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Abstract 

 

The ability parameter of persons/examinees estimates can be obtained using the Joint Maximum 

Likelihood (JML) estimation in Item Response Theory (IRT). However, JML estimates can be biased in 

some cases. Although the Bootstrap method has been considered for JML, existing studies remain far 

from satisfactory concerning the ability parameter estimation. This research evaluates the performances of 

JML and Bootstrap estimates of the ability parameter in terms of Standard Error Measurement (SEM) in 

the 2-Parameter Logistic (2-PL) model conducting a detailed Monte Carlo simulation study. According to 

the results, the average SEM estimates of the Bootstrap method are less than the average SEM estimates 

of JML in terms of the ability parameter. 

 

Keywords: ability parameter, difficulty parameter, discrimination parameter, joint maximum 

likelihood estimation, two-parameter logistic model 

 

1. Introduction 

 

Measurement and evaluation methods have gained 

importance in many fields such as education, 

psychology, and medicine in past decades [1]. In 

general, researchers have considered measuring the 

ability parameter of persons/examinees (latent variable) 

such as intelligence, mathematical or scholastic abilities. 

Evaluating results of measurement techniques can be 

difficult in some fields where the latent variable has an 

important role. Classical Test Theory (CTT) is unable to 

assess the true measurement of the ability of examinees 

and the characteristics of items. The mathematical or 

verbal ability of students in education, consumer 

preferences in marketing, political attitude of voters in 

politics, etc. can be given as an example of the field 

where the ability parameter of examinees cannot be 

measured by CTT directly. Thus, Item Response Theory 

(IRT) has been widely used to estimate both items and 

examinee parameters in literature [2, 3].  

 

IRT is a mathematical model that indicates the relation 

among examinee and item parameters and provides 

parameter estimates of both ability parameter and item 

parameters [4]. This model is based on the probability 

of giving the correct answer to a given specific item. 

This probability is the chance that the i-th  

 

examinee correctly answers to the j-th item and is 

denoted by ( 1 )ij iP Y =   

 

IRT models have three basic assumptions: 

unidimensionality, local independence, and 

monotonicity. The unidimensionality indicates that all 

items should measure only one examinee parameter. 

The local independence states that the probability of the 

correct response from the examinee is based solely on 

the ability of the examinee and each individual item, 

and not the interrelationship of multiple items. The 

monotonicity describes the functionality between an 

examinee's ability and performance on each item of the 

assessment [5].  

 

IRT models are generalized linear models since they 

involve a transformation of the expected values with the 

help of a link function to depend on a linear 

formulation, and they are also mixed because one or 

more weights in the linear component are random 

variables [6]. Logit and Probit are widely used link 

functions in IRT. The logit link function is benefitted 

from standard logistic distribution and rather preferable 

function because of the computation easiness. The most 

widely used models in IRT are one-parameter logistic 

(1-PL), two-parameter logistic (2-PL) and three 
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parameter logistic (3-PL) models. 1-PL model is also 

known as Rasch model and contains only item 

discrimination parameter (
ja ).  2-PL model, which is 

known as Birnbaum model, consist of both item 

discrimination and difficulty parameters [4]. In addition 

to the item discrimination and difficulty parameters, 3-

PL model has a chance parameter (
jc ) [7]. 

 

Item discrimination ( a ) and difficulty parameter ( b ) 

ranges from  −    to +  . However, it is assumed that, 

in practice, b value ranges from -3 to +3, when the 

examinee parameter ( ) has the standard normal 

distribution. The discrimination parameter indicates 

how well the item differentiates examinees. A higher 

discrimination parameter differentiates better among 

examinees. In the same way, a higher difficulty 

parameter indicates that the item is hard [1, 4]. The 

chance parameter ( c ) ranges from 0 to 1 and it is 

generally  0.25c  . 

 

Liou and Yu [8] mentioned that the Bootstrap method 

can be used to determine the statistical accuracy of 

ability estimates in with given item parameters. 

Atanasov [9] studies on estimation of IRT parameters of 

the items with a small sample size using bootstrapping.  

