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Abstract

In this study, fractional Burger’s Equation, which has Dirichlet Boundary Conditions, is solved with
the Finite Difference Method. Fractional Burger Equation is found by S. Momani, which is made with
changing time and space terms with fractional terms. This equation is solved with the finite difference
method and analysis of this scheme is discussed with examples. Stability and Uniqueness are
discussed with using matrix method. We compare analytical and numerical solutions with error
analysis of them.
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1. Introduction

Burgers’ equation [1] is a famous non-linear equation for physics problems. The problem has
Dirichlet boundary conditions. With changing the order of differential terms of the equation
with fractional order, we can achieve the fractional Burger’s Equation [12] which was
formulated by S. Momani. The following equation is fractional Burger’s Equation:

a B
8Z+u8—u:va—;l as<x<b ,0<t<T,
ot ox  Ox (1)

O<a<l,l<p<2

The problem has the following conditions:
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boundary conditions :

u(a,t)= f,(®), u(b,t)= f,(2)

initial condition :

u(x,0) = f(x)

(1)

where v > 0 is the viscosity constant, f; (x), f,(x) and f(x) are the functions of x. There
are many studies about the solving of Burger’s and Fractional Burger’s equations. Some finite
difference approximations are found in the literature[16-17]. For example Zhang and Wang,
Kutluay and Bahadir and Ozdes, Pandey and Verma studied on finite difference method for
burger’s equation [3, 5 and 6], Vardglu and LiamFinn studied with finite elements method for
solve Burger’s equation [4]. Momani and Kurulay have studies about time and space
fractional solution of Burger’s equations [14-15]. Asaithambi, Hon, Mao, Asaithambi and
Mena studied about Burger’s equations with using different methods [9, 10 and 11].

2. Numerical method
Fractional Calculus:
We can define the fractional calculus as the expand of differential and integral terms with
non-integer orders. Caputo and Riemann-Liouville fractional derivatives are used in the
approximation of the solving of partial differential equations [2,19].

Gamma Function:

The gamma function is the expand of factorial to real numbers. The following expression is
general form of gamma function;

I'(z)= Ie_”uz"ldu , ZER 3)
0

Riemann-Liouville fractional derivative:

We know the following expression as Cauchy integral

X

! dt, j dzz...t!] Ft)dt, = ﬁj (x—1)" £(1)dt 4)

If we change the n term with g, the q can be a real number; we can achieve the Riemann-
Liouville fractional integral,

d'f 1 f
dix—a)" T'(-q)y

(x—0) " f(dt  ;9<0 (5)

With some changings in the Equation (5) we can achieve the Riemann-Liouville fractional
derivative:
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a'f _d’ [ P
d(x—a) dx' [F(n—q);[ ey T ©)

In this expressionn > g and ¢ > 0.

Caputo Fractional derivative:

The other approach of fractional calculus is caputo’s approach. If we want to use physical

conditions effectively we can use Caputo fractional derivative. The physical conditions are
same in integer orders between Caputo and normal derivative. The following equation is a
general form of Caputo fractional derivative:

L pr(n)
cpp L[S 7s

P T e e 7

Finite Difference Method:

In our approximation we use the following forms of Caputo and Riemann-Liouville fractional
derivatives:

Caputo fractional derivative:

0%u(x, t) -
ot” F(l— -[ ="

Riemann-Liouville derivative:

0 u(x,1) B 1 0’ J” u(é,t)
of  T(Q2=p)oxt o (x—&)F

8u(x ou(x,n) ,

(8)

dg

To find the finite difference scheme of fractional burgers equations, we choose grid size to Ax

. . . . t
for the space of this problem and we can find, then we can find integration time as 7=—
n

0<t, <T for this problem, (k =0,1,.....,n ) and x, =ih for this problem(i = 0,1,.....,m) . In the
scheme we write U for U(x,,t,). For writing the scheme we change time derivative term to
time fractional derivative term;

a, k+1 k Jj+l j Dz
614;1 Zul J‘Jl) dy 4 o(7)
ot r(l a) Jj=0 e (tk+1 _7/) 9
i ulk+1 J uik*j r( '+1)1_a ~ 'l_a]+0(r) ( )
r(z o= / '

Then with using Riemann-Liouville fractional derivative, we can find the space fractional
term of these problem as:

aﬁ k+1 i+1 ol
/; hﬂ Zg, i (j—l)h+0(z-+h) (10)

ox

73



In (10) g is a special function of # and j, writing in (12). Finally with applying (9) and (10)
to fractional Burger’s equation [7-8], we can write the following finite difference scheme;

ko k+l=j k=) uk i+l

> f[(j+1>“—f*“]=—uf’m * (a2 (an

Jj=

F(Z a)

Take some terms as special terms for convenience[18].

