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Abstract: The k-PHD method, a generalization of the well-known Pisarenko harmonic decomposition 

(PHD) method, is considered for frequency estimation of a single real random-phased sinusoid in noise. 

With the use of a simple variance analysis technique, an exact expression of the k-PHD frequency 

variance is derived. An approximate k-PHD variance formula for sufficiently large data lengths and 

signal-to-noise ratios is also given. Computer simulations are included to validate the theoretical 

development. 
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k-PHD Tek-Ton Frekans Kestiricisinin Bir Kesin Değişinti İfadesi: Rasgele Faz Durumu 

 

Öz: İyi bilinen Pisarenko harmonik ayrışım (PHD) metodunun bir genelleştirilmesi olan k-PHD metodu 

gürültü içindeki bir reel rasgele fazlı sinüsün frekans kestirimi için ele alınmıştır. Basit bir değişinti analiz 

tekniği kullanılarak, k-PHD frekans değişintisinin bir kesin ifadesi çıkarılmıştır. Yeteri kadar geniş veri 

uzunlukları ve yüksek işaret gürültü oranları için bir yaklaşık k-PHD değişinti formülü de verilmektedir. 

Kuramsal sonuçları teyit eden bilgisayar benzetimleri dâhil edilmiştir. 

Anahtar Kelimeler: Frekans kestirimi. Reel sinus, PHD metodu, k-PHD metodu, Değişinti analizi. 

1. INTRODUCTION 

The problem of estimating the frequency of a single real tone in noise has been frequently 

studied in the signal processing literature due to its wide range of applications. Among the 

various estimation techniques, the Piseranko harmonic decomposition (PHD) method has 

attracted people because of its ease of implementation. Several statistical analyses of the PHD 

method have been carried out in the literature (see, e.g., Sakai (1984), Chan and So (2003), and 

the references therein). In Chan and So (2003), an exact variance expression of the PHD 

frequency estimator has been derived, which holds for moderate data lengths and/or signal-to-

noise ratios (SNRs). Despite the fact that the PHD estimator can be implemented in a very 

simple way, its variance is, in general, much larger than the Cramér-Rao lower bound (see, e.g., 

Chan and So, 2003). 
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In order to reduce the variance of the PHD estimator, a two-step procedure called the k-

PHD method has been proposed in De Sabata et. al. (2007). The k-PHD method consists of 

estimating an integer multiple (k-th multiple) of the frequency and using the PHD method in 

resolving the induced aliasing. For 1k  there is no ambiguity in the frequency estimates and 

the k-PHD reduces to the PHD. A variance expression of the k-PHD frequency estimator has 

also been given in De Sabata et. al. (2007). 

In the above-mentioned analyses of the PHD and k-PHD methods the phase of the sinusoid 

is considered as a constant parameter which does not change from one realization to another. In 

this paper, it is assumed that the phase of the sinusoid is a random variable which is uniformly 

distributed in an interval of length .2  By utilizing the variance analysis technique employed in 

Chan and So (2003) (and also in De Sabata et. al., 2007), and taking into account that the phase 

is now a random variable, we derive an exact closed-form expression for the frequency variance 

of the k-PHD method. An approximate variance formula that holds for sufficiently large data 

lengths and SNRs is also given. 

The variance expressions derived in this paper can easily be adapted to the PHD estimator 

for the random-phased sinusoid case. The results for the PHD method have been presented, 

recently, in Keyta and Dilaveroğlu (2019). 

The rest of the paper is organized as follows. The data model and the k-PHD frequency 

estimation method are described in Section 2. The k-PHD variance development for the random 

phase case considered herein is given in Section 3. Computer simulations are presented in 

Section 4 to validate the theoretical development. Finally, conclusions are drawn in Section 5. 

2. DATA MODEL AND k-PHD METHOD 

We consider the following data model consisting of a single real tone in noise: 

 

)()cos()( nennx   ,        Nn ,,2,1   (1) 

 

where the amplitude   and frequency ),0(   are unknown constants while phase   is a 

random variable uniformly distributed in the interval ],(  . The noise )(ne  is assumed to be 

a zero-mean white Gaussian process with unknown variance 
2  and independent of the phase 

 . N  denotes the number of available data samples. 

The k-PHD method is a two-step frequency estimation algorithm. In the first step of the 

method, a rough estimate 1̂  of the frequency   is calculated using the PHD frequency 

estimator, probably with a small value of N . In the second step of the method, first the cosine 

of a k-th multiple, where 1k  is an integer, of the frequency  , )cos( k , is estimated from the 

estimator k  given by 
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Then, the estimate k̂  of the frequency   is calculated as 
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and    denotes the largest integer smaller than ( ). (See De Sabata et. al., 2007). Note that for 

1k  the k-PHD method is equivalent to the PHD method. 

We remark here that the two-step procedure employed in the k-PHD method is a general 

frequency estimation process. In the first step of the process, a rough estimate of the frequency 

can be calculated from any low complexity method (such as from an estimator )ˆcos( 11    

using )arccos(ˆ
11   ; for a number of such estimators and a comparative study of their 

performances, see, e.g., Uz and Dilaveroğlu, 2019). In the second step of the process, any 

estimator which is designed for estimating an integer multiple of the frequency can be used (see, 

e.g., Toma et. al., 2007). 

