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Abstract

A net (z,) in an f-algebra F is said to be multiplicative order convergent to z € FE if
2o — 2| u> 0 for all w € E . In this paper, we introduce the notions mo-convergence, mo-
Cauchy, mo-complete, mo-continuous, and mo-KB-space. Moreover, we study the basic
properties of these notions.
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1. Introductory facts

In spite of the nature of the classical theory of Riesz algebra and f-algebra, as far as we
know, the concept of convergence in f-algebras related to multiplication has not been done
before. However, there are some close studies under the name unbounded convergence in
some kinds of vector lattices; see for example [2-6]. In the light of this information, we
define a new concept of the convergence, which is called the mo-convergence, on f-algebras.
Our aim is to introduce the concept of the mo-convergence by using the multiplication in
f-algebras and examine the relationship between other types of convergence.

First of all, let us remember some notations and terminologies used in this paper. Let
E be a real vector space. Then FE is called ordered vector space if it has an order relation
< (i.e, < is reflexive, antisymmetric, and transitive) that is compatible with the algebraic
structure of F that means y < x implies y + z < x + z for all z € E and Ay < Ax for each
A > 0. An ordered vector F is said to be vector lattice (or, Riesz space) if, for each pair
of vectors z,y € E, the supremum z V y = sup{z,y} and the infimum x A y = inf{z, y}
both exist in E. Moreover, 1 := 2V 0, 7 := (—z) V0, and |z| := 2 V (—x) are called
the positive part, the negative part, and the absolute value of x € E, respectively. Also,
two vectors x, y in a vector lattice are said to be disjoint whenever |z| A |y| = 0. A vector
lattice E is called order complete if 0 < x, 1< z implies the existence of supz, in E. A
subset A of a vector lattice is called solid whenever |z| < |y| and y € A imply z € A. A
solid vector subspace is referred to as an order ideal. An order closed ideal is referred to
as a band. A sublattice Y of a vector lattice is majorizing E if, for every © € FE, there
exists y € Y with z < y. A partially ordered set [ is called directed if, for each ay, a2 € I,
there is another a € I such that a > a1 and a > ag (or, a < ay and a < ag). A function
from a directed set I into a set E is called a netin E. A net (z4)aca in a vector lattice X
is called order convergent (or shortly, o-convergent) to x € X, if there exists another net
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(ys)pep satisfying yg | 0, and for any 3 € B there exists ag € A such that |z, — x| < y3
for all @ > ag. In this case, we write z, 2 x; for more details see for example [1,7,8].

A vector lattice E under an associative multiplication is said to be a Riesz algebra when-
ever the multiplication makes F an algebra (with the usual properties), and in addition,
it satisfies the following property: =,y € E implies xy € E. A Riesz algebra F is called
commutative if xy = yx for all z,y € E. A Riesz algebra FE is called f-algebra if E has
additionally property that Ay = 0 implies (zz) Ay = (zz) Ay =0 for all z € E; see for
example [1]. A vector lattice E is called Archimedean whenever %CL‘ 1 0 holds in E for each
x € Ey. Every Archimedean f-algebra is commutative; see Theorem 140.10 [8]. Assume
E is an Archimedean f-algebra with a multiplicative unit vector e. Then, by applying
Theorem 142.1(v) [8], in view of e = ee = €2 > 0, it can be seen that e is a positive vector.
In this article, unless otherwise stated, all f-algebras are semiprime, and all vector lattices
are assumed to be real and Archimedean, and so f-algebras are commutative.

Recall that a net (z,) in a vector lattice F is unbounded order convergent (or shortly, uo-
convergent) to x € F if |z — 2| Au = 0 for every u € E.. In this case, we write z,, — ;
see for example [6] and [2—4]. Motivated from this definition, we give the following notion.

Definition 1.1. Let E be an f-algebra. A net (z,) in F is said to be multiplicative order
convergent to x € E (shortly, (x,) mo-converges to x) if |z, — 2|u->0 for all u € E,.
Abbreviated as zq —> .

