∇kpm). (3.2)

Assumming that the 1−form p is holomorphic, then (3.1) becomes (ϕF S) l
kij = 0, that

is, the torsion tensor S is a holomorphic tensor which completes the proof. �
From now on, we will take into account such a special case of complex semi-symmetric

metric F -connections which its 1−form p is holomorphic, that is, the following condition
always holds:

F m
k (∇mpj) = F m

j (∇kpm).
As a result of (3.1) and Proposition 3.1, we can write

F m
k (∇mS l

ij ) = F m
i (∇kS l

mj ) = F m
j (∇kS l

im ). (3.3)
A (p, q)−tensor T is called recurrent with respect to a given linear connection if its

components satisfy
∇hK

j1...jp

i1i2...iq
= ωhK

j1...jp

iii2...iq
,

where ω = (ωh) is the recurrence 1−form.
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Theorem 3.3. On an anti-Kähler manifold (Mn, g, F ) equipped with the connection (2.7),
the torsion tensor S with respect to the connection (2.7) is recurrent, that is, ∇kSl

ij = ωkSl
ij

if and only if the 1−form p is recurrent with respect to ∇, where ωk is the recurrence
1−form.

Proof. First we prove necessity. Assume that the torsion tensor S is recurrent, that is,
∇kSl

ij = ωkSl
ij .

Contracting the above equality with respect to i and l, we obtain
∇kS l

lj = ωkS l
lj . (3.4)

On the other hand, from (2.5) we have
S l

lj = (n − 2)pj . (3.5)
Thus, (3.4) and (3.5) give

∇kpj = ωkpj .

This means that the 1−form p is recurrent with respect to ∇.
In contrast, let us assume that the 1−form p is recurrent with respect to ∇. Then

covariant differentiation of (2.5) with respect to the connection (2.7) directly gives

∇kS l
ij =

(
∇kpj

)
δl

i −
(
∇kpi

)
δl

j −
(
∇kpt

)
F t

j F l
i +

(
∇kpt

)
F t

i F l
j

= ωkpjδl
i − ωkpiδ

l
j − ωkptF

t
j F l

i + ωkptF
t

i F l
j

= ωkS l
ij

which completes the proof. �
Proposition 3.4. Let (Mn, g, F ) be an anti-Kähler manifold equipped with the connec-
tion (2.7) and the 1−form p be recurrent with respect to the connection (2.7). Then the
recurrence 1−form ω and the 1−form p are collinear, that is, ωk = αpk, where α is an
arbitrary constant, if and only if the 1−form p is closed, that is, dp = 0.

Proof. Covariant differentiation of the 1−form p with respect to the connection (2.7)
yields

∇kpj = ∇kpj − pjpk + pmpmgjk + pmptF
t

k F m
j − pmptF

mtFjk

and
∇jpk = ∇jpk − pjpk + pmpmgjk + pmptF

t
k F m

j − pmptF
mtFjk

from which it follows that
∇kpj − ∇jpk = ∇kpj − ∇jpk.

Since the 1−form p is recurrent with respect to ∇, from the above equation we can write
ωkpj − ωjpk = ∇kpj − ∇jpk.

Then the 1−form p is closed if and only if ωkpj = ωjpk which means that the 1−forms ω
and p are collinear, ωk = αpk, where α is an arbitrary constant. �

4. Curvature properties of the complex semi-symmetric metric F -connection
This section deals with curvature properties of the connection (2.7). It is known that

the curvature tensor R of the connection (2.7) is characterized by

R
h

ijk = ∂iΓ
h
jk − ∂jΓh

ik + Γh
imΓm

jk − Γh
jmΓm

ik.

Then, the curvature tensor R is as follows:

R
h

ijk = R h
ijk − δh

i πjk + δh
j πik + gikπ h

j − gjkπ h
i (4.1)

+F h
i F t

k πjt − F h
j F t

k πit − FikF htπjt + FjkF htπit,
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where R h
ijk are the components of the Riemannian curvature tensor and

πjk = ∇jpk − pjpk + 1
2

pmpmgkj + pmptF
t

k F m
j − 1

2
pmptF

t
mFjk. (4.2)

Contracting (4.1) with respect to h and k, it follows that R
k

ijk = 0.

