

RESEARCH ARTICLE

Multiplicative order convergence in f-algebras

Abdullah Aydın

Department of Mathematics, Muş Alparslan University, Muş, Turkey

Abstract

A net (x_{α}) in an *f*-algebra *E* is said to be multiplicative order convergent to $x \in E$ if $|x_{\alpha} - x| \stackrel{o}{\to} 0$ for all $u \in E_+$. In this paper, we introduce the notions *mo*-convergence, *mo*-Cauchy, *mo*-complete, *mo*-continuous, and *mo*-KB-space. Moreover, we study the basic properties of these notions.

Mathematics Subject Classification (2010). 46A40, 46E30

Keywords. mo-convergence, f-algebra, mo-KB-space, vector lattice

1. Introductory facts

In spite of the nature of the classical theory of Riesz algebra and f-algebra, as far as we know, the concept of convergence in f-algebras related to multiplication has not been done before. However, there are some close studies under the name unbounded convergence in some kinds of vector lattices; see for example [2–6]. In the light of this information, we define a new concept of the convergence, which is called the *mo*-convergence, on f-algebras. Our aim is to introduce the concept of the *mo*-convergence by using the multiplication in f-algebras and examine the relationship between other types of convergence.

First of all, let us remember some notations and terminologies used in this paper. Let E be a real vector space. Then E is called *ordered vector space* if it has an order relation \leq (i.e, \leq is reflexive, antisymmetric, and transitive) that is compatible with the algebraic structure of E that means $y \leq x$ implies $y + z \leq x + z$ for all $z \in E$ and $\lambda y \leq \lambda x$ for each $\lambda \geq 0$. An ordered vector E is said to be vector lattice (or, Riesz space) if, for each pair of vectors $x, y \in E$, the supremum $x \vee y = \sup\{x, y\}$ and the infimum $x \wedge y = \inf\{x, y\}$ both exist in E. Moreover, $x^+ := x \vee 0, x^- := (-x) \vee 0$, and $|x| := x \vee (-x)$ are called the positive part, the negative part, and the absolute value of $x \in E$, respectively. Also, two vectors x, y in a vector lattice are said to be *disjoint* whenever $|x| \wedge |y| = 0$. A vector lattice E is called order complete if $0 \le x_{\alpha} \uparrow \le x$ implies the existence of $\sup x_{\alpha}$ in E. A subset A of a vector lattice is called *solid* whenever $|x| \leq |y|$ and $y \in A$ imply $x \in A$. A solid vector subspace is referred to as an order ideal. An order closed ideal is referred to as a band. A sublattice Y of a vector lattice is majorizing E if, for every $x \in E$, there exists $y \in Y$ with $x \leq y$. A partially ordered set I is called *directed* if, for each $a_1, a_2 \in I$, there is another $a \in I$ such that $a \ge a_1$ and $a \ge a_2$ (or, $a \le a_1$ and $a \le a_2$). A function from a directed set I into a set E is called a net in E. A net $(x_{\alpha})_{\alpha \in A}$ in a vector lattice X is called *order convergent* (or shortly, *o-convergent*) to $x \in X$, if there exists another net

Email address: aaydin.aabdullah@gmail.com

Received: 11.01.2019; Accepted: 19.06.2019

 $(y_{\beta})_{\beta \in B}$ satisfying $y_{\beta} \downarrow 0$, and for any $\beta \in B$ there exists $\alpha_{\beta} \in A$ such that $|x_{\alpha} - x| \leq y_{\beta}$ for all $\alpha \geq \alpha_{\beta}$. In this case, we write $x_{\alpha} \xrightarrow{o} x$; for more details see for example [1,7,8].

A vector lattice E under an associative multiplication is said to be a *Riesz algebra* whenever the multiplication makes E an algebra (with the usual properties), and in addition, it satisfies the following property: $x, y \in E_+$ implies $xy \in E_+$. A Riesz algebra E is called *commutative* if xy = yx for all $x, y \in E$. A Riesz algebra E is called f-algebra if E has additionally property that $x \wedge y = 0$ implies $(xz) \wedge y = (zx) \wedge y = 0$ for all $z \in E_+$; see for example [1]. A vector lattice E is called *Archimedean* whenever $\frac{1}{n}x \downarrow 0$ holds in E for each $x \in E_+$. Every Archimedean f-algebra is commutative; see Theorem 140.10 [8]. Assume E is an Archimedean f-algebra with a multiplicative unit vector e. Then, by applying Theorem 142.1(v) [8], in view of $e = ee = e^2 \ge 0$, it can be seen that e is a positive vector. In this article, unless otherwise stated, all f-algebras are semiprime, and all vector lattices are assumed to be real and Archimedean, and so f-algebras are commutative.

Recall that a net (x_{α}) in a vector lattice E is unbounded order convergent (or shortly, uoconvergent) to $x \in E$ if $|x_{\alpha} - x| \wedge u \xrightarrow{o} 0$ for every $u \in E_+$. In this case, we write $x_{\alpha} \xrightarrow{uo} x$; see for example [6] and [2–4]. Motivated from this definition, we give the following notion.

Definition 1.1. Let E be an f-algebra. A net (x_{α}) in E is said to be *multiplicative order* convergent to $x \in E$ (shortly, (x_{α}) mo-converges to x) if $|x_{\alpha} - x| \stackrel{o}{\to} 0$ for all $u \in E_+$. Abbreviated as $x_{\alpha} \xrightarrow{\text{mo}} x$.