It is clear that zo — z in an f-algebra E implies zoy — zy for all y € E because of
|zy| = |x| |y| for all x,y € E. Also, in general, the mo-convergence and uo-convergence
are not the same. To see that we consider the following example.

Example 1.2. Let E be a vector lattice and consider Orth(E) := {T € Ly(E) : z L
y implies Tz L y} the set of orthomorphisms on E. The space Orth(E) is not only vector
lattice but also an f-algebra. The mo-convergence and the uo-convergence are different in

Orth(E).

We shall keep in mind the following useful lemma, obtained from the property of zy €
E, for every x,y € F.

Lemma 1.3. Ify < x is provided in an f-algebra E then uy < ux for all u € F .

Recall that multiplication by a positive element in f-algebras is a vector lattice homo-
morphism, i.e., u(zAy) = (ux) A (uy) and u(x Vy) = (uz) V (uy) for every positive element
u; see for example Theorem 142.1(i) [8]. We will denote an [-algebra E as infinite dis-
tributive l-algebra whenever the following condition holds: if inf(A) exists for any subset
A of E then the infimum of the subset uA exists and inf(uA) = winf(A) for each positive
vector u € E. For anet (z,) | 0 in an infinite distributive {-algebra, the net (ux,) is also
decreasing to zero for all positive vector u. Fortunately, every f-algebra has the infinite
distributive property.

Remark 1.4. The order convergence implies the mo-convergence in f-algebras. The
converse holds true in f-algebras with multiplication unit. Indeed, assume a net (z4)aca
order converges to x in an f-algebra E. Then there exists another net (y3)gep satisfying
yg 1 0, and, for any € B, there exists ag € A such that |z, — x| < yz. Hence, we have
|zq — x|u < ygu for all o > ag and for each u € E,. Since yg |, we have uyg | for each
u € B, by Lemma 1.3, and inf(uyg) = uinf(yg) = 0 because of inf(yz) = 0. Therefore,
o — 2| u> 0 for each v € E,. That means 2, —> .

For the converse, assume E is an f-algebra with multiplication unit e and z, — z in
E. That is, |zq — x| u >0 for all u € E,. Since e € E, in particular, choose u = e, and
so we have |zq — 2| = |24 — |20, or 24 > in E.

By considering Example 141.5 [8], we give the following example.



1000 A. Aydin

Example 1.5. Let [a,b] be a closed interval in R and let E be vector lattice of all
reel continuous functions on [a,b] such that the graph of functions consists of a finite
number of line segments. In view of Theorem 141.1 [8], every positive orthomorphism 7
in F is trivial orthomorphism, i.e., there is a reel number A such that 7(f) = Af for all
f € E. Therefore, a net of positive orthomorphism (7,) is order convergent to 7 if and
only if it is mo-convergent to m whenever the multiplication is the natural multiplicative,
ie., mma(f) = m(maf) for all my,m € Orth(E) and all f € E. Indeed, Orth(E) is
Archimedean f-algebra with the identity operator as a unit element; see Theorem 140.4
[8]. So, by applying Remark 1.4, the mo-convergence implies the order convergence of the
net (mq).

Conversely, assume the net of positive orthomorphisms 7, 2 7 in Orth(E). Then we
have 74 (f) > 7(f) for all f € E; see Theorem VIII1.2.3 [7]. For fixed 0 < pu € Orth(E),
there is a reel number A, such that p(f) = A, f for all f € E. Since |mo(f) — w(f)| =

Aeaf — A f| 20, we have
|(7Ta)f - (W)f| n= |:U)‘7raf - N)‘ﬂf’ = |/\u)‘7raf - )\,u)\mﬂ = |)‘,u’ |/\Traf - >\7rf| %0

for all f € E. Since yu is arbitrary, we get m, — 7.

2. Main results

We begin the section with the next list of properties of the mo-convergence which
follows directly from Lemma 1.3, and the inequalities |z — y| < |z — x| + |24 — y| and
|za| — |2|| < |20 — 2.