Theorem 4.1. Let (Mn, g, F ) be an anti-Kähler manifold equipped with the connection
(2.7). The curvature tensor of the connection (2.7) and the Riemannian curvature tensor
of the Levi-Civita connection coincide if the 1−form p satisfies ∇lp

l + n−4
2 plp

l = 0, where
pl = gilpi.

Proof. By assumption R
l

ijk = Rijk
l, from (4.1), we find

0 = −δl
iπjk + δl

jπik + gikπ l
j − gjkπ l

i

−F l
i F t

k πjt + F l
j F t

k πit + FikF ltπjt − FjkF ltπit.

Contracting the above with respect to i and l, and then multiplying it by gjk, we have

traceπ = ∇lp
l + n − 4

2
plp

l = 0.

�

Now, we state and prove two lemmas that we shall need.

Lemma 4.2. On an anti-Kähler manifold (Mn, g, F ) equipped with the connection (2.7),
the tensor π given by (4.2) is symmetric if and only if the 1−form p is closed.

Proof. It follows immediately from (4.2) that πjk − πkj = ∇jpk − ∇kpj = (dp)jk. This
means that the tensor π is symmetric if and only if dp = 0, that is, the 1−form p is
closed. �

Lemma 4.3. On an anti-Kähler manifold (Mn, g, F ) equipped with the connection (2.7),
the tensor π given by (4.2) is a holomorphic tensor and thus the following relation holds:

(∇mπij) F m
k = (∇kπmj) F m

i = (∇kπim) F m
j .

Proof. Let π be the tensor given by (4.2) on the anti-Kähler manifold (Mn, g, F ). The
tensor π is pure with respect to F . In fact, using (2.1), (2.2) and (4.2) we have

F t
k πit − F t

i πtk = (∇ipt) F t
k − (∇tpk) F t

i = 0.

We calculate
(ϕF π)kij = F m

k (∂mπij) − ∂k(πimF m
j ) (4.3)

= (∇mπij) F m
k − (∇kπim) F m

j .

Applying (4.2) into (4.3), standard calculations give
(ϕF π)kij = (∇m∇ipj) F m

k − (∇k∇mpj) F m
i . (4.4)

If we apply the Ricci identity to the 1−form p, then we have

(∇m∇ipj) F m
k = (∇i∇mpj) F m

k − 1
2

psR s
mij F m

k

and
(∇k∇ipm) F m

j = (∇i∇kpm) F m
j − 1

2
psR s

kimF m
j .

(4.4), with the help of the last two equation can be rewritten as follows:

(ϕF π)kij = −1
2

ps(R s
mij F m

k − R s
kimF m

j ).
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This immediately gives (ϕF π)kij = 0. Hence, in view of (4.3) and the purity of the tensor
π we can write

(∇mπij) F m
k = (∇kπmj) F m

i = (∇kπim) F m
j .

This completes the proof. �
Theorem 4.4. On an anti-Kähler manifold (Mn, g, F ) equipped with the connection (2.7),
the curvature tensor R of the connection (2.7) is a holomorphic tensor and thus the fol-
lowing relation holds:

(∇mR t
ijl )F m

k = (∇kR t
mjlF

m
i ).

Proof. Using the purity of the tensor π, it is easy to see that
R m

ijk F l
m = R l

mjkF m
i = R l

imkF m
j = R l

ijmF m
k ,

that is, the curvature tensor R is pure with respect to F .
Applying the Tachibana operator ϕF to the curvature tensor R, we have

(ϕF R) t
kijl (4.5)

= F m
k (∂mR t

ijl ) − ∂k(R m
ijl F t

m)
= F m

k (∇mR t
ijl + Γs

miR
t

sjl + Γs
mjR t

isl + Γs
mlR

t
ijs − Γt

msR m
ijl )

−F t
m (∇kR m

ijl + Γs
kiR

t
sjl + Γs

kjR t
isl + Γs

klR
t

ijs − Γt
ksR

s
ijl )