It is clear that $x_{\alpha} \xrightarrow{\text{mo}} x$ in an *f*-algebra *E* implies $x_{\alpha}y \xrightarrow{\text{mo}} xy$ for all $y \in E$ because of |xy| = |x| |y| for all $x, y \in E$. Also, in general, the mo-convergence and uo-convergence are not the same. To see that we consider the following example.

Example 1.2. Let E be a vector lattice and consider $Orth(E) := \{T \in L_b(E) : x \perp y \text{ implies } Tx \perp y\}$ the set of orthomorphisms on E. The space Orth(E) is not only vector lattice but also an f-algebra. The *mo*-convergence and the *uo*-convergence are different in Orth(E).

We shall keep in mind the following useful lemma, obtained from the property of $xy \in E_+$ for every $x, y \in E_+$.

Lemma 1.3. If $y \leq x$ is provided in an f-algebra E then $uy \leq ux$ for all $u \in E_+$.

Recall that multiplication by a positive element in f-algebras is a vector lattice homomorphism, i.e., $u(x \land y) = (ux) \land (uy)$ and $u(x \lor y) = (ux) \lor (uy)$ for every positive element u; see for example Theorem 142.1(i) [8]. We will denote an l-algebra E as *infinite distributive l*-algebra whenever the following condition holds: if inf(A) exists for any subset A of E_+ then the infimum of the subset uA exists and inf(uA) = u inf(A) for each positive vector $u \in E_+$. For a net $(x_\alpha) \downarrow 0$ in an infinite distributive l-algebra, the net (ux_α) is also decreasing to zero for all positive vector u. Fortunately, every f-algebra has the infinite distributive property.

Remark 1.4. The order convergence implies the *mo*-convergence in *f*-algebras. The converse holds true in *f*-algebras with multiplication unit. Indeed, assume a net $(x_{\alpha})_{\alpha \in A}$ order converges to x in an *f*-algebra E. Then there exists another net $(y_{\beta})_{\beta \in B}$ satisfying $y_{\beta} \downarrow 0$, and, for any $\beta \in B$, there exists $\alpha_{\beta} \in A$ such that $|x_{\alpha} - x| \leq y_{\beta}$. Hence, we have $|x_{\alpha} - x| u \leq y_{\beta}u$ for all $\alpha \geq \alpha_{\beta}$ and for each $u \in E_+$. Since $y_{\beta} \downarrow$, we have $uy_{\beta} \downarrow$ for each $u \in E_+$ by Lemma 1.3, and $\inf(uy_{\beta}) = u \inf(y_{\beta}) = 0$ because of $\inf(y_{\beta}) = 0$. Therefore, $|x_{\alpha} - x| u \stackrel{o}{\to} 0$ for each $u \in E_+$. That means $x_{\alpha} \stackrel{\text{mo}}{\longrightarrow} x$.

For the converse, assume E is an f-algebra with multiplication unit e and $x_{\alpha} \xrightarrow{\text{mo}} x$ in E. That is, $|x_{\alpha} - x| u \xrightarrow{\circ} 0$ for all $u \in E_+$. Since $e \in E_+$, in particular, choose u = e, and so we have $|x_{\alpha} - x| = |x_{\alpha} - x| e \xrightarrow{\circ} 0$, or $x_{\alpha} \xrightarrow{\circ} x$ in E.

By considering Example 141.5 [8], we give the following example.

A. Aydın

Example 1.5. Let [a, b] be a closed interval in \mathbb{R} and let E be vector lattice of all reel continuous functions on [a, b] such that the graph of functions consists of a finite number of line segments. In view of Theorem 141.1 [8], every positive orthomorphism π in E is trivial orthomorphism, i.e., there is a reel number λ such that $\pi(f) = \lambda f$ for all $f \in E$. Therefore, a net of positive orthomorphism (π_{α}) is order convergent to π if and only if it is *mo*-convergent to π whenever the multiplication is the natural multiplicative, i.e., $\pi_1\pi_2(f) = \pi_1(\pi_2 f)$ for all $\pi_1, \pi_2 \in Orth(E)$ and all $f \in E$. Indeed, Orth(E) is Archimedean f-algebra with the identity operator as a unit element; see Theorem 140.4 [8]. So, by applying Remark 1.4, the *mo*-convergence implies the order convergence of the net (π_{α}) .

Conversely, assume the net of positive orthomorphisms $\pi_{\alpha} \xrightarrow{o} \pi$ in Orth(E). Then we have $\pi_{\alpha}(f) \xrightarrow{o} \pi(f)$ for all $f \in E$; see Theorem VIII.2.3 [7]. For fixed $0 \leq \mu \in Orth(E)$, there is a reel number λ_{μ} such that $\mu(f) = \lambda_{\mu} f$ for all $f \in E$. Since $|\pi_{\alpha}(f) - \pi(f)| =$ $|\lambda_{\pi\alpha} f - \lambda_{\pi} f| \xrightarrow{\mathrm{o}} 0$, we have

$$|(\pi_{\alpha})f - (\pi)f| \mu = |\mu\lambda_{\pi_{\alpha}}f - \mu\lambda_{\pi}f| = |\lambda_{\mu}\lambda_{\pi_{\alpha}}f - \lambda_{\mu}\lambda_{\pi}f| = |\lambda_{\mu}| |\lambda_{\pi_{\alpha}}f - \lambda_{\pi}f| \stackrel{o}{\to} 0$$

for all $f \in E$. Since μ is arbitrary, we get $\pi_{\alpha} \xrightarrow{\text{mo}} \pi$.

