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ABSTRACT: The geodetic networks should be able to detect the possible earth crust movements caused by active tectonic 

movements in Turkey. Geodetic networks should also be able to determine the crust movements accurately as well as 

provide precision and reliability requests. The capacity of geodetic networks to determine the crustal movements can be 

determined by sensitivity analysis. Robustness analysis consists of strengthening internal reliability analysis with strain 

techniques. Robustness is defined as the deformation strength induced by the maximum undetectable errors with the 

internal reliability analysis. The robustness of a geodetic network is determined by the global initial condition, which aims 

at minimizing the total displacement value in the network. In this study, the local initial condition that aims to minimize the 

total displacement value at the uniform polyhedron, which consists of observations from each station points. The 

displacement values obtained according to the local and the global initial conditions are compared with threshold values. 

The results have also been interpreted. 

 

 

Keywords: Sensitivity, Strain, Reliability, Geodetic Networks, Robustness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 International Journal of Engineering and Geosciences (IJEG),   

 Vol; 5, Issue; 1, pp. 042-048, February, 2020, 

 

43 

 

 
1. INTRODUCTION 

 

Geodetic networks established for scientific or 

engineering purposes are expected to be robust enough to 

detect local deformations or tectonic movements of the 

region. For this reason, it is highly important that the 

sensitivity levels and the robustness are integrally queried 

when the quality of the geodetic networks is investigated. 

In geodetic networks, robustness is obtained from a 

function of reliability criteria. Even if the reliability 

criteria is sufficiently within the required limit values, in 

the geodetic networks, an outlier at an observation affects 

coordinate unknowns of each station point and leads to a 

different magnitude of deformation. Also, the station 

points are stretched in a different direction and ratio with 

the effect of an outlier at any observations. Therefore, 

investigation of the reliability of the geodetic networks 

can be considered as research of the external reliability 

vector which corresponds to the observation leading to 

the greatest strain at a station point (Vanicek et al., 1990; 

Berber, 2006; Konak, 2018). The external reliability 

vector depends on the number of datum points in free 

network solutions and distribution in the network. For this 

reason, the external reliability vector which causes the 

greatest strain can be defined as the vector having a 

maximum vector norm. In this case, the magnitude of the 

largest strain components is obtained independently of 

the datum using the strain models representing the surface 

formed by observation links of each station point. The 

estimated strain components for each station point are 

independent of the translation components of the strain 

area. However, while determining the displacement value 

of station points in the network, the effects of the 

translation components must also be eliminated. This 

process is accomplished with a global initial condition 

that aims to have a minimum total displacement 

magnitude. The corrected global displacement 

magnitudes are compared with the threshold value 

estimated from the confidence ellipsoids. 

The robustness analysis has been first defined by 

Vanicek et al. (1990). In the study, an alternative geodetic 

network analysis to standard statistical analysis 

techniques has been developed to investigate the 

sensitivity of geodetic networks against outliers. The 

fundamental part of this alternative analysis, called 

Reliability Analysis, was introduced by Baarda (1976). 

This investigation process which was developed by a 

group of researchers at the University of New Brunswick 

was published as The Geometrical Strength Analysis. The 

differences between the reliability analysis and the 

benefits of the geometrical strength analysis are the 

subject of the study. Then, it was discovered that both of 

the analysis techniques are complementary to each other. 

The combined analysis method which consists of the 

reliability analysis and the geometrical strength analysis 

is called Robustness Analysis.  

Basic deformation parameters are defined as relative 

translation, relative rotation, strain tensor and differential 

rotation components by Kuang (1991). Different strain 

models are explained according to the deformation model 

defined on the surface represented by any geodetic 

network with this study. The different mathematical 

models are proposed according to the homogeneous 

deformation of a whole surface and to the heterogeneous 

deformation explained with the movement of a surface 

relative to different centers of gravity by Kuang. 

The displacement magnitude derived from the effects 

of the outliers on the coordinate unknowns is obtained 

independently according to the translation by Berber 

(2006). Therefore, it is aimed to determine a global initial 

condition for all station points of the network. These 

initial conditions are computed separately for 3D, 2D, and 

1D geodetic networks. Displacement magnitudes are also 

obtained as 3D, 2D, and 1D. 

In this study, local initial conditions aimed at 

minimizing the total displacement and developed for the 

polyhedron represented by each network point are 

proposed.  

Global displacement magnitudes represent all station 

points of the network; however, local displacement 

magnitudes represent a surface formed by observation 

links of each neighbouring station point. The 

displacement vectors are comparable to the minimum 

undetectable displacement value (the sensitivity level) 

due to representing the effects of the undetectable outliers 

on the coordinate unknowns. For this reason, it is 

recommended that the local and the global displacement 

magnitudes computed for each station point should be 

compared with both the threshold values estimated from 

the confidence ellipsoid and the sensitivity levels 

suggested as a different threshold value (Küreç Nehbit, 

2018). 