= (∇mR t
ijl )F m

k − (∇kR m
ijl )F t

m

from which, by (4.1), we find

(ϕF R) t
kijl = (ϕF R) t

kijl

+[(∇kπjm) F m
l − (∇mπjl) F m

k ]δt
i+[(∇mπil) F m

k − (∇kπim) F m
l ]δ t

j

+[(∇kπm
i ) F t

m −
(
∇mπt

i

)
F m

k ]gjl−[
(
∇kπm

j

)
F t

m −
(
∇mπt

j

)
F m

k ]gil

+[(∇mπjs) F m
k F s

l + ∇kπjl]F t
i −[(∇mπis) F m

k F s
l + ∇kπil]F t

j

+[(∇mπs
i ) F m

k F t
s + ∇kπt

i ]Fjl−[
(
∇mπs

j

)
F m

k F t
s + ∇kπt

j ]Fil.

When we take into account lemma 4.3, the last relation becomes (ϕF R)kijl
t = 0, that is,

the curvature tensor R is a holomorphic tensor. Thus, by (4.5), we can write
(∇mR t

ijl )F m
k = (∇kR t

mjlF
m

i ).
�

Multiplying (4.1) by ghl, the curvature (0, 4)−tensor is given in the form:
Rijkl = Rijkl − gilπjk + gjlπik + gikπjl − gjkπil + FilF

t
k πjt (4.6)

−FjlF
t

k πit − FikF t
l πjt + FjkF t

l πit,

where Rijkl are the curvature (0, 4)−tensor of the Levi-Civita connection ∇ of g. We can
immediately say that the curvature (0, 4)−tensor R satisfies the following properties:

i) Rijkl = −Rjikl,
ii) Rijkl = −Rijlk.

Theorem 4.5. Let (Mn, g, F ) be an anti-Kähler manifold equipped with the connection
(2.7) and let us assume that n > 6. The curvature (0, 4)−tensor R of the connection (2.7)
holds the followings

i) Rijkl − Rklij = 0,

ii) Rijkl + Rkijl + Rjkil = 0
if and only if the 1−form p is closed.
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Proof. i) From (4.6), we obtain
Rijkl − Rklij (4.7)

= (πli − πil) gjk + (πkj − πjk) gil + (πik − πki) gjl

+ (πjl − πlj) gik + FilF
t

k (πjt − πtj) + FjlF
t

k (πti − πit)
+FikF t

l (πtj − πjt) + FjkF t
l (πit − πti) .

If we assume that Rijkl − Rklij = 0, then (4.7) becomes
0 = (πli − πil) gjk + (πkj − πjk) gil + (πik − πki) gjl

+ (πjl − πlj) gik + FilF
t

k (πjt − πtj) + FjlF
t

k (πti − πit)
+FikF t

l (πtj − πjt) + FjkF t
l (πit − πti) .

Transvecting the above with gil, we find
(n − 4) (πkj − πjk) = 0.

In view of n > 6, the last relation gives
πjk − πkj = 0

from which the result follows.
Conversely, using the fact that the 1−form p is closed, from (4.7) it is easy to see that

Rijkl − Rklij = 0.
ii) We omit the proof because it can be established by the same way as in the proof of

(i). �
Theorem 4.6. On an anti-Kähler manifold (Mn, g, F ), the Ricci tensor of the connection
(2.7) is characterized by

Rjk = Rjk + (4 − n) πjk − gjktraceπ + FjkF ltπlt,

where Rjk is the components of the Ricci tensor of the Levi-Civita connection of g. Let
us assume that n > 6, then the Ricci tensor is symmetric if and only if the 1−form p is
closed.

Proof. Contracting (4.1) with respect to i and l, we obtain

Rjk = Rjk + (4 − n) πjk − gjktraceπ + FjkF ltπlt. (4.8)
Also, we have

Rjk − Rkj = (4 − n) (πjk − πkj).
This implies that Rjk − Rkj = 0 if and only if the 1−form p is closed. �

As a result of Theorem 4.5 and 4.6, we can state:

Theorem 4.7. Let (Mn, g, F ) be an anti-Kähler manifold. The Ricci tensor of the con-
nection (2.7) is symmetric if and only if

Rijkl − Rklij = 0
or

Rijkl + Rkijl + Rjkil = 0.