2. Main results

We begin the section with the next list of properties of the *mo*-convergence which follows directly from Lemma 1.3, and the inequalities $|x-y| \leq |x-x_{\alpha}| + |x_{\alpha}-y|$ and $||x_{\alpha}| - |x|| \le |x_{\alpha} - x|.$

Lemma 2.1. Let $x_{\alpha} \xrightarrow{\text{mo}} x$ and $y_{\alpha} \xrightarrow{\text{mo}} y$ in an *f*-algebra *E*. Then the following holds:

- (i) $x_{\alpha} \xrightarrow{\text{mo}} x$ if and only if $(x_{\alpha} x) \xrightarrow{\text{mo}} 0$; (ii) if $x_{\alpha} \xrightarrow{\text{mo}} x$ then $y_{\beta} \xrightarrow{\text{mo}} x$ for each subnet (y_{β}) of (x_{α}) ; (iii) suppose $x_{\alpha} \xrightarrow{\text{mo}} x$ and $y_{\beta} \xrightarrow{\text{mo}} y$ then $ax_{\alpha} + by_{\beta} \xrightarrow{\text{mo}} ax + by$ for any $a, b \in \mathbb{R}$; (iv) if $x_{\alpha} \xrightarrow{\text{mo}} x$ and $x_{\alpha} \xrightarrow{\text{mo}} y$ then x = y; (v) if $x_{\alpha} \xrightarrow{\text{mo}} x$ then $|x_{\alpha}| \xrightarrow{\text{mo}} |x|$.

Recall that an order complete vector lattice E^{δ} is said to be an order completion of the vector lattice E whenever E is Riesz isomorphic to a majorizing order dense vector lattice subspace of E^{δ} . Every Archimedean Riesz space has a unique order completion; see Theorem 2.24 [1].

Proposition 2.2. Let (x_{α}) be a net in an f-algebra E. Then $x_{\alpha} \xrightarrow{\text{mo}} 0$ in E if and only if $x_{\alpha} \xrightarrow{\mathrm{mo}} 0$ in the order completion E^{δ} of E.

Proof. Assume $x_{\alpha} \xrightarrow{\text{mo}} 0$ in E. Then $|x_{\alpha}| u \xrightarrow{\circ} 0$ in E for all $u \in E_{+}$, and so $|x_{\alpha}| u \xrightarrow{\circ} 0$ in E^{δ} for all $u \in E_+$; see Corollary 2.9 [6]. Now, let us fix $v \in E_+^{\delta}$. Then there exists $x_v \in E_+$ such that $v \leq x_v$ because E majorizes E^{δ} . Then we have $|x_{\alpha}| v \leq |x_{\alpha}| x_v$. From $|x_{\alpha}| x_v \xrightarrow{\circ} 0$ in E^{δ} it follows that $|x_{\alpha}| v \xrightarrow{\circ} 0$ in E^{δ} , that is, $x_{\alpha} \xrightarrow{\mathrm{mo}} 0$ in the order completion E^{δ} because $v \in E^{\delta}_+$ is arbitrary.

Conversely, assume $x_{\alpha} \xrightarrow{\text{mo}} 0$ in E^{δ} . Then, for all $u \in E_{+}^{\delta}$, we have $|x_{\alpha}| u \xrightarrow{\circ} 0$ in E^{δ} . In particular, for all $x \in E_{+}$, $|x_{\alpha}| x \xrightarrow{\circ} 0$ in E^{δ} . By Corollary 2.9 [6], we get $|x_{\alpha}| x \xrightarrow{\circ} 0$ in E for all $x \in E_{+}$. Hence $x_{\alpha} \xrightarrow{\text{mo}}$ in E.

The multiplication in f-algebra is *mo*-continuous in the following sense.

Theorem 2.3. Let E be an f-algebra, and $(x_{\alpha})_{\alpha \in A}$ and $(y_{\beta})_{\beta \in B}$ be two nets in E. If $x_{\alpha} \xrightarrow{\mathrm{mo}} x$ and $y_{\beta} \xrightarrow{\mathrm{mo}} y$ for some $x, y \in E$ and each positive element of E can be written as a multiplication of two positive elements then $x_{\alpha}y_{\beta} \xrightarrow{\text{mo}} xy$.

Proof. Assume $x_{\alpha} \xrightarrow{\text{mo}} x$ and $y_{\beta} \xrightarrow{\text{mo}} y$. Then $|x_{\alpha} - x| \stackrel{\text{o}}{\to} 0$ and $|y_{\beta} - y| \stackrel{\text{o}}{\to} 0$ for every $u \in E_+$. Let us fix $u \in E_+$. So, there exist another two nets $(z_\gamma)_{\gamma \in \Gamma} \downarrow 0$ and $(z_\xi)_{\xi \in \Xi} \downarrow 0$ in E such that, for all $(\gamma,\xi) \in \Gamma \times \Xi$ there are $\alpha_{\gamma} \in A$ and $\beta_{\xi} \in B$ with $|x_{\alpha} - x| u \leq z_{\gamma}$ and $|y_{\beta} - y| u \leq z_{\xi}$ for all $\alpha \geq \alpha_{\gamma}$ and $\beta \geq \beta_{\xi}$.