3. EXACT VARIANCE DEVELOPMENT 

Define a second-order polynomial 

 

kkk rrrf   2
22)(  (6) 

 

for which k  equals to one of the roots. For sufficiently large N  and/or SNR, k  will be close 

to )cos( k  and we can use the following formula to derive the variance of k , which is 

denoted by )var( k  (Chan and So, 2003) (also see So et. al., 2013): 
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In addition, the relationship between the variance of k̂ , which is denoted by )ˆvar( k  and 

)var( k  is given as (Papoulis, 1991) 
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Here E  denotes the expectation operator and )(f   is the derivative of )(f  with respect to 

 . The derivations of the expectations in (7) are given as follows. From (6) we have 
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We see that the values of }{ krE , }{ 2krE , }{ 2
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derived as 
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Substituting (11)-(15) into (9) and (10) and using (7) and (8), after simplifications, give 
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where the terms A , B , C  and D  are given as 
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and 
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The variance is a function of  , N , k  and SNR , which is defined as )2/(SNR 22  . It can 

be seen that A , B  and C  are of order 1N , 2N  and 2N , respectively, while D  is not a 

function of N . 

The expression in (16) gives the variance of the k-PHD frequency estimator k̂  as a simple 

function of the SNR. For low SNRs, the first term of (16) becomes dominant and )ˆvar( k  is 

proportional to )SNR( 21  N ; for high SNRs, the last term of (16) becomes dominant and the 

variance is proportional to 2N  and, interestingly, independent of SNR. This unusual constant 

behavior of the variance with respect to SNR at high SNRs has also been observed for the 

constant phase case (De Sabata et. al., 2007). 

The variance expression in De Sabata et. al. (2007) derived for the constant phase case 

depends on the phase   of the sinusoid in a very complicated way; see De Sabata et. al. (2007), 

equation (10). In contrast, the variance expression (16) derived for the random phase case is 

independent of  , as expected; by assuming a random phase we got rid of all the possible phase 

dependent terms. 

For 1N , the terms A , B  and C  can be approximated as 
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and consequently a simple approximate expression of )ˆvar( k  in this case is 
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For 1k , (16) and (24) give, respectively, exact and approximate variance expressions of 

the PHD method; for a discussion of the results for the PHD case, see Keyta and Dilaveroğlu 

(2019). 

Note that the variance in (16) and (24) is unbounded at frequencies 
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In practice, a value of k  can be chosen so that the first estimate 1̂  is not close to a value given 

by (25). 

4. NUMERICAL EXAMPLES 

Computer simulations had been performed in order to validate our theoretical results. The 

tone amplitude was set to 2 while different SNRs were obtained by properly scaling the noise 

samples. All simulation results were obtained by averaging 1000 independent runs. 

Figure 1 shows the frequency variances of the k-PHD estimators for 1k  (which is the 

PHD estimator), 2k  and 3k  for ]975.0,025.0[   at 20SNR   dB and for 32N . It 

is seen that at every frequency the variance of the k-PHD for 2k  and/or 3k  was smaller 

than that of the PHD. 

 
Figure 1: 

Frequency variances versus   at 20SNR   dB and 32N . 

Figure 2 shows the frequency variances of the PHD and the k-PHD for 3k  versus   at 

20SNR   dB for 128N . The variance expressions of (16) and (24) were also included. We 

observe that the measured variances conformed the exact expression (16) provided that the 

frequency   is not very near to 0  or  . Also, the simple approximate expression (24) was in 

good agreement with the measured ones. The decrease in variances for the k-PHD as compared 

to the PHD is apparent from the Figure for the whole range of the frequency except at 

 325.0  and  675.0  as predicted by (25). 

Figure 3 shows frequency variances of the PHD method and the k-PHD method for 4k  

versus SNR at 8/3   and for 128N . It can be observed that (16) agreed well with the 

simulation results while (24) was a good approximation provided that SNR  is not too small. 

The variances of the k-PHD were smaller than those of the PHD for the whole range of SNR 

and the reduction was more than 9 dB for 20SNR   dB. 
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Figure 2: 

Frequency variances versus   at 20SNR   dB and 128N . 

 

 
Figure 3: 

Frequency variances versus SNR  at 8/3   and 128N . 
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Table 1 shows frequency standard deviations of the PHD and the k-PHD for 3k  for 

different values of the data length N  at 20SNR   dB and 8/3  . It can be seen that (16) 

and (24) predicted the measured variances very well for all values of N  and 64N , 

respectively. 

 

Table 1. Frequency standard deviations versus N at 20SNR   dB and 8/3  . 

 Measured 

std. dev. 

Std. dev. 

by (16) 

Approx. std. 

dev. by (24) 

16N , 

1k  
-2104.1669   -2104.1129   -2103.7769   

3k  -2101.3547   -2101.3158   -3107.7352   

32N , 

1k  
-2101.9294   -2101.9703   -2101.8903   

3k  -3104.6939   
-3104.9182   

-3103.8958   

64N , 

1k  
-3109.8179   

-3109.6655   
-3109.4703   

3k  -3102.2516   
-3102.2024   

-3101.9758   

128N

, 1k   
-3104.8010   

-3104.8020   
-3104.7538   

3k  -3101.0805   
-3101.0685   

-3101.0152   

256N

, 1k  
-3102.4283   

-3102.4074   
-3102.3954   

3k  -4105.6440   
-4105.4674   

-4105.3390   

 

5. CONCLUSIONS 

We have derived an exact closed-form variance expression of the k-PHD method for a 

single real sinusoid in additive white Gaussian noise for a random phase case. An approximate 

simple variance formula for sufficiently large data lengths and high signal-to-noise ratios has 

also been developed. Computer simulations have been provided to validate the theoretical 

results. 
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