 

2. STRAIN IN GEODETIC NETWORKS  

 

Any tectonic plate or surface area can be identified as 

a kind of material or as a homogeneous object, despite its 

natural structures. When a force is applied to the surface, 

the resistance of the surface to this force can be 

determined mathematically and defined according to a 

coordinate system. The determination of the deformations 

on a surface in a coordinate system, independent from the 

datum and the geometric interpretation are explained by 

the concept of strain (Chou and Pagano, 1992; Konak, 

2018; Küreç Nehbit, 2018). 

Strain in the geodetic networks is defined as the ratio 

of the change in coordinate axies to the initial coordinate 

system. In other words, the strain is a geodetic/geometric 

interpretation of the deformation on a surface. Strains in 

the geodetic networks can be caused by the internal 

structure of the networks or by external factors. The 

strains arising from the internal structure of the network 

are affected by observation weights and observation plan. 
The strains due to external factors occur because of 

tectonic movements and local deformations (Küreç 

Nehbit, 2018). 

Different mathematical methods are used to compute 

the strain components depending on the homogenous or 

heterogeneous deformation models defined on the surface. 

In the homogeneous deformation models, the 

deformation on a surface is equal in each region of the 

surface. On the other hand, in the heterogeneous 

deformation models, the deformations on a surface are 

different in every region of the surface. In this case, if the 

surface has a homogeneous deformation, the strain is 

described as a homogeneous strain. Also, if the surface 

has a heterogeneous deformation, the strain is identified 

as a heterogeneous strain (Vanicek et al., 1990; Kuang, 

1991; Poyraz, 2009; Küreç Nehbit, 2018). 

In geodetic networks measured at different times, the 
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deformation vectors can be established according to the 

predicted deformation model for the displacement vector 

between two periods. The deformation model is selected 

according to a priori knowledge (Kuang, 1991; Küreç 

Nehbit, 2018). 

At any station points, the displacement vector as a 

strain relationship can be written with the following 

equation;  

 

∆𝑥𝑖 = 𝐸𝑖𝑥𝑖 + 𝑐0 (1) 

 

If the displacement vector is obtained in three 

dimensions, the strain matrix (Ei) is identified as; 

 

𝐸𝑖 =

[
 
 
 
 
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧 ]
 
 
 
 

= [

𝑒𝑥𝑥 𝑒𝑥𝑦 𝑒𝑥𝑧

𝑒𝑦𝑥 𝑒𝑦𝑦 𝑒𝑦𝑧

𝑒𝑧𝑥 𝑒𝑧𝑦 𝑒𝑧𝑧

] (2) 

 

(Vanicek et al., 1990; Vanicek et al., 2001; Konak, 2010; 

Küreç 2010; Küreç Nehbit, 2018). 

 

2.1 Surface Model Approach 

 

Strain components could be obtained from a function 

of coordinate differences or from velocity information. 

The mathematical models representing triangular or 

polygonal surfaces could be defined with Affine or the 

extended Helmert transformation (Konak et al., 2017; 

Küreç Nehbit, 2018; Öcalan, 2018). 

The transformed coordinates according to the 

reference point are obtained as; 

 

∆𝑥𝑖 = 𝑋𝑖 − 𝑋0   (3a) 

∆𝑦𝑖 = 𝑌𝑖 − 𝑌0   (3b) 

∆𝑧𝑖 = 𝑍𝑖 − 𝑍0   (3c) 

 

and using this transformed coordinates’ differences, 

translation equations are written for each network point 

on a surface, where the strain components to be 

computed,  

 

𝑣𝑥𝑘+1
= 𝑥𝑘+1 − 𝑥𝑘 = 𝑡𝑥 +

𝜕𝑢

𝜕𝑥
∆𝑥𝑖 + 

𝜕𝑢

𝜕𝑦
∆𝑦𝑖 +

𝜕𝑢

𝜕𝑧
∆𝑧𝑖   (4a) 

𝑣𝑦𝑘+1
= 𝑦𝑘+1 − 𝑦𝑘 = 𝑡𝑦 +

𝜕𝑣

𝜕𝑥
∆𝑥𝑖 + 

𝜕𝑣

𝜕𝑦
∆𝑦𝑖 +

𝜕𝑣

𝜕𝑧
∆𝑧𝑖   (4b) 

𝑣𝑧𝑘+1
= 𝑧𝑘+1 − 𝑧𝑘 = 𝑡𝑧 +

𝜕𝑤

𝜕𝑥
∆𝑥𝑖 + 

𝜕𝑤

𝜕𝑦
∆𝑦𝑖 +

𝜕𝑤

𝜕𝑧
∆𝑧𝑖   (4b) 