Next, we show the *mo*-convergence of $(x_{\alpha}y_{\beta})$ to xy. By considering the equality |xy| =|x||y| and Lemma 1.3, we have

$$\begin{aligned} |x_{\alpha}y_{\beta} - xy| \, u &= |x_{\alpha}y_{\beta} - x_{\alpha}y + x_{\alpha}y - xy| \, u \\ &\leq |x_{\alpha}| \, |y_{\beta} - y| \, u + |x_{\alpha} - x| \, |y| \, u \\ &\leq |x_{\alpha} - x| \, |y_{\beta} - y| \, u + |x| \, |y_{\beta} - y| \, u + |x_{\alpha} - x| \, |y| \, u. \end{aligned}$$

The second and the third terms in the last inequality both order converge to zero as $\beta \to \infty$ and $\alpha \to \infty$ respectively because of $|x| u, |y| u \in E_+, x_\alpha \xrightarrow{\text{mo}} x$ and $y_\beta \xrightarrow{\text{mo}} y$.

Now, let us show the convergence of the first term of last inequality. There are two positive elements $u_1, u_2 \in E_+$ such that $u = u_1 u_2$ because the positive element of E can be written as a multiplication of two positive elements. So, we get $|x_{\alpha} - x| |y_{\beta} - y| u =$ $(|x_{\alpha} - x| u_1)(|y_{\beta} - y| u_2)$. Since $(z_{\gamma})_{\gamma \in \Gamma} \downarrow 0$ and $(z_{\xi})_{\xi \in \Xi} \downarrow 0$, the multiplication $(z_{\gamma} z_{\xi}) \downarrow 0$. Indeed, we firstly show that the multiplication is decreasing. For indexes $(\gamma_1, \xi_1)(\gamma_2, \xi_2) \in$ $\Gamma \times \Xi$, we have $z_{\gamma_2} \leq z_{\gamma_1}$ and $z_{\xi_2} \leq z_{\xi_1}$ because both of them are decreasing. Since the nets are positive, it follows from $z_{\xi_2} \leq z_{\xi_1}$ that $z_{\gamma_2} z_{\xi_2} \leq z_{\gamma_2} z_{\xi_1} \leq z_{\gamma_1} z_{\xi_1}$. As a result $(z_{\gamma}z_{\xi})_{(\gamma,\xi)\in\Gamma\times\Xi} \downarrow$. Now, we show that the infimum of multiplication is zero. For a fixed index γ_0 , we have $z_{\gamma} z_{\xi} \leq z_{\gamma_0} z_{\xi}$ for $\gamma \geq \gamma_0$ because (z_{γ}) is decreasing. Thus, we get $\inf(z_{\gamma} z_{\xi}) = 0$ because of $\inf(z_{\gamma_0} z_{\xi}) = z_{\gamma_0} \inf(z_{\xi}) = 0$. Therefore, we see $(|x_{\alpha} - x| u_1)(|y_{\beta} - y| u_2) \xrightarrow{\circ} 0$. Hence, we get $x_{\alpha} y_{\beta} \xrightarrow{\mathrm{mo}} xy$.

The lattice operations in an f-algebra are *mo*-continuous in the following sense.

Proposition 2.4. Let $(x_{\alpha})_{\alpha \in A}$ and $(y_{\beta})_{\beta \in B}$ be two nets in an f-algebra E. If $x_{\alpha} \xrightarrow{\text{mo}} x$ and $y_{\beta} \xrightarrow{\mathrm{mo}} y$ then $(x_{\alpha} \vee y_{\beta})_{(\alpha,\beta) \in A \times B} \xrightarrow{\mathrm{mo}} x \vee y$. In particular, $x_{\alpha} \xrightarrow{\mathrm{mo}} x$ implies $x_{\alpha}^{+} \xrightarrow{\mathrm{mo}} x^{+}$.

Proof. Assume $x_{\alpha} \xrightarrow{\text{mo}} x$ and $y_{\beta} \xrightarrow{\text{mo}} y$. Then there exist two nets $(z_{\gamma})_{\gamma \in \Gamma}$ and $(w_{\lambda})_{\lambda \in \Lambda}$ in E satisfying $z_{\gamma} \downarrow 0$ and $w_{\lambda} \downarrow 0$, and for all $(\gamma, \lambda) \in \Gamma \times \Lambda$ there are $\alpha_{\gamma} \in A$ and $\beta_{\lambda} \in B$ such that $|x_{\alpha} - x| u \leq z_{\gamma}$ and $|y_{\beta} - y| u \leq w_{\lambda}$ for all $\alpha \geq \alpha_{\gamma}$ and $\beta \geq \beta_{\lambda}$ and for every $u \in E_+$. It follows from the inequality $|a \vee b - a \vee c| \leq |b - c|$ in vector lattices that

$$\begin{aligned} |x_{\alpha} \vee y_{\beta} - x \vee y| \, u &\leq |x_{\alpha} \vee y_{\beta} - x_{\alpha} \vee y| \, u + |x_{\alpha} \vee y - x \vee y| \, u \\ &\leq |y_{\beta} - y| \, u + |x_{\alpha} - x| \, u \leq w_{\lambda} + z_{\gamma} \end{aligned}$$

for all $\alpha \geq \alpha_{\gamma}$ and $\beta \geq \beta_{\lambda}$ and for every $u \in E_+$. Since $(w_{\lambda} + z_{\gamma}) \downarrow 0$, $|x_{\alpha} \lor y_{\beta} - x \lor y| u$ order converges to 0 for all $u \in E_+$. That is, $(x_{\alpha} \vee y_{\beta})_{(\alpha,\beta) \in A \times B} \xrightarrow{\mathrm{mo}} x \vee y$.