Lemma 2.1. Let o —> & and yo —>y in an f-algebra E. Then the following holds:
(i) To =% 2 if and only if (x4 — ) =2 0;
(ii) if 2o —>  then ys —> x for each subnet (yg) of (va);
(iii) suppose xo —> x and Ys =y then azy + bys = ax + by for any a,b € R;
(iv) if 2o =z and x4 —>y then © = y;
(V) if To —> 2 then |xo| —>|].

Recall that an order complete vector lattice E° is said to be an order completion of
the vector lattice F¥ whenever F is Riesz isomorphic to a majorizing order dense vector
lattice subspace of E°. Every Archimedean Riesz space has a unique order completion;
see Theorem 2.24 [1].

Proposition 2.2. Let (z,) be a net in an f-algebra E. Then x4 —>0 in E if and only
if To =20 in the order completion E° of E.

Proof. Assume z, >0 in E. Then |z,|u->0 in E for all u € Ey, and so |z|u >0
in E° for all u € Ey; see Corollary 2.9 [6]. Now, let us fix v € ES. Then there exists
z, € F, such that v < x, because E majorizes F°. Then we have |zo|v < |2o| 2y, From
|Za| 20 = 0 in E° it follows that |z4|v =0 in E?, that is, 2, — 0 in the order completion
EY because v € Ei is arbitrary.

Conversely, assume x4 — 0 in E°. Then, for all u € Ei, we have |zq|u >0 in E. In
particular, for all z € E,, |z4|2 >0 in E°. By Corollary 2.9 [6], we get |zq|z >0 in E
for all z € E,. Hence 2, —> in E. O

The multiplication in f-algebra is mo-continuous in the following sense.

Theorem 2.3. Let E be an f-algebra, and (zo)aca and (yg)sep be two nets in E. If
To =5z and Y 22y for some z,y € E and each positive element of E can be written as
a multiplication of two positive elements then xoys = zy.
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Proof. Assume z, =z and yg —>y. Then |z, —z|u->0 and |y — y|u >0 for every
u € Ey. Let us fix u € E,. So, there exist another two nets (z,)yer | 0 and (z¢)eez | 0
in E such that, for all (v,£) € I’ x Z there are o, € A and ¢ € B with |zq —z|u < 2z,
and |yg —y|u < z¢ for all @ > ay and B > Be.

Next, we show the mo-convergence of (z,y3) to xy. By considering the equality |zy| =
|z| |y| and Lemma 1.3, we have

|xo¢y,8 - ‘Ty’ u = |xay6 — Xy + Ty — CCy| U
< zallys —ylu+ 20 — 2l lylu
< za =l lys —ylu+ |2l lys — ylu+ o — z[ |y u.
The second and the third terms in the last inequality both order converge to zero as
8 — oo and o — oo respectively because of |z|u, |y|u € Ey, 14 =z and ys —> y.

Now, let us show the convergence of the first term of last inequality. There are two
positive elements u1,us € E, such that u = ujus because the positive element of F can
be written as a multiplication of two positive elements. So, we get |zo — z||yg — y|u =
(|ta — z|u1)(Jlys — y| u2). Since (2y)yer 4 0 and (2¢)eez 4 0, the multiplication (zyz¢) | 0.
Indeed, we firstly show that the multiplication is decreasing. For indexes (y1,&1)(72,&2) €
I' x 2, we have z,, < z,, and z¢, < 2z because both of them are decreasing. Since
the nets are positive, it follows from z¢, < 2z that 2,26, < 2y,2¢, < 29,26 As
a result (2,2¢)(y,e)erxz 4- Now, we show that the infimum of multiplication is zero.
For a fixed index 79, we have z,z¢ < zy 2 for v > vy because (zy) is decreasing.
Thus, we get inf(zy2¢) = 0 because of inf(zy,2¢) = 24, inf(z¢) = 0. Therefore, we see
(|7a — z|u1)(lys — y| uz) > 0. Hence, we get zays —> Ty. O

The lattice operations in an f-algebra are mo-continuous in the following sense.

Proposition 2.4. Let (24)aca and (ys)sep be two nets in an f-algebra E. If x4 —>x
mo mo . mo . . + mo +
and yg —y then (o Vys)(a,g)caxn — TV Y. In particular, zo, — x implies v — ™.