𝑑𝑖 = 𝐻𝑖 . 𝑔 (5) 

 

where (k) is epoch number, (P0) is reference points, (di) is 

displacement vector, (Hi) is the design matrix, (g) is the 

vector of the strain components. 3D affine transformation 

matrix representing homogeneous strain properties is 

defined as; 

 

𝐻𝑖 = [
1 0 0
0 1 0
0 0 1

   
∆𝑥𝑖 ∆𝑦𝑖 ∆𝑧𝑖

0 0 0
0 0 0

   
0 0 0

∆𝑥𝑖 ∆𝑦𝑖 ∆𝑧𝑖

0 0 0
   

0 0 0
0 0 0

∆𝑥𝑖 ∆𝑦𝑖 ∆𝑧𝑖

](6) 

 

and the displacement vector is obtained as; 

 

𝑑𝑖
𝑇 = [𝑣𝑥 𝑣𝑦 𝑣𝑧] (7) 

 

In this way, Affine Model is formulated (Kuang, 1991). 

In this case, strain components with 3D are determined 

with the following equations; 

 

𝑔 = (𝐻𝑇𝐻)−1𝐻𝑇𝑑 (8) 

 

𝑔𝑇 = [𝑡𝑥 𝑡𝑦 𝑡𝑧  𝑒𝑥𝑥 𝑒𝑦𝑥 𝑒𝑧𝑥  𝑒𝑥𝑦 𝑒𝑦𝑦 𝑒𝑧𝑦  𝑒𝑥𝑧 𝑒𝑦𝑧 𝑒𝑧𝑧] (9) 

 

3. ROBUSTNESS ANALYSES FOR THE 

GEODETIC NETWORKS 

 

Robustness is defined as the deformation strength 

caused by the undetectable possible model error with the 

internal reliability analyses. Robustness analyses consist 

of strengthening internal reliability analyses with strain 

techniques. In any observation, the effect of outliers on 

the coordinate unknowns is obtained as; 

 

∆𝑋 = 𝑄𝐴𝑇𝑃∆0𝑖   (10) 

 

𝛿 0𝑖
2 = ∆𝑋𝑇𝐾𝑥𝑥

−1∆𝑋   (11) 

 

and is determined for experimental observation as;  

 

𝛿 0𝑖
2 = 𝑚0

2 𝛿0

𝑒𝑖
𝑇𝑃𝑄𝑣𝑣𝑃𝑒𝑖

   (12) 

 

This squared magnitude called external reliability is a 

criterion independent from the selection of datum points 

in free networks. On the other hand, the effect of the 

outliers, which are interpreted as the displacement vector, 

on the coordinate unknowns are identified with the 

following equations; 

 

∆𝑋𝑇
 = [∆𝑋1; ∆𝑋2; …    … … ; ∆𝑋𝑢]   (13) 

 

∆𝑋 𝑖
= [

∆𝑥𝑖

∆𝑦𝑖

∆𝑧𝑖

] = [

𝑢𝑖

𝑣𝑖

𝑤𝑖

]   (14) 

 

The vector magnitude, which can be computed as much 

as the number of observations for any coordinate 

unknown, is stretched in different magnitude and 

directions depending on the observation weights. In this 

case, this vector magnitude (∆𝐗𝟎𝐢); 

 

∆𝑿𝟎𝒊 = 𝒎𝒂𝒙{|∆𝑿𝒊|}   (15) 

 

causing the greatest strain must be queried. The 

observation that causes the greatest strain is assumed to 

be the observation with the largest vector norm. To 

determine the largest vector norm, either L1 norm, 

Euclidean (L2) norm or Weighted Euclidean norms could 

be used. The most appropriate vector norm that could be 

compared with the external reliability criterion is the 

Euclidean (L2) norm. 

 

‖∆𝑥‖ = √(∆𝑋1)
2 + (∆𝑋2)

2 + ⋯…… .+(∆𝑋𝑢)2   (16) 

 

When determining the largest vector norms; if there 

is any equality between the Euclidean norms of the 

observations, the observation which has the largest 

external reliability value should be chosen (δ0i; Weighted 

Euclidean norms).  