Lemma 2.5. Let (x_{α}) be a net in an f-algebra E. Then

- (i) $0 \le x_{\alpha} \xrightarrow{\text{mo}} x \text{ implies } x \in E_+.$ (ii) if (x_{α}) is monotone and $x_{\alpha} \xrightarrow{\text{mo}} x$ then implies $x_{\alpha} \xrightarrow{\text{o}} x.$

Proof. (i) Assume $0 \le x_{\alpha} \xrightarrow{\text{mo}} x$. Then we have $x_{\alpha} = x_{\alpha}^+ \xrightarrow{\text{mo}} x^+ = x$ by Proposition 2.4. Hence, we get $x \in E_+$.

(*ii*) We show that $x_{\alpha} \uparrow$ and $x_{\alpha} \xrightarrow{\text{mo}} x$ implies $x_{\alpha} \uparrow x$. Fix an index α . Then we have $x_{\beta} - x_{\alpha} \in X_{+}$ for $\beta \geq \alpha$. By (i), $x_{\beta} - x_{\alpha} \xrightarrow{\text{mo}} x - x_{\alpha} \in X_{+}$. Therefore, $x \geq x_{\alpha}$ for any α . Since α is arbitrary, then x is an upper bound of (x_{α}) . Assume y is another upper bound of (x_{α}) , i.e., $y \ge x_{\alpha}$ for all α . So, $y - x_{\alpha} \xrightarrow{\text{mo}} y - x \in X_+$, or $y \ge x$, and so $x_{\alpha} \uparrow x$.

The following simple observation is useful in its own right.

Proposition 2.6. Decreasing disjoint sequence in an f-algebra mo-converges to zero.

Proof. Suppose (x_n) is a disjoint decreasing sequence in an *f*-algebra *E*. So, $|x_n|u$ is also a disjoint sequence in *E* for all $u \in E_+$; see Theorem 142.1(iii) [8]. Fix $u \in E_+$, by Corollary 3.6 [6], we have $|x_n| u \xrightarrow{\text{uo}} 0$ in *E*. So, $|x_n| u \wedge w \xrightarrow{\text{o}} 0$ in *E* for all $w \in E_+$. Thus, in particular, for fixed n_0 , taking w as $|x_{n_0}| u$, Then, for all $n \ge n_0$, we get

$$|x_n| u = |x_n| u \wedge |x_{n_0}| u = |x_n| u \wedge w \xrightarrow{o} 0$$

because of $|x_n| u \leq |x_{n_0}| u$. Therefore, $x_n \xrightarrow{\text{mo}} 0$ in E.

For the next two facts, observe the following fact. Let E be a vector lattice, I be an order ideal of E and (x_{α}) be a net in I. If $x_{\alpha} \xrightarrow{\circ} x$ in I then $x_{\alpha} \xrightarrow{\circ} x$ in E. Conversely, if (x_{α}) is order bounded in I and $x_{\alpha} \xrightarrow{\circ} x$ in E then $x_{\alpha} \xrightarrow{\circ} x$ in I.

Proposition 2.7. Let *E* be an *f*-algebra, *B* be a projection band of *E* and *P*_B be the corresponding band projection. If $x_{\alpha} \xrightarrow{\text{mo}} x$ in *E* then $P_B(x_{\alpha}) \xrightarrow{\text{mo}} P_B(x)$ in both *E* and *B*.

Proof. It is known that P_B is a lattice homomorphism and $0 \leq P_B \leq I$. It follows from $|P_B(x_\alpha) - P_B(x)| = P_B |x_\alpha - x| \leq |x_\alpha - x|$ that $|P_B(x_\alpha) - P_B(x)| u \leq |x_\alpha - x|u$ for all $u \in E_+$. Then it follows easily that $P_B(x_\alpha) \xrightarrow{\text{mo}} P_B(x)$ in both X and B.

Theorem 2.8. Let E be an f-algebra and I be an order ideal and sub-f-algebra of E. For an order bounded net (x_{α}) in I, $x_{\alpha} \xrightarrow{\text{mo}} 0$ in I if and only if $x_{\alpha} \xrightarrow{\text{mo}} 0$ in E.

Proof. Suppose $x_{\alpha} \xrightarrow{\text{mo}} 0$ in E. Then for any $u \in I_+$, we have $|x_{\alpha}|u \xrightarrow{\circ} 0$ in E. So, the preceding remark implies $|x_{\alpha}|u \xrightarrow{\circ} 0$ in I because $|x_{\alpha}|u$ is order bounded in I. Therefore, we get $x_{\alpha} \xrightarrow{\text{mo}} 0$ in I.