Heene et al. [10] evaluated the performance of the 

Bootstrap for the Rasch model under the violations of 

non-intersecting item response functions. Wolfe and 

McGill [11] indicated that the Bootstrap critical values 

allow for greater statistical power in diagnosing item 

misfit caused by varying item slopes and lower 

asymptotes for the Rash model. Patton et al. [12] 

compared the performance of bootstrap standard error 

with the asymptotic standard error under 20 and 40 

items for 500 and 2000 samples.  Olmuş and Nazman 

[13] evaluated parameter estimations of 2-PL model 

using JML estimation. Liu and Yang [14] proposed a 

resampling-based method, namely bootstrap calibration, 

to reduce the impact of the carry over sampling error on 

the interval estimates of ability parameter. Liu et al [15] 

reviewed Monte Carlo methods in the literature in 

recent years. Chen et al. [16] used pseudo-population 

bootstrap to perform in terms of relative bias and 

coverage probability. However, there is still need to 

clear the performance of the Bootstrap method for 

higher item numbers. Therefore, we considered the 2-

PL model in order to evaluate JML and the Bootstrap 

ability parameter estimation considering Standard Error 

Measurement (SEM) conducting a detailed Monte Carlo 

simulation study. The study was organized as follows: 

The model, item information function, test information 

function and standard error of measurement were 

explained in the second section. Parameter estimation of 

the model, JML estimation and the Bootstrap method 

were presented in the third section. Monte Carlo 

simulation study and obtained results were shown in the 

fourth and fifth sections, respectively. 

 

2. Materials and Methods 

2.1. Two-Parameter Logistic (2-PL) Model  

 

The most widely used model in IRT is two-parameter 

logistic (2-PL) model. Let’s consider a testing situation 

in which n examinees answer to k items. Let i=1, …, n 

and  j=1, …, k  be the random variables associated with 

the response of the i th examinee to the j-th item. These 

responses can be binary or discrete with a number of 

categories. 
ijY  is the response for the i-th examinee to 

the j-th item and assumed to be identical for each item 

in the test. Here 
i  denotes the ability parameter for i-th 

examinee.   

P( 1 )ij iY =  denotes for the chance that the i-th 

examinee correctly answers the j-th item. Logit term of 

this probability and 2-PL model equation were given 

below respectively [3, 7]. 

                                          

( )ij

ij i j i j

ij

P( 1)
logit(P( 1))

1- P( 1)

Y =
Y = =ln θ =a θ -b

Y =

 
  
 

     (2.1) 

( )
( )

j i j

ij i

j i j

P( 1 )
1

exp a θ -b
Y = θ =

exp a θ -b+

 
 

 
 

                            (2.2) 

or  

( )
ij i

j i j

1
P( 1 )

1
Y = θ =

exp -a θ -b+  
 

                          (2.3) 

where 

ja : the item discrimination parameter of j th item 

jb : the item difficulty parameter of j th item 

 

2.1.1. Item Information Function (IIF) 

 

An examinee’s unknown ability do not depend upon the 

examinee’s responses to the items. On the other hand, 

an examinee’s unknown ability depends only on the 

parameter values of k items [17]. In 2-PL model, the 

general interest is mostly the estimated value of ability 

parameter for an examinee. The amount of information 

based on an item is able to be computed for any ability 

level. Item Information Function (IIF) for 2-PL model is 

shown as in Eq. (2.4): 

                                          

( ) ( ) ( )2

i j j j i j i jI θ,b ,a =a P θ,b Q θ,b                            (2.4) 

 

where 

( )
( )

i j

j i j

1
P

1

θ,b

exp -a θ -b

=

+  
 

and ( ) ( )i j ji
1 PQ θ,b θ,b= − . 

The value of discrimination parameter is required to 

compute IIF [3, 15]. 
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2.1.2. Test Information Function (TIF) 

 

A study such as survey or test is a set of items. Thus, the 

test information gives the ability level is computed from 

the sum of the item informations at that level. The Test 

Information Function (TIF) for 2-PL model is defined as 

in Eq.(2.5): 

                      

( ) ( )

( ) ( )

k

i i i j j
j 1

k
2

j j j j j
j 1

, 1, 2, ...,

I θ = I θ ,b ,aij

a P θ,b ,a Q θ,b ,a i n

=

=



= =

 (2.5) 

 

In general, TIF tends to be higher than that for IIF [18].  

 

2.1.3. Standard Error of Measurement (SEM)  

 

The variance of ability estimate in the 2-PL model can 

be estimated as the reciprocal value of TIF at the ability 

estimate. This standard error of ability parameter is 

given as in Eq.(2.6) [18]. 