The strain resulting from the effect of undetectable 

errors on the coordinate unknowns is obtained using the 

Affine or the extended Helmert transformation model for 

the surface representing each station point.  
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The strains are independent of the location of the 

surface (initial conditions, X0, Y0, Z0) in a coordinate 

system. In this case, the strain tensor matrix Ei with 

respect to a selected reference point P0 on the surface is 

obtained by the following equation; 

 

[

∆𝑥𝑖

∆𝑦𝑖

∆𝑧𝑖

] = [

𝑒𝑥𝑥 𝑒𝑥𝑦 𝑒𝑥𝑧

𝑒𝑦𝑥 𝑒𝑦𝑦 𝑒𝑦𝑧

𝑒𝑧𝑥 𝑒𝑧𝑦 𝑒𝑧𝑧

] [

𝑋𝑖 − 𝑋0

𝑌𝑖 − 𝑌0

𝑍𝑖 − 𝑍0

]   (17) 

 

3.1 Determination of Deformation Vectors 

 

Robustness analysis procedures are based on 

determining the magnitude of the deformation vector 

leading to strain at any station point and investigating the 

significance level. In this case, an initial condition (P0) 

representing the network is required in order to calculate 

a deformation vector at each point according to equation 

(17). This value is the estimation value that "makes 

minimum squares of corrections brought to the center of 

gravity coordinates of the polyhedron representing each 

point” (Berber, 2006; Küreç Nehbit, 2018). 

To determine the initial conditions/translation 

parameters, the norm of the displacement vector elements 

at all network points is intended to be minimum. The 

objective function is arranged as following;  

 

𝑚𝑖𝑛{∑ ‖∆𝑟‖𝑖  
𝑛
𝑖=1 } = 𝑚𝑖𝑛{∑ (𝑢𝑖

2 + 𝑣𝑖
2 + 𝑤𝑖

2)𝑛
𝑖=1 }   (18) 

 

where (n) is the number of station points in the network. 

The objective function is linearized separately according 

to the initial conditions (X0, Y0, Z0). Linearization of the 

objective function according to (X0);  

 

∑

[
 
 
 
 (−

𝜕𝑢𝑖

𝜕𝑥

𝜕𝑢𝑖

𝜕𝑥
−

𝜕𝑣𝑖

𝜕𝑥

𝜕𝑣𝑖

𝜕𝑥
−

𝜕𝑤𝑖

𝜕𝑥

𝜕𝑤𝑖

𝜕𝑥
)𝑋0 + (−

𝜕𝑢𝑖

𝜕𝑦

𝜕𝑢𝑖

𝜕𝑥
−

𝜕𝑣𝑖

𝜕𝑦

𝜕𝑣𝑖

𝜕𝑥
−

𝜕𝑤𝑖

𝜕𝑦

𝜕𝑤𝑖

𝜕𝑥
) 𝑌0 +

(−
𝜕𝑢𝑖

𝜕𝑧

𝜕𝑢𝑖

𝜕𝑥
−

𝜕𝑣𝑖

𝜕𝑧

𝜕𝑣𝑖

𝜕𝑥
−

𝜕𝑤𝑖

𝜕𝑧

𝜕𝑤𝑖

𝜕𝑥
) 𝑍0 + (

𝜕𝑢𝑖

𝜕𝑥

𝜕𝑢𝑖

𝜕𝑥
+

𝜕𝑣𝑖

𝜕𝑥

𝜕𝑣𝑖

𝜕𝑥
+

𝜕𝑤𝑖

𝜕𝑥

𝜕𝑤𝑖

𝜕𝑥
)𝑋𝑖 +

(
𝜕𝑢𝑖

𝜕𝑦

𝜕𝑢𝑖

𝜕𝑥
+

𝜕𝑣𝑖

𝜕𝑦

𝜕𝑣𝑖

𝜕𝑥
+

𝜕𝑤𝑖

𝜕𝑦

𝜕𝑤𝑖

𝜕𝑥
) 𝑌𝑖 + (

𝜕𝑢𝑖

𝜕𝑧

𝜕𝑢𝑖

𝜕𝑥
+

𝜕𝑣𝑖

𝜕𝑧

𝜕𝑣𝑖

𝜕𝑥
+

𝜕𝑤𝑖

𝜕𝑧

𝜕𝑤𝑖

𝜕𝑥
) 𝑍𝑖 ]

 
 
 
 

 

𝑛
𝑖=1   (19a) 

 
𝜕 ∑ ‖∆𝑟‖𝑖 

𝑛
𝑖=1

𝜕𝑋0
= ∑ [𝑎1𝑋0 + 𝑏1𝑌0 + 𝑐1𝑍0 + 𝑑1] = 0𝑛

𝑖=1  (19b) 

 

linearization of the objective function according to (Y0);  

 

∑

[
 
 
 