Conversely, assume that (x_{α}) mo-converges to zero in I. For any $u \in I_+$, we have $|x_{\alpha}|u \stackrel{o}{\to} 0$ in I, and so in E. Then, by applying Theorem 142.1(iv) [8], we have $x_{\alpha}w = 0$ for all $w \in I^d = \{x \in E : x \perp y \text{ for all } y \in I\}$ and for each α because (x_{α}) in I. For any $u \in I_+$ and each $0 \leq w \in I^d$, it follows that

$$|x_{\alpha}|(u+w) = |x_{\alpha}|u + |x_{\alpha}|w = |x_{\alpha}|u \xrightarrow{o} 0$$

in *E*. So that, for each $z \in (I \oplus I^d)_+$, we get $|x_{\alpha}| z \xrightarrow{\circ} 0$ in *E*. It is known that $I \oplus I^d$ is order dense in *E*; see Theorem 1.36 [1]. Fix $v \in E_+$. Then there exists some $u \in (I \oplus I^d)$ such that $v \leq u$. Thus, we have $|x_{\alpha}| v \leq |x_{\alpha}| u \xrightarrow{\circ} 0$ in *E*. Therefore, $|x_{\alpha}| v \xrightarrow{\circ} 0$, and so $x_{\alpha} \xrightarrow{\mathrm{mo}} 0$ in *E*.

The following proposition extends Theorem 3.8 [2] to the general setting.

Theorem 2.9. Let E be an f-algebra with a unit e and $(x_n) \downarrow$ be a sequence in E. Then $x_n \xrightarrow{\text{mo}} 0$ if and only if $|x_n| (u \land e) \xrightarrow{o} 0$ for all $u \in E_+$.

Proof. For the forward implication, assume $x_n \xrightarrow{\text{mo}} 0$. Hence, $|x| u \xrightarrow{\circ} 0$ for all $u \in E_+$, and so $|x_n| (u \wedge e) \leq |x_n| u \xrightarrow{\circ} 0$ because of $e \in E_+$. Therefore, $|x_n| (u \wedge e) \xrightarrow{\circ} 0$.

For the reverse implication, fix $u \in E_+$. By applying Theorem 2.57 [1] and Theorem 142.1(i) [8], note that

$$|x_n| \, u \le |x_n| \, (u - u \wedge ne) + |x_n| \, (u \wedge ne) \le \frac{1}{n} u^2 \, |x_n| + n \, |x_n| \, (u \wedge e)$$

Since $(x_n) \downarrow$ and E is Archimedean, we have $\frac{1}{n}u^2 |x_n| \downarrow 0$. Furthermore, it follows from $|x_n| (u \land e) \stackrel{\circ}{\to} 0$ for each $u \in E_+$ that there exists another sequence $(y_m)_{m \in B}$ satisfying $y_m \downarrow 0$, and for any $m \in B$, there exists n_m such that $|x_n| (u \land e) \leq \frac{1}{n}y_m$, or $n |x_n| (u \land e) \leq y_m$ for all $n \geq n_m$. Hence, we get $n |x_n| (u \land e) \stackrel{\circ}{\to} 0$. Therefore, we have $|x_n| u \stackrel{\circ}{\to} 0$, and so $x_n \stackrel{\text{mo}}{\longrightarrow} 0$.

The *mo*-convergence passes obviously to any sub-*f*-algebra *Y* of *E*, i.e., for any net (y_{α}) in *Y*, $y_{\alpha} \xrightarrow{\text{mo}} 0$ in *E* implies $y_{\alpha} \xrightarrow{\text{mo}} 0$ in *Y*. For the converse, we give the following theorem.

Theorem 2.10. Let Y be a sub-f-algebra of an f-algebra E and (y_{α}) be a net in Y. If $y_{\alpha} \xrightarrow{\text{mo}} 0$ in Y then it mo-converges to zero in E for each of the following cases;

- (i) Y is majorizing in E;
- (ii) Y is a projection band in E;
- (iii) if, for each $u \in E$, there are element $x, y \in Y$ such that $|u y| \le |x|$.

Proof. Assume (y_{α}) is a net in Y and $y_{\alpha} \xrightarrow{\text{mo}} 0$ in Y. Let us fix $u \in E_+$.

(i) Since Y is majorizing in E, there exists $v \in Y_+$ such that $u \leq v$. It follows from

$$0 \le |y_{\alpha}| u \le |y_{\alpha}| v \xrightarrow{o} 0$$

that $|y_{\alpha}| u \xrightarrow{o} 0$ in *E*. That is, $y_{\alpha} \xrightarrow{mo} 0$ in *E*.

(ii) Since Y is a projection band in E, we have $Y = Y^{\perp \perp}$ and $E = Y \oplus Y^{\perp}$. Hence $u = u_1 + u_2$ with $u_1 \in Y_+$ and $u_2 \in Y_+^{\perp}$. Thus, we have $y_{\alpha} \wedge u_2 = 0$ because (y_{α}) in Y and $u_2 \in Y^{\perp}$. Hence, by applying Theorem 142.1(iii) [8], we see $y_{\alpha}u = 0$ for all index α . It follows from

$$|y_{\alpha}| u = |y_{\alpha}| (u_1 + u_2) = |y_{\alpha}| u_1 \xrightarrow{o} 0$$

that $|y_{\alpha}| \stackrel{\text{o}}{\longrightarrow} 0$ in *E*. Therefore, $y_{\alpha} \stackrel{\text{mo}}{\longrightarrow} 0$ in *E*.