O_j — (]-+1)1—a _ sl-a
_TQ-a)A)”
" Ax
(A TC-a) (2
= a
’ (AX)ﬂ
B (B-D-(f-2)...... (L-j+)D
gjz(—l)"ﬂ (L-D-(B .') B—J ’ g, =1 g =-p
J!
If we write this changing, we can achieve the following scheme;
X k+1-j k—j ko k k < k+1
Zo-j (u; Y —u; ) =—p,(u; @ —u )+ r}zg_j”i:/‘ﬂ . (13)
=0 =0
For k = 0 we can get this expression;
i+1
w1+ p (] (] —u ) =1Y g . (14)
=0
i+1
uzl _u;) +p (ulo (u? _uioq ) = };uz’lﬂ +rz‘u}g1 +7?g2”l'171 + r}zgiuil—jﬂ' (15)
j=3
i+1
—rity, +(=rg ! = rgyu, =1, gy =—p, (] (] —u)) +u;. (16)
j=3
Then for k > 0, we can get this expression;
o (" —u] )+Za,u"“ o g —uf) = g+ ngou
Jj=1
i+1 (17)
+ 7’[ Z gjuikjjlﬂ'
J=3

If we take p.(u (u' —u!,) and do some regulations,
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k+1 k+1

k+1
—TilUiy +(1_rigl)ui y

i+1
k+1
_”i”

Finally for k > 0 our difference scheme is;

i+1
k+1

K+l k+1 k+l
—ru (U =nguf™ = rgu =5 gl
Jj=3

k=1
k+1 k+1 k+1 _ k k 0
i T (1 — 18 )”i —h&U . — riz giUi_jq U —Oo, tou; + z (_O-
j=3

i+1 k
_ e+l ok kil k=jy
rgul —r Y gutl =ul =Y o, u”)-P
J=3 =

k k
A k+j-1 k=j _
=u, Z ou; + Z ou; P
j=1 j=1

k-1 k
_ ok k+j k=j _
=u, o+ E o U P.
J=0 j=1

k=j
atou =P

j=1
=ou +(2-2")uf

k-1
2 u TN = (+2) =)~ P

J=1

=ou’ +(2-2"")u!

k-1

+ Zuikij(z(j‘i‘l)lfa _(j+2)1fa _jlfa)

J=1

= (] (uf —ufy).

If we want to write this difference scheme as a algebraic equation system;

1 0,0 0 0
AU =-pu; (u; —u,_)+y,

AU =d U +d,U" +...+d U +oU° - p,(u) (u —u)',), k>0

U =f

In this system,;

d,=2j" =+ = (=)

o, = ()=

_TQ-a)A)”
P Ax

A is a matrix which has the coefficient of unknown terms for our problem,;

18

In this matrix;

j<i-1
j=i-1

j=i
j=i+1
Jj>i+l
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(19)

(20)

21

(22)

(23)



. v
T (Ax)?

. (24)
BB (B=2)..(B—j+])
gi:(_l)j i > g0=1, glz_ﬂ
] !
An example for Aij matrix for i and j from 1 to 10;
l-rg, -r 0 0 0 0 0 0 0 0
-rg, l-rg -7 0 0 0 0 0 0 0
-rgy g, l-ng -, 0 0 0 0 0 0
~rng, g g, l-ng -7 0 0 0 0 0
~rgs  ~hg, ~1g -ng, l-rg -7 0 0 0 0
Ajj — 5 4 3 2 1 (25)
g g L& g 1&g l-ng -, 0 0 0
-1g, g g & g —ng l-ng -7, 0 0
gy g, g g 1&g g —ng l-rg -7, 0
—1&, —t&s —t&; —t:&s —t&s —t&, —tg; -rng, l-ng =
gy —h& h& & h& & & hg hg& 1-ng

3. Stability and uniqueness

Theorem 3.1 The implicit system defined by the linear difference equations (19) and (20) has
a unique solution and is unconditionally stable forall0 < a <1, 1 < f < 2.

Proof. By applying the Gerschgorin theorem we decided that each eigenvalue of matrix A had

a magnitude greater than 1.
DI ;5 4
J!

