

RESEARCH ARTICLE

On \mathscr{C} -coherent rings, strongly \mathscr{C} -coherent rings and \mathscr{C} -semihereditary rings

Zhu Zhanmin

Department of Mathematics, Jiaxing University, Jiaxing, Zhejiang Province, 314001, P.R.China

Abstract

Let R be a ring and \mathscr{C} be a class of some finitely presented left R-modules. A left R-module M is called \mathscr{C} -injective if $\operatorname{Ext}^1_R(C,M) = 0$ for every $C \in \mathscr{C}$; a left R-module M is called \mathscr{C} -projective if $\operatorname{Ext}^1_R(M,E) = 0$ for any \mathscr{C} -injective module E. R is called left \mathscr{C} -coherent if every $C \in \mathscr{C}$ is 2-presented; R is called left strongly \mathscr{C} -coherent, if whenever $0 \to K \to P \to C \to 0$ is exact, where $C \in \mathscr{C}$ and P is finitely generated projective, then K is \mathscr{C} -projective; a ring R is called left \mathscr{C} -semihereditary, if whenever $0 \to K \to P \to C \to 0$ is exact, where $C \in \mathscr{C}$, P is finitely generated projective, then K is generated, where $C \in \mathscr{C}$, P is finitely generated projective, then K is projective. In this paper, we give some new characterizations and properties of left \mathscr{C} -coherent rings, left strongly \mathscr{C} -coherent rings and left \mathscr{C} -semihereditary rings.

Mathematics Subject Classification (2010). 16D40, 16D50, 16E60, 16P70.

Keywords. C-coherent ring, strongly C-coherent ring, C-semihereditary ring.

1. Introduction

Recall that a ring R is said to be *left coherent* [1, 19] if every finitely generated left ideal of R is finitely presented, a ring R is said to be *left semihereditary* if every finitely generated left ideal of R is projective. Coherent rings, semihereditary rings and their generalizations have been studied extensively by many authors (see, for example, [1, 2, (4, 6, 11, 13-15, 19, 24, 26). In [27], we introduced the concepts of left C-coherent rings and left \mathscr{C} -semihereditary rings, and in [28], we introduced the concept of left strongly \mathscr{C} -coherent rings. Let \mathscr{C} be a class of some finitely presented left R-modules. Following [27], a ring R is called left \mathscr{C} -coherent if every $C \in \mathscr{C}$ is 2-presented; a ring R is called *left C-semihereditary*, if whenever $0 \to K \to P \to C \to 0$ is exact, where $C \in \mathcal{C}$, P is finitely generated projective, then K is projective. To characterize left \mathscr{C} -coherent rings and left \mathscr{C} -semihereditary rings, in [27], we also introduced the concepts of \mathscr{C} -injective modules and \mathscr{C} -flat modules. According to [27], a left R-module M is called \mathscr{C} -injective if $\operatorname{Ext}^1_R(C,M) = 0$ for every $C \in \mathscr{C}$, a right *R*-module *M* is called \mathscr{C} -flat if $\operatorname{Tor}^R_1(M,C) = 0$ for every $C \in \mathscr{C}$. In [28], we introduced the concepts of \mathscr{C} -projective modules and left strongly \mathscr{C} -coherent rings. Following [28], a left R-module M is called \mathscr{C} -projective if $\operatorname{Ext}_{R}^{1}(M, E) = 0$ for any \mathscr{C} -injective module E; a ring R is called left strongly \mathscr{C} -coherent, if whenever $0 \to K \to P \to C \to 0$ is exact, where $C \in \mathscr{C}$ and P is finitely generated

Email address: zhuzhanminzjxu@hotmail.com

Received: 30.05.2018; Accepted: 05.04.2019

projective, then K is \mathscr{C} -projective. We shall denote the class of \mathscr{C} -flat (resp., \mathscr{C} -injective, \mathscr{C} -projective) modules by \mathscr{CF} (resp., \mathscr{CI} , \mathscr{CP}).