(*iii*) For the given $u \in E_+$, there exists elements $x, y \in Y$ with $|u - y| \leq |x|$. Then

$$|y_{\alpha}| u \le |y_{\alpha}| |u - y| + |y_{\alpha}| |y| \le |y_{\alpha}| |x| + |y_{\alpha}| |y|.$$

By *mo*-convergence of (y_{α}) in Y, we have $|y_{\alpha}| |x| \xrightarrow{\circ} 0$ and $|y_{\alpha}| |y| \xrightarrow{\circ} 0$, and so $|y_{\alpha}| u \xrightarrow{\circ} 0$. That means $y_{\alpha} \xrightarrow{\mathrm{mo}} 0$ in E because u is arbitrary in E_{+} .

We continue with some basic notions in f-algebra, which are motivated by their analogies from vector lattice theory.

Definition 2.11. Let $(x_{\alpha})_{\alpha \in A}$ be a net in *f*-algebra *E*. Then

- (i) (x_{α}) is said to be *mo-Cauchy* if the net $(x_{\alpha} x_{\alpha'})_{(\alpha,\alpha') \in A \times A}$ mo-converges to 0,
- (ii) E is called *mo-complete* if every *mo*-Cauchy net in E is *mo*-convergent,
- (iii) *E* is called *mo-continuous* if $x_{\alpha} \xrightarrow{o} 0$ implies $x_{\alpha} \xrightarrow{mo} 0$,
- (iv) E is called a *mo-KB-space* if every order bounded increasing net in E_+ is *mo*-convergent.

Remark 2.12. An *f*-algebra *E* is *mo*-continuous if and only if $x_{\alpha} \downarrow 0$ in *E* implies $x_{\alpha} \xrightarrow{\text{mo}} 0$. Indeed, the implication is obvious. For the converse, consider a net $x_{\alpha} \xrightarrow{\text{o}} 0$. Then there exists a net $z_{\beta} \downarrow 0$ in *X* such that, for any β there exists α_{β} so that $|x_{\alpha}| \leq z_{\beta}$ for all $\alpha \geq \alpha_{\beta}$. Hence, by *mo*-continuity of *E*, we have $z_{\beta} \xrightarrow{\text{mo}} 0$, and so $x_{\alpha} \xrightarrow{\text{mo}} 0$.

Proposition 2.13. Let (x_{α}) be a net in an *f*-algebra *E*. If $x_{\alpha} \xrightarrow{\text{mo}} x$ and (x_{α}) is an o-Cauchy net then $x_{\alpha} \xrightarrow{\text{o}} x$. Moreover, if $x_{\alpha} \xrightarrow{\text{mo}} x$ and (x_{α}) is uo-Cauchy then $x_{\alpha} \xrightarrow{\text{uo}} x$.

Proof. Assume $x_{\alpha} \xrightarrow{\text{mo}} x$ and (x_{α}) is an order Cauchy net in E. Then $x_{\alpha} - x_{\beta} \xrightarrow{\circ} 0$ as $\alpha, \beta \to \infty$. Thus, there exists another net $z_{\gamma} \downarrow 0$ in E such that, for every γ , there exists α_{γ} satisfying

$$|x_{\alpha} - x_{\beta}| \le z_{\gamma}$$

for all $\alpha, \beta \geq \alpha_{\gamma}$. By taking *f*-limit over β the above inequality and applying Proposition 2.4, i.e., $|x_{\alpha} - x_{\beta}| \xrightarrow{\text{mo}} |x_{\alpha} - x|$, we get $|x_{\alpha} - x| \leq z_{\gamma}$ for all $\alpha \geq \alpha_{\gamma}$. That means $x_{\alpha} \xrightarrow{\circ} x$. The similar argument can be applied for the *uo*-convergence case, and so the proof is omitted.

In the case of mo-complete in f-algebras, we have conditions for mo-continuity.

Theorem 2.14. For an mo-complete f-algebra E, the following statements are equivalent: (i) E is mo-continuous; (ii) if $0 \le x_{\alpha} \uparrow \le x$ holds in E then x_{α} is a mo-Cauchy net;

(iii) $x_{\alpha} \downarrow 0$ implies $x_{\alpha} \xrightarrow{\text{mo}} 0$ in E.

Proof. $(i) \Rightarrow (ii)$ Consider the increasing and bounded net $0 \le x_{\alpha} \uparrow \le x$ in E. Then there exists a net (y_{β}) in E such that $(y_{\beta} - x_{\alpha})_{\alpha,\beta} \downarrow 0$; see Lemma 12.8 [1]. Thus, by applying Remark 2.12, we have $(y_{\beta} - x_{\alpha})_{\alpha,\beta} \xrightarrow{\text{mo}} 0$, and so the net (x_{α}) is *mo*-Cauchy because of $|x_{\alpha} - x_{\alpha'}|_{\alpha,\alpha' \in A} \le |x_{\alpha} - y_{\beta}| + |y_{\beta} - x_{\alpha'}|$.