Note this g, = =—p, g, =(- 1)/ ..., then for 1< g <2,

and j>2,we have g; >0. Also, with well-known results that for any » > 0,

(1+z) :Z(yjzm , |z|£1, (26)
m=0 m
Substituting z =—1 into (26) yields Zg‘/. =0, and then —g, > Z g; sle. Zg/ <0 for
Jj=0 j=0,j#1
any I = 1,2,3,.....m. According to the Gerschgorin theorem, the eigenvalues of the matrix

A are in the disks centered at 4, =1-r,g, =1+ with radius

i+l i—2

R = Z\A,,I— D> 14, I—ZI —rg | +l-rg, |+ l=r ), g, <-rg <rp.

Jj=1,j#1 Jj=1,j#1 j=0,j#
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Hence, each eigenvalue A of the matrix A4 has a real part which is greater than one, and

therefore has a magnitude greater than one. Therefore, the spectral radius of 47" is less than
one. This proves that the scheme has a unique solution.

To prove unconditional stability of (19) and (20) let u/, i (i=1,2,3,..,m—1k=1,2,..n—1) be
the solution of (19) and (20) with initial value ul.O ,ﬁ? respectively, the computation of

qf(i=1,2,...,m—1,k=1,2,...,n—1) is exact. Then erroré‘l-k Iﬁ,-k —uf satisfies if k=0,

i+1

1 1 1 | 0
—r&,,t(1-rg)e —(rg,)e, — ’:‘Zgigifjﬂ =&
=3
if k>0,

i+l k-1

k+1 k+1 k+1 k+1 k k—j 0

—rey t(-rg)e —(ng,e — ’?zgigif_m =d¢; + zd_/+1gi + 0 -
= =

Equivalent to the following matrix form:
AE' =E°, AE™"' =d E' +d,E" +..+d E' +0,E’, k>0
k ko _k k NT . : .
where E" =(g,&,..,6, ;). Let us wuse mathematical induction to prove

IE LS E” ..,k =1,2,... In fact, if k=1, suppose | & |18, | & |, note that 7,p, >0 and

for any integer number N ,Z g, <0, we have
j=0

[+1
IE" L=l & <& |+p,(g |- & I)—rz[zg‘,jlg}l
j=0

[+1
<—ii g |+(1-ng) | & | -(rngy) s, I—nﬁznglg}Ml

J=3

1+1
< _rlgll + (1_’”1&)811 _(ng2)811—1 - [Z gj]‘gll—jﬂ =l 810 <] E° .
j=3
E'| < E° if k<s,|E | <E -
Therefore ||E | S| E" |, - Suppose if <s||E° 9| £ || hold, then whenk=s+1 , let
3 + =max,_._ |€;+] |, notice that z g;<0,i=1,2,..,m similar to previous estimate, we

=0
have
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I+1
IES e [<—n el [+0-ng) & |-(ng) | &7 [-n ) g, 1€,
=3

[+1
s+1 s+1 s+1 s+1

A A A ‘ s+
S-ngy +(-ng)e —(ngy)er _I/}zg_jgl—jﬂ | <TAE™ L,
=3
s—1 )
<d|&|+Yd, &7 |+ | [ s+ =5
=1

E |, +[ s+ =s" [ E° ||,

Jj+l H

s—1
<d, || E |, +).d
Jj=1

s—1
s(dl +2 d +[ (s +D)" —s“"]j-u E' LI E|.

J=1

Hence, || E .4 E’ ||, so the implicit scheme defined by the linear difference equations (19)

and (20) is unconditionally stable and Theorem 3.1 completes the proof.

k k k k ko k k
Denote € =u(x,,t")—u; and € =(¢,6,...,€ )T , we have Theorem 3.2.

> m-1

Theorem 2. Suppose that #(x,2,) is the exact solution of (1) at grid point (X,Z), u is the
difference solution of (19), (20), then there exists positive constant M, such that

e L. < o\ M (e =2%h), k=1,2,...,n (27)
where || " || =max,_._, ,|e' |, Mis a constant independent of /2 and 7 .