 (−

𝜕𝑢𝑖

𝜕𝑦

𝜕𝑢𝑖

𝜕𝑥
−

𝜕𝑣𝑖

𝜕𝑦

𝜕𝑣𝑖

𝜕𝑥
−

𝜕𝑤𝑖

𝜕𝑦

𝜕𝑤𝑖

𝜕𝑥
)𝑋0 + (−

𝜕𝑢𝑖

𝜕𝑦

𝜕𝑢𝑖

𝜕𝑦
−

𝜕𝑣𝑖

𝜕𝑦

𝜕𝑣𝑖

𝜕𝑦
−

𝜕𝑤𝑖

𝜕𝑦

𝜕𝑤𝑖

𝜕𝑦
) 𝑌0 +

(−
𝜕𝑢𝑖

𝜕𝑧

𝜕𝑢𝑖

𝜕𝑦
−

𝜕𝑣𝑖

𝜕𝑧

𝜕𝑣𝑖

𝜕𝑦
−

𝜕𝑤𝑖

𝜕𝑧

𝜕𝑤𝑖

𝜕𝑦
) 𝑍0 + (

𝜕𝑢𝑖

𝜕𝑥

𝜕𝑢𝑖

𝜕𝑦
+

𝜕𝑣𝑖

𝜕𝑥

𝜕𝑣𝑖

𝜕𝑦
+

𝜕𝑤𝑖

𝜕𝑥

𝜕𝑤𝑖

𝜕𝑦
)𝑋𝑖 +

(
𝜕𝑢𝑖

𝜕𝑦

𝜕𝑢𝑖

𝜕𝑦
+

𝜕𝑣𝑖

𝜕𝑦

𝜕𝑣𝑖

𝜕𝑦
+

𝜕𝑤𝑖

𝜕𝑦

𝜕𝑤𝑖

𝜕𝑦
) 𝑌𝑖 + (

𝜕𝑢𝑖

𝜕𝑧

𝜕𝑢𝑖

𝜕𝑦
+

𝜕𝑣𝑖

𝜕𝑧

𝜕𝑣𝑖

𝜕𝑦
+

𝜕𝑤𝑖

𝜕𝑧

𝜕𝑤𝑖

𝜕𝑦
) 𝑍𝑖 ]

 
 
 
 

 

𝑛
𝑖=1   (20a) 

 
𝜕 ∑ ‖∆𝑟‖𝑖 

𝑛
𝑖=1

𝜕𝑌0
= ∑ [𝑎2𝑋0 + 𝑏2𝑌0 + 𝑐2𝑍0 + 𝑑2] = 0𝑛

𝑖=1  (20b) 

 

and linearization of the objective function according to 

(Z0);  

 

∑

[
 
 
 
 (−

𝜕𝑢𝑖

𝜕𝑧

𝜕𝑢𝑖

𝜕𝑥
−

𝜕𝑣𝑖

𝜕𝑧

𝜕𝑣𝑖

𝜕𝑥
−

𝜕𝑤𝑖

𝜕𝑧

𝜕𝑤𝑖

𝜕𝑥
)𝑋0 + (−

𝜕𝑢𝑖

𝜕𝑧

𝜕𝑢𝑖

𝜕𝑦
−

𝜕𝑣𝑖

𝜕𝑧

𝜕𝑣𝑖

𝜕𝑦
−

𝜕𝑤𝑖

𝜕𝑧

𝜕𝑤𝑖

𝜕𝑦
) 𝑌0 +

(−
𝜕𝑢𝑖

𝜕𝑧

𝜕𝑢𝑖

𝜕𝑧
−

𝜕𝑣𝑖

𝜕𝑧

𝜕𝑣𝑖

𝜕𝑧
−

𝜕𝑤𝑖

𝜕𝑧

𝜕𝑤𝑖

𝜕𝑧
) 𝑍0 + (

𝜕𝑢𝑖

𝜕𝑥

𝜕𝑢𝑖

𝜕𝑧
+

𝜕𝑣𝑖

𝜕𝑥

𝜕𝑣𝑖

𝜕𝑧
+

𝜕𝑤𝑖

𝜕𝑥

𝜕𝑤𝑖

𝜕𝑧
)𝑋𝑖 +

(
𝜕𝑢𝑖

𝜕𝑦

𝜕𝑢𝑖

𝜕𝑧
+

𝜕𝑣𝑖

𝜕𝑦

𝜕𝑣𝑖

𝜕𝑧
+

𝜕𝑤𝑖

𝜕𝑦

𝜕𝑤𝑖

𝜕𝑧
) 𝑌𝑖 + (

𝜕𝑢𝑖

𝜕𝑧

𝜕𝑢𝑖

𝜕𝑧
+

𝜕𝑣𝑖

𝜕𝑧

𝜕𝑣𝑖

𝜕𝑧
+

𝜕𝑤𝑖

𝜕𝑧

𝜕𝑤𝑖

𝜕𝑧
) 𝑍𝑖 ]

 
 
 
 

 

𝑛
𝑖=1   (21a) 