 $(ii) \Rightarrow (iii)$ Suppose that $x_{\alpha} \downarrow 0$ in E, and fix arbitrary α_0 . Then we have $x_{\alpha} \leq x_{\alpha_0}$ for all $\alpha \geq \alpha_0$. Thus we can get $0 \leq (x_{\alpha_0} - x_{\alpha})_{\alpha \geq \alpha_0} \uparrow \leq x_{\alpha_0}$. So, it follows from (ii) that the net $(x_{\alpha_0} - x_{\alpha})_{\alpha \geq \alpha_0}$ is *mo*-Cauchy, i.e., $(x_{\alpha'} - x_{\alpha}) \xrightarrow{\text{mo}} 0$ as $\alpha_0 \leq \alpha, \alpha' \to \infty$. Then there exists $x \in E$ satisfying $x_{\alpha} \xrightarrow{\text{mo}} x$ as $\alpha_0 \leq \alpha \to \infty$ because E is *mo*-complete. Since $x_{\alpha} \downarrow$ and $x_{\alpha} \xrightarrow{\text{mo}} 0$, it follows from Lemma 2.5 that $x_{\alpha} \downarrow 0$, and so we have x = 0. Therefore, we get $x_{\alpha} \xrightarrow{\text{mo}} 0$.

 $(iii) \Rightarrow (i)$ It is just the implication of Remark 2.12.

Corollary 2.15. Let E be an mo-continuous and mo-complete f-algebra. Then E is order complete.

Proof. Suppose $0 \le x_{\alpha} \uparrow \le u$ in E. We show the existence of supremum of (x_{α}) . By considering Theorem 2.14 (*ii*), we see that (x_{α}) is an *mo*-Cauchy net. Hence, there is $x \in E$ such that $x_{\alpha} \xrightarrow{\text{mo}} x$ because E is *mo*-complete. It follows from Lemma 2.5 that $x_{\alpha} \uparrow x$ because of $x_{\alpha} \uparrow \text{ and } x_{\alpha} \xrightarrow{\text{mo}} x$. Therefore, E is order complete. \Box

Proposition 2.16. Every mo-KB-space is mo-continuous.

Proof. Assume $x_{\alpha} \downarrow 0$ in E. From Theorem 2.14, it is enough to show $x_{\alpha} \xrightarrow{\text{mo}} 0$. Let us fix an index α_0 , and define another net $y_{\alpha} := x_{\alpha_0} - x_{\alpha}$ for $\alpha \ge \alpha_0$. Then it is clear that $0 \le y_{\alpha} \uparrow \le x_{\alpha_0}$, i.e., (y_{α}) is increasing and order bounded net in E. Since E is a *mo*-KB-space, there exists $y \in E$ such that $y_{\alpha} \xrightarrow{\text{mo}} y$. Thus, by Lemma 2.5, we have $y_{\alpha} \xrightarrow{\sim} y$. Hence, $y = \sup_{\alpha \ge \alpha_0} y_{\alpha} = \sup_{\alpha \ge \alpha_0} (x_{\alpha_0} - x_{\alpha}) = x_{\alpha_0}$ because of $x_{\alpha} \downarrow 0$. Therefore, we get $y_{\alpha} = x_{\alpha_0} - x_{\alpha} \xrightarrow{\text{mo}} x_{\alpha_0}$ or $x_{\alpha} \xrightarrow{\text{mo}} 0$ because of $y_{\alpha} \xrightarrow{\text{mo}} y$.

Proposition 2.17. Every mo-KB-space is order complete.

Proof. Suppose $0 \le x_{\alpha} \uparrow \le z$ is an order bounded and increasing net in an *mo*-KB-space E for some $z \in E_+$. Then $x_{\alpha} \xrightarrow{\text{mo}} x$ for some $x \in E$ because E is *mo*-KB-space. By Lemma 2.5, we have $x_{\alpha} \uparrow x$ because of $x_{\alpha} \uparrow$ and $x_{\alpha} \xrightarrow{\text{mo}} x$. So, E is order complete. \Box

Proposition 2.18. Let Y be an sub-f-algebra and order closed sublattice of an mo-KB-space E. Then Y is also a mo-KB-space.

Proof. Let (y_{α}) be a net in Y such that $0 \leq y_{\alpha} \uparrow \leq y$ for some $y \in Y_+$. Since E is a mo-KB-space, there exists $x \in E_+$ such that $y_{\alpha} \xrightarrow{\text{mo}} x$. By Lemma 2.5, we have $y_{\alpha} \uparrow x$, and so $x \in Y$ because Y is order closed. Thus Y is a mo-KB-space.

References

- [1] C.D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006.
- [2] A. Aydın, Unbounded p_τ-convergence in vector lattice normed by locally solid lattices, Academic Studies in Mathematic and Natural Sciences-2019/2, 118–134, IVPE, Cetinje-Montenegro, 2019.
- [3] A. Aydın, S.G. Gorokhova and H. Gül, Nonstandard hulls of lattice-normed ordered vector spaces, Turkish J. Math. 42 (1), 155–163, 2018.
- [4] A. Aydın, E. Emel'yanov, N. Erkurşun-Özcan and M.A.A. Marabeh, Compact-like operators in lattice-normed spaces, Indag. Math. 2 (1), 633–656, 2018.

1004

- [5] A. Aydin, E. Emel'yanov, N. Erkurşun-Özcan and M.A.A. Marabeh, Unbounded pconvergence in lattice-normed vector lattices, Sib. Adv. Math. 29 (3), 164–182, 2019.
- [6] N. Gao, V.G. Troitsky and F. Xanthos, Uo-convergence and its applications to Cesáro means in Banach lattices, Isr. J. Math. 220 (2), 649–689, 2017.
- [7] B.Z. Vulikh, Introduction to the Theory of Partially Ordered Spaces, Wolters-Noordhoff Scientific, Groningen, 1967.
- [8] A.C. Zaanen, Riesz Spaces II, North-Holland Publishing C., Amsterdam, 1983.