Proof. Assume x, —> z and yg —y. Then there exist two nets (z),er and (wy)xea in
E satisfying z, | 0 and wy | 0, and for all (y,A) € I' x A there are a, € A and ) € B
such that |z, —2|u < 2zy and |yg —y|u < wy for all @ > «, and B > By and for every
u € F4. It follows from the inequality |a Vb —aV ¢| < |b — ¢| in vector lattices that
|xa\/yﬁ_$\/y|u§ |$a\/y5_xa\/y|u+|$a\/y_l'\/y’u
<lys —ylu+[ra —zfu <wx+ 2

for all @ > o, and 8 > ) and for every v € EL. Since (wy +2y) 1 0, |[zo Vys — 2V y|lu
order converges to 0 for all u € E;. That is, (Ta V Yg)(a,8)cAxB 2z Vuy. O

Lemma 2.5. Let (z,) be a net in an f-algebra E. Then
(i) 0 < zq =% x implies v € F.
(ii) if (xo) is monotone and xo > then implies xq ~> .

Proof. (i) Assume 0 < 2, —> 2. Then we have z, = b =% 2T =z by Proposition 2.4.
Hence, we get z € E.

(i) We show that z, 1 and z, — x implies z, T z. Fix an index a. Then we have
xg —xoq € X4 for B> a. By (i), x5 — 24 =% ¢ — 24 € X,. Therefore, z > z, for any .
Since « is arbitrary, then z is an upper bound of (z,). Assume y is another upper bound
of (z4), i.e., y > x4 for all .. So, y — o —2y —x € X4, or y > x, and so 24 T . O

The following simple observation is useful in its own right.

Proposition 2.6. Decreasing disjoint sequence in an f-algebra mo-converges to zero.
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Proof. Suppose () is a disjoint decreasing sequence in an f-algebra E. So, |x,|u is
also a disjoint sequence in E for all u € E,; see Theorem 142.1(iii) [8]. Fix u € E, by
Corollary 3.6 [6], we have |z,|u >0 in E. So, |z,|uAw->0in E for all w € Ey. Thus,
in particular, for fixed ng, taking w as |zy,| u, Then, for all n > ng, we get

|Zn| U = |Zn| u A [Tn | u = |20| u A w 0.
because of |7,|u < |2, | u. Therefore, ,, =0 in E. O

For the next two facts, observe the following fact. Let F be a vector lattice, I be an
order ideal of E and (z,) be a net in I. If z, >z in I then z, = 2 in E. Conversely, if
() is order bounded in I and z4 2z in E then z, =z in 1.

Proposition 2.7. Let E be an f-algebra, B be a projection band of E and Pp be the
corresponding band projection. If xo —» x in E then Pp(xs) — Pg(x) in both E and B.

Proof. 1t is known that Pp is a lattice homomorphism and 0 < Pp < I. It follows from
|Pp(za) — Pp(x)| = Pplre — x| < |zq — x| that |Pp(z) — Pp(z)|u < |xq — x|u for all
u € Ey. Then it follows easily that Pg(x,) — Pg(z) in both X and B. O

Theorem 2.8. Let E be an f-algebra and I be an order ideal and sub-f-algebra of . For
an order bounded net (xo) in I, to —=0 in I if and only if T, —>0 in E.

Proof. Suppose 2, —%0 in E. Then for any u € I, we have |z,/u>0 in E. So, the
preceding remark implies |zq|u-2 0 in I because |z4|u is order bounded in I. Therefore,
we get o — 0 in I.

Conversely, assume that (z,) mo-converges to zero in I. For any u € I, we have
|2o|u =0 in I, and so in E. Then, by applying Theorem 142.1(iv) [8], we have z,w = 0
forallwe I ={x € E:a Ly for all y € I} and for each a because (z4) in I. For any
u € I, and each 0 < w € I%, it follows that

|Za|(u 4+ w) = |Ta|u + |To|w = |2alu 20
in E. So that, for each z € (I & I%),, we get |24z 0 in E. Tt is known that I @ I is
order dense in F; see Theorem 1.36 [1]. Fix v € E;. Then there exists some u € (I © I)

such that v < u. Thus, we have |z4|v < |zolu=>0 in E. Therefore, |z4|v =0, and so
To =230 in E. O

The following proposition extends Theorem 3.8 [2] to the general setting.