Let τ be the scalar curvature of the connection (2.7), where τ is obtained by contracting
the Ricci tensor (4.8): τ = gjkRjk. The scalar curvature τ is given by

τ = τ + 2(2 − n)traceπ (4.9)

= τ + 2(2 − n)(∇lp
l + n − 4

2
plp

l),

where τ is the scalar curvature of the Riemannian manifold (Mn, g).
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Example 4.8. The pseudo-Euclidean space R2n is given by pseudo-Euclidean metric

(gαβ) =
(

gij gij

gij gij

)

=
(

δij 0
0 −δij

)
, i, j = 1, ..., n, i, j̄ = n + 1, ..., 2n.

Let Cn be the complex space. The usual identification r of Cn with R2n is given by

r : z = (z1, z2, ..., zn) ∈ Cn → r(z) = Z = (x1, x2, ..., xn; y1, y2, ..., yn) ∈ R2n

where zk = xk +iyk, k = 1, ..., n. The canonical complex structure F on R2n is determined
by the matrix

(
F β

α

)
=

 F j
i F j

i

F j
i F j

i


=

(
0 δj

i

−δj
i 0

)
, i, j = 1, ..., n, i, j̄ = n + 1, ..., 2n

or

(Fαβ) =
(

Fij Fij

Fij Fij

)
=
(

0 δij

δij 0

)
with respect to the natural basis of R2n. In the example, Greek indices take on values 1 to
2n. For all Z, W on R2n the metric g and the complex structure F on R2n are related by the
equality g(FZ, FW ) = −g(Z, W ), that is, g is pure with respect to F . Hence (R2n, g, F )
is an anti-Kähler Euclidean space. Note that the metric g is of signature (n, n).

We suppose that pα is a gradient, pα = (pi, pi) = (∂if, ∂if), f being a holomorphic
function. The condition for the function f to be locally holomorphic is given by [6]

(ϕF df)σβ = F α
σ ∂α∂βf − ∂σ(F α

β ∂αf) + (∂βF α
σ )∂αf = 0.

Then, the components of the complex semi-symmetric metric F -connection in (R2n, g, F )
are the followings

Γk
ij = Γk

ij = Γk
ij = −Γk

ij = (∂jf) δk
i − (∂hf) δhkδij ,

Γk
ij = Γk

ij = Γk
ij = −Γk

ij =
(
∂jf

)
δk

i +
(
∂hf

)
δhkδij .

The torsion tensor of the complex semi-symmetric metric F -connection has the compo-
nents

S k
ij = S k

ij
= S k

ij
= −S k

ij
= (∂jf) δk

i − (∂if) δk
j ,

S k
ij

= S k
ij

= S k
ij

= −S k
ij =

(
∂jf

)
δk

i −
(
∂if
)

δk
j .

One verifies that the torsion tensor S is pure with respect to F and furthermore (ϕF S)γ
σαβ =

0, that is, S is holomorphic.
The components of the curvature tensor R of the complex semi-symmetric metric F -

connection are the followings

R
l

ijk = R
l

ijk = R
l

ijk = R
l

ijk

= R
l

ijk = R
l

ijk = −R
l

ijk = −R
l

ijk

= −δl
iπkj + δl

jπki − δkjπl
i
+ δkiπ

l
j
,
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R
l

ijk = R
l

ijk = R
l

ijk = R
l

ijk

= −R
l

ijk = −R
l

ijk = −R
l

ijk = −R
l

ijk

= δl
iπkj − δl

jπki + δkjπl
i
− δkiπ

l
j ,

where

πkj = −πkj = ∂k∂jf +
(
∂kf

) (
∂jf

)
− (∂kf) (∂jf)

+1
2

δhmδij
[(

∂hf
)

(∂mf) − (∂hf) (∂mf)
]
,

πkj = πkj = ∂k∂jf −
(
∂kf

)
(∂jf) − (∂kf)

(
∂jf

)
+ δhmδij (∂mf) (∂mf)

and πβ
σ = gαβπσα. Simple calculations show that (ϕF π)σαβ = 0. Using this, one checks

that the curvature tensor R is pure with respect to F and furthermore (ϕF R) η
σαβγ = 0,

that is, R is holomorphic.
The components of the curvature (0, 4)-tensor R are the followings

Rijkl = Rijkl = Rijkl = −Rijkl

= −Rijkl = −Rijkl = −Rijkl = Rijkl

= −δilπkj + δjlπki − δkjπil + δkiπjl,

Rijkl = −Rijkl = Rijkl = Rijkl

= Rijkl = −Rijkl = −Rijkl = Rijkl

= δilπkj − δjlπki + δkjπil − δkiπjl.