 
𝜕 ∑ ‖∆𝑟‖𝑖 

𝑛
𝑖=1

𝜕𝑍0
= ∑ [𝑎3𝑋0 + 𝑏3𝑌0 + 𝑐3𝑍0 + 𝑑3] = 0𝑛

𝑖=1  (21b) 

 

The objective function given by equation (18) is 

arranged with the following equation; 

 
∑ (∆𝒓𝑻∆𝒓)𝒊 =𝒏

𝒊=𝟏 ∑ (𝑿𝒊 − 𝑿𝟎)
𝑻𝑬𝒊

𝑻𝒏
𝒊=𝟏 𝑬𝒊(𝑿𝒊 − 𝑿𝟎) ⇒ 𝒎𝒊𝒏   

(22) 

The objective function is rewritten as;  

 

∑ (∆𝑟𝑇∆𝑟)𝑖
𝑛
𝑖=1 = ∑ (∆𝑥)𝑇𝐸𝑖

𝑇𝐸𝑖(∆𝑥) ⇒ 𝑚𝑖𝑛𝑛
𝑖=1    (23) 

 

Also, it is linearized according to the initial conditions. In 

this case, normal equations are obtained by linearizing;  

 

𝒅{∑ (∆𝒓𝑻∆𝒓)𝒊
𝒏
𝒊=𝟏 } = 𝟎   (24) 

 

−∑ 𝑬𝒊
𝑻𝑬𝒊𝑿𝟎 +𝒏

𝒊=𝟏 ∑ 𝑬𝒊
𝑻𝑬𝒊𝑿𝒊

𝒏
𝒊=𝟏 = 𝟎      (25) 

 

The initial conditions 𝑿𝟎
𝑻 = [𝑿𝟎, 𝒀𝟎, 𝒁𝟎 ]  are computed 

with the following equation;  

 

𝑿𝟎 = [∑ 𝑬𝒊
𝑻𝑬𝒊

𝒏
𝒊=𝟏 ]

−𝟏
∑ 𝑬𝒊

𝑻𝑬𝒊𝑿𝒊
𝒏
𝒊=𝟏       (26) 

 

(Berber, 2006; Konak, 2018; Küreç Nehbit, 2018). The 

solution vector in Eq. (26) could be shown as follows; 

 

[

𝑋0

𝑌0

𝑍0

] = [

[𝑎1] [𝑏1] [𝑐1]

[𝑎2] [𝑏2] [𝑐2]

[𝑎3] [𝑏3] [𝑐3]
]

−1

[

[𝑑1]

[𝑑2]

[𝑑3]
]   (27) 

 
If the obtained initial conditions are written in the 

equation (17), the corrected global displacement vector is 

obtained. 

 

Translation value of the global displacement vector 

(corrected global displacement vector) relative to the 

gravity center is obtained as;  

 

𝒅𝑮𝒊 = √𝒖𝑮𝒊
𝟐 + 𝒗𝑮𝒊

𝟐 + 𝒘𝑮𝒊
𝟐        (28) 

 

 The corrected global displacement vector could also 

be estimated from the surface represented by each station 

point instead of the whole network. In this context, local 

initial conditions can be estimated which aim at 

minimizing the total displacement for the polyhedron 

represented by each network station point, with a new 

approach developed. The strains computed for each 

station point represent the surface which consists of 

observations of each station point. In this case, corrected 

local initial conditions are determined for each surface 

area with the following equations;  

 

−𝒎(𝑬𝑻𝑬)𝒊𝑿𝑳𝟎 + 𝒎(𝑬𝑻𝑬)𝒊𝑿𝒊 = 𝟎  (29) 
 

𝑿𝑳𝟎 = (𝑬𝑻𝑬) 𝒊
−𝟏𝑬 𝒊

𝑻𝑬𝒊 ∑ 𝑿𝒊
𝒎
𝒊=𝟏   (30) 

 

where (m) is station points number on surface. Using the 

computed local initial conditions; 

 

[
𝒖
𝒗
𝒘

]

𝑳𝒊

= 𝑬𝒊 [

𝑿 − 𝑿𝑳𝟎

𝒀 − 𝒀𝑳𝟎

𝒁 − 𝒁𝑳𝟎

]

𝒊

  (31) 

 

the local displacement vector magnitude ( 𝑑𝐿𝑖 ) is 

computed as; 

 

𝑑𝐿𝑖 = √𝑢𝐿𝑖
2 + 𝑣𝐿𝑖

2 + 𝑤𝐿𝑖
2   (32) 

 
The displacement magnitudes obtained as the local and 
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the global are compared with the threshold value (𝛿𝑖 ) 

estimated from the confidence ellipsoid; 

 

𝜹𝒊 = 𝒎𝟎√𝟑. 𝑭𝒉,𝒇,𝟏−𝜶. 𝒊𝒛(𝑸𝒙𝒙)  (33) 

 

In the case of 𝑑𝐺𝑖 > 𝛿𝑖  and of 𝑑𝐿𝑖 > 𝛿𝑖, it can be said that 

the network station point discussed is not robust (not 

sufficiently reliable) in respect of the global and the local 

(Berber, 2006; Küreç Nehbit, 2018). 