Theorem 2.9. Let E be an f-algebra with a unit e and (x,,) | be a sequence in E. Then
Ty, =20 if and only if |z, (u A e) >0 for allu € E,.

Proof. For the forward implication, assume z, — 0. Hence, || u>0 for all u € E,,
and so |x,| (u A e) < |zn|u =0 because of e € E. Therefore, |z,| (u A e) 0.

For the reverse implication, fix u € E. By applying Theorem 2.57 [1] and Theorem
142.1(i) [8], note that

1
[2n|u < |2n| (4 —u Ane) + |zn| (u Ane) < —u?|z,| +n | (uAe)
n

Since (xy,) | and F is Archimedean, we have %u2 |zn| J 0. Furthermore, it follows from
|zn| (u A €) 20 for each u € E, that there exists another sequence (y,)mep satisfying
Ym | 0, and for any m € B, there exists np, such that |2, | (uAe) < 2yn,, or n|z,| (uie) <
Ym for all n > n,,. Hence, we get n |z,| (u A e) > 0. Therefore, we have |x,|u 0, and so
Ty —20. ]

The mo-convergence passes obviously to any sub- f-algebra Y of E, i.e., for any net (yq)
inY, yo — 0 in E implies yo —> 0 in Y. For the converse, we give the following theorem.
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Theorem 2.10. Let Y be a sub-f-algebra of an f-algebra E and (yo) be a net in'Y. If
Yo =20 in Y then it mo-converges to zero in E for each of the following cases;
(i) Y is majorizing in E;
(ii) Y is a projection band in E;
(iii) if, for each u € E, there are element x,y € Y such that |u — y| < |z|.

Proof. Assume (y,) is a net in Y and y, —0in Y. Let us fix u € E,.
(1) Since Y is majorizing in F, there exists v € Y, such that v <wv. It follows from

0 < [Yalu < |yalv 20,

that |ya|u 0 in E. That is, yo —> 0 in E.

(43) Since Y is a projection band in F, we have Y = Y*+ and E = Y @ Y. Hence
u = uy + ue with uy € Y5 and ug € YJFL. Thus, we have y, A ug = 0 because (y,) in Y
and uy € Y. Hence, by applying Theorem 142.1(iii) [8], we see you = 0 for all index a.
It follows from

[Yal u = [yal (w1 + uz) = |yal ur =0

that |yo|u 0 in E. Therefore, y, —>0 in E.

(7i1) For the given u € E, there exists elements z,y € Y with |u — y| < |z|. Then

yalu < |yal lu =yl + |yal Y] < lyal |2 + [yal Iyl -

By mo-convergence of (y,) in Y, we have |ya||z| =0 and |ya||y| =0, and so |ya|u 0.
That means y, — 0 in F because u is arbitrary in E.. O

We continue with some basic notions in f-algebra, which are motivated by their analo-
gies from vector lattice theory.

Definition 2.11. Let (z4)aca be a net in f-algebra E. Then
(i) (wq) is said to be mo-Cauchy if the net (zo — To/)(a,a/)caxa Mo-converges to 0,
(ii) E is called mo-complete if every mo-Cauchy net in E is mo-convergent,

(iii) E is called mo-continuous if z, ~» 0 implies 24 — 0,

(iv) E is called a mo-KB-space if every order bounded increasing net in E is mo-
convergent.

Remark 2.12. An f-algebra E is mo-continuous if and only if z, | 0 in FE implies
Zo —> 0. Indeed, the implication is obvious. For the converse, consider a net xq — 0.
Then there exists a net zg | 0 in X such that, for any § there exists ag so that |z,| < 23

for all @ > ag. Hence, by mo-continuity of E, we have zg =20, and s0 zo —> 0.