                                          

( ) ( )
k

2

j j j j j j
j 1

1SEM(θ)= / a P θ,b ,a Q θ,b ,a
=
                (2.6)        

 

2.2. Parameter Estimation of 2-PL Model 

 

Let 
i1 i2 iky ,y ,...,y  be the dichotomous response 

variables of the i th examinee to k items, 

( )1 2 k= a ,a ,...,aa  and ( )1 2 k= b ,b ,...,bb  be the vectors of 

discrimination and difficulty parameters.  When we 

assume that an examinee taking the test responses each 

item independently, the probability of observing a 

particular response matrix of the i-th examinee is given 

as in Eq.(2.7): 

                                         

( ) ( )
k

i1 i1 ik ik i ij ij i
j 1

P Y =y ,...,Y =y θ , , = P Y =y θ , ,
=
a b a b    (2.7) 

 

Then the likelihood function for all responses of 

examinees become as in Eq.(2.8): 

 

ij ij
n 1

j j
i 1

y y
( ) (1 )L θ,a,b = P -P

−

=
                             (2.8) 

 

This function represents the likelihood of obtaining the 

observed data as a function of the model parameters. 

Therefore, it is logical to estimate these model 

parameters using those values that maximize this 

likelihood function.  

 

2.2.1. Joint Maximum Likelihood Estimation (JML) 

 

One of the important tasks when a test is examined is to 

estimate these parameter values because actual values of 

item parameters in a test are unknown. In IRT, 

estimation of both item and ability parameters is a 

crucial process. In the case of the 2-PL model, the log-

likelihood for examinees is shown in Eq.(2.9): 

                                            
n k

ij ij ij ij
i 1 j 1

( ) (1 ) (1 )lnL(θ,a,b)= y ln P y ln P
= =

+ − −        (2.9) 

 

Its partial derivations are taken with respect to each 

parameter and set them to zero. The obtained equations 

are not linear. Therefore, the Newton-Rapson method is 

used to obtain item and ability parameter estimations. 

JML method is used to estimate both item and ability 

parameters treating the parameters as fixed parameters. 

In the first stage, the item parameters are estimated 

assuming known examinee abilities. In the second stage, 

it is assumed that the item parameter values are known 

for the estimated examinee’s ability parameters.  Then, 

the process yields estimates for both item and ability 

parameters [18]. 

 

2.2.2 Bootstrap Method 

 

The bootstrap resampling method allows researchers to 

quantify uncertainty by calculating standard errors and 

confidence intervals and performing significance tests. 

They require fewer assumptions than traditional 

methods and generally give more accurate answers [19].  

In this study, the bootstrap method steps for 2- PL 

model as shown [12]: 

 

Step 1: Estimate item and person parameters based on 

the original sample.  

Step 2: Select the values of the item and person 

parameters randomly from the estimated values. 

Step 3: Generate simulated data sets that fit the 2-PL 

model for each the bootstrap resampling. 

Step 4: Compute the statistics of interest (the average 

estimates of the item and ability parameters) for each of 

the resamples. 

Step 5: Compute averages of the statistics of interest 

across the bootstrap rasamples. 

Step 6: Compare the value of the statistics of interest to 

the average bootstrap values.  

 

3. Simulation Study 

 

A Monte Carlo simulation study was conducted to 

compare estimated ability parameter with JML and 

Bootstrap method using MATLAB R2017b. Item 

numbers and sample sizes were determined as 60, 90, 

180, and 150, 500, 1000, respectively. The ability 

parameters and the item difficulty parameter values 

were generated from N(0,1). Item discrimination 

parameters were randomly selected from the possible 

values of  {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6}. First, the 

data set of 0’s and 1’s were generated using n ability 

examinees and k items each with two parameters. Using 

n*k data matrix of simulated responses, the JML 

estimates were obtained for item and ability parameters 
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[20, 21]. In addition, the estimated values of ability 

estimation and SEM of ability parameters were obtained 

using the Bootstrap method when all item and ability 

parameters were estimated, SEM of the ability 

parameter estimates of JML were compared with SEM 

of the ability parameter estimates of the Bootstrap 

method. With this aim, we run 100 bootstrap resampling 

for each examinee. For each bootstrap resampling, item 

and ability parameter values were estimated using JML 

estimates again.  

 

4. Results and Discussion 

Estimation and standard error values (SEM) for the 

ability parameter of JML and the Bootstrap were given 

in Table1. The average SEM estimates for the ability 

and item parameters were estimated by using JML and 

the Bootstrap was given in Table1.  