 It is expected that a network is insensitive to possible 

outliers and the disruptive effect of the outliers (strains, 

deformation vectors) on the coordinate unknowns are as 

low as possible. On the other hand, the networks should 

be able to detect the negative influence of these effects on 

the displacement vector sufficiently. In other words, the 

more robust a network is, the more sensitive it is to 

outliers in observations or changes over time. 

 Therefore, the sensitivity and robustness distributions 

should be evaluated and interpreted together. Because of 

the displacement vectors obtained at any station point in 

the network represent the external reliability values, these 

are also comparable with the sensitivity values. 

 In this case, the inequation of non-centrality 

distribution is recommended as a threshold value instead 

of the equation (34) for the displacement vectors at each 

network point;  

 
𝑑𝑇𝑄𝑑𝑑

−1𝑑

𝜎2
 
≤ 𝛿0

2  (34) 

 

where d is the displacement vector, 𝑄𝑑𝑑  is cofactor 

matrix of the displacement vector, 𝛿0  is the threshold 

value of the non-centrality parameter, 𝜎2  is a priori 

variance of the average error of the unit observation. In 

equation (34), the quadratic value of the displacement 

vector (𝑑𝑇𝑄𝑑𝑑
−1𝑑)  is rearranged according to the 

eigenvalue and eigenvector separation and orthogonality 

conditions, and the sensitivity value of each station point 

is obtained;  

 

‖𝑑‖𝑚𝑖𝑛 =
𝛿0𝜎

√𝜆𝑚𝑎𝑥 

  (35) 

 

(Hsu and Hsiao, 2002; Küreç, 2010; Küreç and Konak, 

2011 and 2014; Küreç Nehbit, 2018; Kirici Yildirim and 

Sisman, 2019). 

 

4. NUMERICAL APPLICATION 

 

 In this study, the data of IZDOGAP Densification 

Global Positioning System (GPS) Network established 

for the Monitoring of IZGAZ Natural Gas Infrastructure 

with Geodetic Networks and Information System Project 

(IZDOGAP) is used. Observation plan of the densificated 

IZDOGAP GPS network has been obtained using the 

second order weight optimization (Figure 1). The 

network measured in 2009 and 2010 has been evaluated 

with obtained GPS observations respectively. Also, the 

robustness level of the IZDOGAP network has been 

queried. 

Robustness investigations are performed using 

displacement vectors resulting from the effect of the 

outliers on the coordinate unknowns. In this investigation 

process, the displacement magnitude can be obtained as 

much as the number of observations at each station point. 

Determining the deformation resistance or strain caused 

by the observation having the greatest effect on the 

coordinate unknowns is very important in terms of 

robustness analysis. Therefore, the observation with the 

greatest effect on coordinate unknowns should be 

estimated independently from the datum. Various vector 

norms have been tested for the estimation processes and 

it has been decided to use Euclidean norm (L2 norm) 

which gives an unbiased result. Strain components are 

computed for Densificated IZDOGAP GPS Network by 

using displacement vector having the greatest effect on 

coordinate unknowns determined according to Euclidean 

norm. 

Strain components are obtained in 3D using the 

adjusted Affine transformation process for the surface 

representing each station points. The deformation vectors 

resulting from the strain are estimated for each station 

point with the obtained strain information. Initial 

conditions are required for deformation vectors to be 

estimated as independent of translation and consistent. In 

this study, initial conditions are obtained by two different 

approaches: local and global. The corrected displacement 

vectors for each station point are estimated separately 

using the local and global initial conditions. In other 

words, the robustness level of each station point is 

determined both locally and globally. The deformation 

values obtained have been compared with the threshold 

value computed using equation (33) and the significance 

of the deformation vector is tested. 

The displacement vectors obtained for any station 

point represent the effect of undetectable errors on 

coordinate unknowns. Therefore, the displacement vector 

can be interpreted as a value comparable to the sensitivity 

level (dmin). For this reason, computed local and global 

deformation vectors are compared with the sensitivity 

levels of each station point (dmin) obtained with equation 

(35) (Table 1). 

 

5. CONCLUSION 

 

 When the corrected displacement magnitudes 

computed using the 2009 and 2010 epoch observations of 

densified IZDOGAP GPS Network for all network points 

are examined, it is seen that; 

 The magnitude of the displacement vector estimated 

according to the local approach is generally smaller 

than estimated values according to the global 

approach. 