Proposition 2.13. Let (x,) be a net in an f-algebra E. If xo —> 2 and (z4) is an
o-Cauchy net then x, 2 x. Moreover, if T 2% 2 and (xq) is uo-Cauchy then x NS

Proof. Assume x, =2 2 and (2q) is an order Cauchy net in E. Then z, — zg 20 as
a, 3 — 0o. Thus, there exists another net z, | 0 in E such that, for every ~, there exists
oy satisfying
[Za — 28| < 2y

for all o, B > ay. By taking f-limit over 3 the above inequality and applying Proposition
24, ie., |zo — 28] RN |zo — x|, we get |zq — 2| < 2z, for all @ > . That means z, 2.
The similar argument can be applied for the uo-convergence case, and so the proof is
omitted. 0

In the case of mo-complete in f-algebras, we have conditions for mo-continuity.

Theorem 2.14. For an mo-complete f-algebra E, the following statements are equivalent:
(i) E is mo-continuous;
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(ii) if 0 < zo 1< x holds in E then x,, is a mo-Cauchy net;
(iii) xq 0 implies o —>0 in E.

Proof. (i) = (i) Consider the increasing and bounded net 0 < z, 1< x in E. Then there
exists a net (yg) in E such that (yg — 2a)a,s 4 0; see Lemma 12.8 [1]. Thus, by applying
Remark 2.12, we have (ys — %4)a,s — 0, and so the net (z,) is mo-Cauchy because of
|Ta — xa"a,a’eA < |za —ysl + lys — ar.

(13) = (417) Suppose that z, | 0 in E, and fix arbitrary ag. Then we have x4 < z,, for
all a > ap. Thus we can get 0 < (Zoy — Ta)a>ae T< Tay- S0, it follows from (ii) that the
net (T, — Ta)a>a, is mo-Cauchy, ie., (z/ — 2o) 0% 0 as ag < a, &’ — oo. Then there
exists x € E satisfying zo — = as ag < a — oo because F is mo-complete. Since z, |
and x4 — 0, it follows from Lemma 2.5 that z, | 0, and so we have 2 = 0. Therefore,
we get T4 — 0.

(191) = (7) It is just the implication of Remark 2.12. O

Corollary 2.15. Let E be an mo-continuous and mo-complete f-algebra. Then E is order
complete.

Proof. Suppose 0 < 2, 1< uw in E. We show the existence of supremum of (z,). By
considering Theorem 2.14 (ii), we see that (z,) is an mo-Cauchy net. Hence, there is
z € E such that z, —> z because E is mo-complete. It follows from Lemma 2.5 that
zo T = because of z, 1 and zo — x. Therefore, F is order complete. ]

Proposition 2.16. Every mo-KB-space is mo-continuous.

Proof. Assume z, | 0 in E. From Theorem 2.14, it is enough to show z, —= 0. Let
us fix an index ag, and define another net y, := 24, — o for @ > ag. Then it is clear
that 0 < yo T< 4, i€, (yo) is increasing and order bounded net in E. Since E is
a mo-KB-space, there exists y € E such that y, — y. Thus, by Lemma 2.5, we have
Yo = y. Hence, y = SUp Yo = SUP (Tay — Ta) = Ta, because of x4 | 0. Therefore, we get

a>agp azag
mo mo f mo
Ya = Tay — La — Loy OF To — 0 because of y, —> . ]

Proposition 2.17. Every mo-KB-space is order complete.

Proof. Suppose 0 < z,, 1< z is an order bounded and increasing net in an mo-KB-space
E for some z € E,. Then z, —> x for some x € E because E is mo-KB-space. By Lemma
2.5, we have z, T & because of x4 1T and z, — x. So, F is order complete. ]

Proposition 2.18. Let Y be an sub-f-algebra and order closed sublattice of an mo-KB-
space E. ThenY is also a mo-KB-space.

Proof. Let (y,) be a net in Y such that 0 < y, 1< y for some y € Y. Since E is a
mo-KB-space, there exists z € F, such that y, — x. By Lemma 2.5, we have y, 1 z,
and so x € Y because Y is order closed. Thus Y is a mo-KB-space. O
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