It is a straightforward verification that the conditions

Rσαβγ = −Rασβγ ,

Rσαβγ = −Rσαγβ ,

Rσαβγ = Rβγσα,

Rσαβγ + Rαβσγ + Rβσαγ = 0
are fulfilled.

For the Ricci tensor Rβγ , we get

Rjk = 2(1 − n)πkj − 2δkjtraceπ,

Rjk = −2nπkj + 2δkjπl
l ,

Rjk = Rjk = −2nπkj − 2δkjtraceπ

from which it follows that the condition Rβγ = Rγβ is verified, which means that the Ricci
tensor of our connection in (R2n, g, F ) is symmetric.

A pseudo-Riemannian manifold is called an Einstein space if the equation

Rjk = λgjk

holds with a scalar function λ. The pseudo-Riemannian manifold with any complex semi-
symmetric metric F -connection in which the Ricci tensor satisfies the equation

R(jk) = γgjk

may be called an Einstein space, where γ is a scalar function and R(jk) is symmetric part
of Ricci tensor of the complex semi-symmetric metric F -connection.
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Theorem 4.9. Let (Mn, g, F ) be an anti-Kähler manifold and the pseudo-Riemannian
manifold Mn be an Einstein space with respect to the Levi-Civita connection. Then the
pseudo-Riemannian manifold Mn equipped with the connection (2.7) will be an Einstein
space with respect to the connection (2.7) if the 1−form p satisfies

γ − λ = 2(2 − n)
n

(∇lp
l + n − 4

2
plp

l),

where λ is a scalar function coming from the Einstein property of Riemannian spaces, that
is, Rjk = λgjk.

Proof. Using (4.8), the symmetric part of the Ricci tensor of the connection (2.7) is given
by

R(jk) = 1
2

(Rjk + Rjk)

= 1
2

{2Rjk + (4 − n) (πjk + πkj) − 2gjktraceπ + 2FjkF ltπlt}

= Rjk + 4 − n

2
(πjk + πkj) − gjktraceπ + FjkF ltπlt.

If we transvect the last equation with gjk, then we get

R(jk)g
jk = Rjkgjk + (4 − 2n)traceπ

γgjkgjk = λgjkgjk + 2(2 − n)traceπ

γ − λ = 2(2 − n)
n

traceπ,

where traceπ = ∇lp
l + n−4

2 plp
l. Thus the connection (2.7) is Einstein if the equation

γ − λ = 2(2−n)
n (∇lp

l + n−4
2 plp

l) holds. �

The conharmonic curvature tensor with respect to the connection (2.7) is given by

V ijkl = Rijkl − 1
n − 2

[
Rjkgil − Rikgjl − Rjlgik + Rilgjk

]
.

Using (4.6) and (4.8) we have

(4.10)
V ijkl = Vijkl + FilF

t
k πjt − FjlF

t
k πit − FikF t

l πjt + FjkF t
l πit

− 1
n − 2

[
(
2πjk − gjktraceπ + FjkF mtπmt

)
gil

−
(
2πik − giktraceπ + FikF mtπmt

)
gjl

−
(
2πjl − gjltraceπ + FjlF

mtπmt

)
gik +

(
2πil − giltraceπ + FilF

mtπmt

)
gjk],

where Vijkl is the conharmonic curvature tensor with respect to the Levi-Civita connection.

Theorem 4.10. Let (Mn, g, F ) be an anti-Kähler manifold equipped with the connection
(2.7). If the conharmonic curvature tensor with respect to the connection (2.7) vanishes,
then the scalar curvature of the connection (2.7) vanishes.