Proof. Since u' =u(x,,t*)—e’, notice that ¢° =0 , we have from (19) and (20), if k=0,

i+1

1 1 1 1 _ pl
1€, T (1 —r& )ei - (”,-gz)e,-_l - rizgiei—jﬂ - Ri
j=3
ifk>0,
i+1

k-1
k+1 k+1 k+1 k+1 k k—j k+1
—re, +(1-ng)e —(ng,)e ) — rzzgiegm =de; + Zdj+1ei +R,
J=3

J=1

where ||R./”1||OOSM(T”‘Z—Tah), i=12,..m-1,k=12,.,n—1, M is positive constant
independent of 4 and 7 . Let’s use mathematical induction to prove the theorem. If i=1,

Suppose || ell ||oo:maX1SiSm—l |el1 |9 we have
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/+1

le' L=l [<—7 lel, [+(-ng) e | -(rngy) e, |-nY g, le .|
=3

[+1

<l +(1-rg)el ~(g.)el, ~1 > g el | R < M2 +7°h) = 0,'M(2" +17h).
=3

Suppose that if k<s, || <o \M(("*+7°h) hold, then whenk=s+1 , Ilet

i
s+1 s+1 . —1 -1 . .
|¢" Fmax,|€" |, notice that o <o;', j=0,12,..,k and > g;<0,i=12...m

J=0

Therefore

s—1 s—1
le LA e™ <d e N, +2 d, e |l +M @™ +2°h) =) d,. | ||, +M (" +7%h)
j=l J=0

<(do\+d,o, +..+d o, + )M +7%h)

i=0

s—1
<o, (Z d., +o, JM (" +7°h) =0, M(z"* +7°h).

Therefore Theorem 3.2 is proved.

4. Numerical examples
Example 4.1

a B
A i 0<x<l,0<t<0,1,
ot Ox ox”
O<a<l,1<fp<2
boundary condutions:

(28)

u(0,6)=0, u(l,t)=0
initial condution:

2vr sin(7rx)

, a>1
a+cos(mx)

u(x,0)=
We can solve numerically this problem in following conditions,
v =10.001, a=1.1, a=095 p=1.95

Then the analytical solution of Example 4.1 is:

2vrr exp(— vt) sin(7rx) (29)
a +exp(—z°vt)cos(rx)

u(x,t)=
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m) Analytical Solution

Numerical Solution

Finite difference solution for Example 4.1 for At =0.01, Ax=0.1, & =0.95, #=1.95

X Numerical Solution Analytical Solution Error
0 0.0 0.0 0.0
0.1 0.946184518e-3 0.94613841e-3 0.461089¢-7
0.2 0.1924465410e-2 0.1933489085e-2 0.9023675e-5
0.3 0.2991456650e-2 0.3009822748e-2 0.18366098e-4
0.4 0.4209350415e-2 0.4237749682¢-2 0.28399267e-4
0.5 0.5666712399¢-2 0.5706351919¢-2 0.3963952¢-4
0.6 0.7491462912e-2 0.7544371558e-2 0.52908646¢-4
0.7 0.9832247233¢-2 0.99029697e-1 0.70722543e-4
0.8 0.1253842757e-1 0.1264482419¢-1 0.10639662¢-3
0.9 0.1278084698e-1 0.1294151322e-1 0.16066624e-3
1 0.0 0.0 0.0

Example 4.2

0“u ou o’u
ty—=v——r0H

ot ox ox”
O<a<l,1<f<2

boundary condutions :
u(0,1)=0, u(,1)=0
initial condution:
u(x,0)=4x(1-x)

0<x<1, 0<¢<0,01,

We can solve numerically this problem in following conditions,
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v=0.001,

Then the analytical solution of Example 4.2 is:

u(x,t)=

2vr Y kA, exp(=k’z*vt)sin(krx)

k=1

k=1

0 > 1
A+ 2vm ) kA exp(-k*z*vi)cos(knx) | 4 = [exp{=2*(3v)" (3-2x)} cos(kzx)dx, k=1

0

a=0.95,

B =1.95

1

4y = [exp{=x*(3v)" (3-2x)}dx

(1)

m) Analytical Solution

Numerical Solution

Finite difference solution for Example 4.2 for A1 = 0.001, Ax=0.1, « =0.95, Z=1.95

X Numerical Solution Analytical Solution Error

0 0.0 0.0 0.0

0.1 0.3473711502 0.3486899313 0.13187811e-2
0.2 0.6220256101 0.6247583412 0.27327311e-2
0.3 0.8226195405 0.8264408177 0.38212772e-2
0.4 0.9474252601 0.9519845695 0.45593094e-2
0.5 0.9946485647 0.9995746590 0.49260943e-2
0.6 0.9624307453 0.9673304143 0.48996690e-2
0.7 0.8488455983 0.8533022617 0.44566634e-2
0.8 0.6518961906 0.6554683894 0.35721988e-2
0.9 0.3695116587 0.3717305024 0.22188437e-2
1 0.0 0.0 0.0
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