 On the other hand, in epoch 2009.370, local 

displacement vectors at station points 103 and 38 are 

higher than global displacement vectors. If the 

locations of these station points are examined in 

Figure 1, it is observed that they are located in 

external zone points. In the 2010.496 epoch, the 

magnitudes of local deformation vectors at station 

points 73 and 42 are higher than global deformation 

vectors. 

 In the epochs, 2009.370 and 2010.496, the local and 

global displacement vectors obtained for each 

station point do not exceed threshold value obtained 

from the confidence ellipse components. 

 As a result, the IZDOGAP GPS Network is robust at 

all points and the sensitivity values are reliable. 
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Figure 1. The densified Kocaeli IZDOGAP GPS network 

 

 

Table 1. A Priori Robustness Synthesis (cm) 

 

 Epoch 2009.370  Epoch 2010.496 

P. 

Num. 

Deformation Vec. Thresholds Deformation Vec. Thresholds 

Local Global 𝜹𝒊 
dmin 

(m0) 

Local Global 𝜹𝒊 dmin 

(m0) 

3 0.0006 0.0133 3.12 1.15 0.0028 0.0216 5.55 1.97 

10 0.0005 0.0187 2.98 1.07 0.0018 0.0380 5.69 2.06 

14 0.0015 0.1059 4.17 1.57 0.0052 0.2707 8.34 2.61 

15 0.0001 0.0070 4.12 1.54 0.0014 0.0355 7.66 2.61 

16 0.0002 0.0122 4.04 1.47 0.0003 0.0238 7.22 2.47 

19 0.0001 0.0103 3.69 1.37 0.0003 0.0185 7.03 2.42 

20 0.0001 0.0255 3.49 1.29 0.0001 0.0386 6.58 2.26 

21 0.0004 0.0131 3.32 1.20 0.0015 0.0134 6.48 2.24 

30 1.0206 0.0530 3.61 1.18 0.0122 0.0485 7.67 2.73 

33 0.0192 0.2043 3.23 1.18 0.0041 0.1323 7.96 2.71 

38 1.5879 0.0939 3.63 1.36 0.0097 0.0592 13.94 4.16 

56 0.0362 0.3403 4.16 1.05 0.0089 0.1552 8.48 2.90 

64 0.0013 0.0818 2.69 0.95 0.0330 0.2971 4.96 1.67 

73 0.0021 0.0838 2.34 0.80 7.6174 0.8845 13.09 3.55 

74 0.0025 0.0343 2.36 0.79 2.0290 2.4175 6.66 2.24 

79 0.0023 0.0411 3.95 1.39 0.0081 0.0454 8.51 3.29 

98 0.0048 0.0130 3.37 1.19 0.0020 0.0354 6.30 2.33 

99 0.0002 0.0238 2.97 1.04 0.0011 0.0577 6.12 2.21 

101 0.0010 0.0100 3.18 1.10 0.0034 0.0174 6.30 2.34 

103 5.4968 0.2282 6.49 2.31 0.0143 0.0452 14.46 4.44 
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External reliability vectors consist of a plurality of 

sub-vector components close to and equal to zero 

according to the observation plan of the network. On the 

other hand, a global displacement vector is estimated for 

the robustness analysis. As a result, the magnitude of the 

local and global displacement vector changes according 

to the selection of initial conditions. In other words, the 

local displacement vector at a point represents a common 

surface consisting of neighboring station points. 

Therefore, it is very sensitive to the weights of the 

observations and the location in the observation plan. In 

this case, the local displacement vector recommended as 

a local comparison criterion can be used as a local query 

detector. 

 When the local displacement vectors have been 

examined in the 2009.370 epoch, it is observed that 

displacement vector values (dmin) at station points 103 

and 38 exceed the limit value. In the 2009.370 epoch, 

the external reliability value of the 103-38 base 

observation disrupts the reliability distribution. 

However, in both 2009.370 and 2010.496 epochs, 

sensitivity values of stations 103 and 38 are obtained 

at a high level (Figure 1, Table 1). 

 In the 2010.496 epoch, at station points of 74 and 201 

(23), global displacement vectors have exceeded the 

(dmin) threshold value. At station points 73 and 42, 

only local displacement vectors have exceeded the 

(dmin) threshold value. At these points, the sensitivity 

values are also relatively weak (Table 1). 

 When the findings have been analyzed, it is observed 

that the global displacement magnitudes have more 

optimistic results. On the other hand, the local 

displacement vector at a point represents the common 

surface formed by neighboring points. Therefore, it is 

very sensitive to the observation weights and its locations 

in the network. As a result of this feature, the local 

displacement vectors can detect the possible outliers on 

the surface. 

As a result; in this study, the displacement vector used 

as a local comparison criterion is suggested to be used as 

a local query detector. 
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