Proof. If we assume that V ijkl = 0, from (4.10) we have

0 = Vijkl + FilF
t

k πjt − FjlF
t

k πit − FikF t
l πjt + FjkF t

l πit

− 1
n − 2

[
(
2πjk − gjkπt

t + FjkF mtπmt

)
gil −

(
2πik − gikπt

t + FikF mtπmt

)
gjl

−
(
2πjl − gjlπ

t
t + FjlF

mtπmt

)
gik +

(
2πil − gilπ

t
t + FilF

mtπmt

)
gjk].
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When we multiply the last equation by gil, using the condition Vijklg
il = V l

ljk =
− τ

n−2gjk, we find

∇lp
l + 1

2(2 − n)
τ + n − 4

2
plp

l = τ

2(2 − n)
= 0,

where λ = 1
2(2−n) , µ = n−4

2 and τ and τ respectively are the scalar curvatures of the
Levi-Civita connection and the connection (2.7). This completes the proof. �

Theorem 4.11. Let (Mn, g, F ) be an anti-Kähler manifold equipped with the connection
(2.7). If the conharmonic curvature tensors with respect to the connection (2.7) and the
Levi-Civita connection coincide, then the 1−form p satisfies ∇lp

l + n−4
2 plp

l = 0.

Proof. Let V ijkl = Vijkl, from (4.10) we obtain

(4.11)
0 = FilF

t
k πjt − FjlF

t
k πit − FikF t

l πjt + FjkF t
l πit

− 1
n − 2

[
(
2πjk − gjktraceπ + FjkF mtπmt

)
gil

−
(
2πik − giktraceπ + FikF mtπmt

)
gjl

−
(
2πjl − gjltraceπ + FjlF

mtπmt

)
gik +

(
2πil − giltraceπ + FilF

mtπmt

)
gjk].

Transvecting (4.11) by gil, we have

(2 − n)πjk + gjktraceπ = 0. (4.12)

Transvecting (4.12) by gjk, we find

2traceπ = 0

which leads to ∇lp
l + n−4

2 plp
l = 0. �

Theorem 4.12. Let (Mn, g, F ) be an anti-Kähler manifold equipped with the connection
(2.7). Then the conharmonic curvature tensor with respect to the connection (2.7) has the
following properties:

i) V ijkl = −V jikl,

ii) V ijkl = −V ijlk,

iii) Under the condition of n > 6, V ijkl + V kijl + V jkil = 0 if and only if the 1−form
p is closed.

Proof. i) Interchanging i and j in (4.10), and then adding it to (4.10), we have

V ijkl + V jikl = Vijkl + Vjikl.

Since in a Riemannian manifold Vijkl + Vjikl = 0, we find V ijkl + V jikl = 0. Similarly the
proof of (ii) can easily be proven.

iii) From (4.10), using Vijkl + Vkijl + Vjkil = 0 we can write

V ijkl + V kijl + V jkil (4.13)
= FilF

t
k (πjt − πtj) − FjlF

t
k (πit − πti) − FklF

t
j (πit − πti)

− 2
n − 2

[(πjk − πkj) gil − (πik − πki) gjl + (πij − πji) gkl].

It is a direct consequence of (4.13) that dp = 0 implies V ijkl + V kijl + V jkil = 0.
If we assume that V ijkl +V kijl +V jkil = 0. Transvecting the last equation with F il and

then it with F k
i , we obtain (n − 4) (πij − πji) = 0 which gives the result. �
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The Weyl projective curvature tensor with respect to the connection (2.7) is given by

P ijkl = Rijkl − 1
n − 1

[
Rjkgil − Rikgjl

]
. (4.14)

Substituting the values of Rijkl and Rik from (4.6) and (4.8) respectively into (4.14), we
get

P ijkl (4.15)
= Pijkl + gikπjl − gjkπil − FilF

t
k πjt + FjlF

t
k πit

+FikF t
l πjt − FjkF t

l πit − 1
n − 1

[(3πjk − gjktraceπ + FjkF mtπmt)gil

−(3πik − giktraceπ + FikF mtπmt)gjl],
where Pijkl is the Weyl projective curvature tensor with respect to the Levi-Civita con-
nection.
Theorem 4.13. Let (Mn, g, F ) be an anti-Kähler manifold equipped with the connection
(2.7). If the Weyl projective curvature tensor with respect to the connection (2.7) vanishes,
then the 1−form p is closed, under the condition of n > 6.
Proof. Let P ijkl = 0. Then from (4.15) we get

0 = Pijkl + gikπjl − gjkπil − FilF
t

k πjt + FjlF
t

k πit + FikF t
l πjt

−FjkF t
l πit − 1

n − 1
[(3πjk − gjkπm

m + FjkF mtπmt)gil

−(3πik − gikπm
m + FikF mtπmt)gjl].