 

Table 1. Average estimations for ability parameter and SEM using JML and bootstrap methods. 

n k a b 𝜽 SEM(𝜽) 𝒂𝒃𝒐𝒐𝒕 𝒃𝒃𝒐𝒐𝒕 𝜽𝒃𝒐𝒐𝒕 SEM(𝜽𝒃𝒐𝒐𝒕) 
 

150 

60 1.0348 0.0040 -0.0032 0.0227 1.2378 -0.0218 0.0038 0.0199 

90 0.9177 -0.1941 0.0098 0.0205 1.0519 -0.1677 0.0194 0.0184 

180 0.9252 0.0119 -0.0009 0.0144 1.0139 0.0180 -0.0083 0.0133 

 

 

500 

60 0.9408 -0.0093 -0.0018 0.0135 1.0644 -0.0166 -0.0118 0.0124 

90 0.9328 -0.0423 0.0004 0.0109 1.0196 -0.0340 0.0084 0.0103 

180 0.9289 0.0988 -0.0033 0.0078 0.9860 0.0941 -0.0139 0.0074 

 

1000 

60 0.9630 -0.1698 0.0043 0.0096 1.0892 -0.1634 0.0066 0.0086 

90 0.9786 -0.1141 0.0022 0.0076 1.0658 -0.1225 0.0030 0.0071 

180 0.9551 0.0470 -0.0042 0.0054 1.0119 0.0544 -0.0044 0.0052 

 

 

Figure 1. Average JML and Bootstrap estimates of 

ability parameter. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Average JML and bootstrap SEM estimates  

of ability parameter. 

 

The Figure1 shows the variations of the discrimination 

parameter for various sample sizes and item numbers in 

this study.   

 

3.1. Comments on Discrimination Parameter:  

 

As shown in Figure2, when the number of items was 

low (k=60), for all sample sizes, it was seen that the 

average JML estimates of item discrimination 
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parameters were obtained less than the Bootstrap 

method. When the sample size is low (n=150), for all 

item numbers, it was obtained that the average 

discrimination parameter JML estimates were less than 

the Bootstrap method of item discrimination parameters. 

When the sample size increased for all item numbers, 

the average JML estimates differed from the average 

Bootstrap estimates in terms of item discrimination 

parameter. All in all, the Bootstrap method caused an 

increase in the average estimated value of the 

discrimination parameter.  Figure 2 shows the variations 

of the difficulty parameter for various sample sizes and 

item numbers in this study.  The major findings of this 

parameter are as follows: 

 

3.2. Comments on Difficulty Parameter:  

 

The average JML estimates of the item difficulty 

parameters tended to be so close with the average 

Bootstrap estimates of the item difficulty parameters 

when the sample size increased for item number 60, 90, 

and 180.  

 

 

Figure 3. Average JML and Bootstrap estimates of 

discrimination parameter. 

 

When the item number and sample size increased, an 

increase was observed in the average estimate values of 

the item difficulty parameter. The Figure3 shows the 

variations of the ability parameter for various sample 

sizes and item numbers.   

 

 

 

 

3.3. Comments on Ability Parameter:  

 

When the item number and sample size increased, the 

averages JML and Bootstrap estimates of ability 

parameters tended to be so close. Also, when the sample 

size and item number increased, the ability level of the 

examinee is on the decrease. When the sample size was 

and item number was low (n=150 and k=60), the ability 

level tended to increase. However, the average 

Bootstrap estimates were less than the average JML 

estimates in terms of ability parameters. Figure 4 shows 

the variations of the average SEM of the ability 

parameter for various sample sizes and item numbers in 

this study.  

 

3.4. Comments on Standart Error (SEM) of Ability 

Parameter:  

 

When the sample size increased for the low item 

number, the average SEM of JMLs was less than the 

average SEM of the Bootstrap estimates for the ability 

parameter. However, the average SEM of JMLs and the 

Bootstrap estimates were closer when the item number 

and sample sizes increase.  

 

 

Figure 4. Average JML and Bootstrap estimates of 

difficulty parameter. 

 

4. Conclusion 

 

The major focus of this study was to compare the 

performances of Joint Maximum Likelihood and 

Bootstrap methods concerning the ability parameter and 

standard error measurement of ability parameter in two-

parameter logistic model. It is well known that Joint 



 

              Celal Bayar University Journal of Science  
              Volume 16, Issue 3, 2020, p 333-338 

              Doi: 10.18466/cbayarfbe.622868                                                                                               E. Nazman 

 

338 

Maximum Likelihood estimates can be biased in some 

cases. According to the study, the Bootstrap is one of 

the approaches that may reduce the bias of Joint 

Maximum Likelihood estimates. It is seen that bootstrap 

method cause decrease on bias of ability parameter 

estimates in this study.  

 

In general, item number has large impact on the 

accuracy of ability estimation than sample size. 

Therefore, Joint Maximum Likelihood and Bootstrap 

estimates give the same results when item number 

increase. The results show that in general for two-

parameter logistic model, as item number increases, the 

accuracy of ability estimate measured by standard error 

measurement increases. However, it is result that 

bootstrap estimates causes an increase in estimation 

variability which can be shown in standard error 

measurement of ability parameter. It is seen that 

bootstrap method cause decrease on bias of estimated 

ability parameter. 
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