Transvecting the previous equation by gkl, we have
P k

ijk + (n − 4) (πkj − πjk) = 0.

Since in a Riemannian manifold, the following equation holds: P k
ijk = 0, the result

immediately follows, under the condition of n > 6. �
Theorem 4.14. Let (Mn, g, F ) be an anti-Kähler manifold equipped with the connection
(2.7). Then the Weyl projective curvature tensor with respect to the connection (2.7) has
the following properties:

i) P ijkl = −P jikl,

ii) P ijkl + P kijl + P jkil = 0 if and only if the 1−form p is closed.
Proof. i) Interchanging i and j in (4.15), and then adding it to (4.15), we obtain

P ijkl + P jikl = Pijkl + Pjikl.

Since in a Riemannian manifold Pijkl + Pjikl = 0, we find P ijkl = −P jikl.
ii) From (4.15), using Pijkl + Pkijl + Pjkil = 0 we get

P ijkl + P kijl + P jkil (4.16)
= FjlF

t
k (πit − πti) − FilF

t
k (πjt − πtj) − FklF

t
j (πit − πti)

− 3
n − 1

[(πjk − πkj) gil− (πik − πki) gjl+ (πij − πji) gkl] .

It follows directly from (4.16) that dp = 0 implies P ijkl + P kijl + P jkil = 0.
Conversely, let us assume that P ijkl + P kijl + P jkil = 0. When we transvect (4.16) with

gil, it reduces to (5n − 8
n − 1

)
(πkj − πjk) = 0

from which the result follows. �



On anti-Kähler manifolds with complex semi-symmetric metric F -connection 1019

References
[1] G. Ganchev and A. Borisov, Note on the almost complex manifolds with a Norden

metric, Compt. Rend. Acad. Bulg. Sci. 39 (5), 31–34, 1986.
[2] G. Ganchev, K. Gribachev and V. Mihova, B-connections and their conformal invari-

ants on conformally Kähler manifolds with B-metric, Publ. Inst. Math. (Beograd)
(N.S.) 42, 107–121, 1987.

[3] G. Ganchev and V. Mihova, Canonical connection and the canonical conformal group
on an almost complex manifold with B-metric, Ann. Univ. Sofia Fac. Math. Inform.
81 (1), 195–206, 1987.

[4] K.I. Gribachev, D.G. Mekerov and G.D. Djelepov, Generalized B-manifolds, Compt.
Rend. Acad. Bulg. Sci. 38 (3), 299–302, 1985.

[5] H.A. Hayden, Sub-spaces of a space with torsion, Proc. London Math. Soc. S2-34,
27–50, 1932.

[6] M. Iscan and A.A. Salimov, On Kähler-Norden manifolds, Proc. Indian Acad. Sci.
(Math. Sci.), 119 (1), 71–80, 2009.

[7] M. Manev, On canonical-type connections on almost contact complex Riemannian
manifolds, Filomat, 29 (3), 411–425, 2015.

[8] A. Salimov, Tensor operators and their applications, (Mathematics Research Devel-
opments Series), Nova Science Publ., New York, 2013.

[9] S. Tachibana, Analytic tensor and its generalization, Tohoku Math. J. 12, 208–221,
1960.

[10] K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl.
15, 1579–1586, 1970.

[11] K. Yano and M. Ako, On certain operators associated with tensor fields, Kodai Math.
Sem. Rep. 20, 414–436, 1968.

[12] K. Yano and T. Imai, On semi-symmetric metric F - connection, Tensor (N.S.) 29
(2), 134–138, 1975.