In this article, we continues to study left *C*-coherent rings, left strongly *C*-coherent rings and left *C*-semihereditary rings. Series characterizations and properties of these rings will be given respectively.

Next, we recall some known notions and facts needed in the sequel.

Given a class \mathscr{L} of R-modules, we shall denote by $\mathscr{L}^{\perp} = \{M : \operatorname{Ext}^{1}_{R}(L, M) = 0, L \in \mathscr{L}\}$ the right orthogonal class of \mathscr{L} , and by ${}^{\perp}\mathscr{L} = \{M : \operatorname{Ext}^{1}_{R}(M, L) = 0, L \in \mathscr{L}\}$ the left orthogonal class of \mathscr{L} .

Let \mathcal{F} be a class of R-modules and M an R-module. Following [9], we say that a homomorphism $\varphi: M \to F$ where $F \in \mathcal{F}$ is an \mathcal{F} -preenvelope of M if for any morphism $f: M \to F'$ with $F' \in \mathcal{F}$, there is a $g: F \to F'$ such that $g\varphi = f$. An \mathcal{F} -preenvelope $\varphi: M \to F$ is said to be an \mathcal{F} -envelope if every endomorphism $g: F \to F$ such that $g\varphi = \varphi$ is an isomorphism. Dually, we have the definitions of \mathcal{F} -precovers and \mathcal{F} -covers. \mathcal{F} -envelopes (\mathcal{F} -covers) may not exist in general, but if they exist, they are unique up to isomorphism. It is easy to see that every \mathscr{C} -injective preenvelope is monic, and every \mathscr{C} -projective precover is epic.

Following [9], a pair $(\mathscr{A}, \mathscr{B})$ of classes of *R*-modules is called a *cotorsion pair* if $\mathscr{A}^{\perp} = \mathscr{B}$ and $^{\perp}\mathscr{B} = \mathscr{A}$. A cotorsion pair $(\mathscr{A}, \mathscr{B})$ is called *hereditary* [10, Definition 1.1] if whenever $0 \to A' \to A \to A'' \to 0$ is exact with $A, A'' \in \mathscr{A}$ then A' is also in \mathscr{A} . By [10, Proposition 1.2], a cotorsion pair $(\mathscr{A}, \mathscr{B})$ is hereditary if and only if whenever $0 \to B' \to B \to B'' \to 0$ is exact with $B', B \in \mathscr{B}$ then B'' is also in \mathscr{B} . A cotorsion pair $(\mathscr{A}, \mathscr{B})$ is called *perfect* [10] if every *R*-module has an \mathscr{A} -cover and a \mathscr{B} -envelope. A cotorsion pair $(\mathscr{A}, \mathscr{B})$ is called *complete* (see [9, Definition 7.16] and [20, Lemma 1.13]) if for any *R*-module M, there are exact sequences $0 \to M \to B \to A \to 0$ with $A \in \mathscr{A}$ and $B \in \mathscr{B}$, and $0 \to B' \to A' \to M \to 0$ with $A' \in \mathscr{A}$ and $B' \in \mathscr{B}$.

Throughout this paper, R is an associative ring with identity and all modules considered are unitary, \mathscr{C} is a class of some finitely presented left R-modules. For any R-module M, E(M) will denote the injective envelope of M, $M^+ = \operatorname{Hom}(M, \mathbb{Q}/\mathbb{Z})$ will be the character module of M and $M^* = \operatorname{Hom}(M, R)$ will be the dual module of M.

2. C-coherent rings

Theorem 2.1. The following statements are equivalent for a ring R:

- (1) R is a left C-coherent ring.
- (2) For any projective left R-module P, P^* is \mathscr{C} -flat.
- (3) For any free left R-module F, F^* is C-flat.

Proof. (1) \Rightarrow (2). For any projective left *R*-module *P*, there is an index set *I* and an *R*-module *Q* such that $P \oplus Q \cong R^{(I)}$. So we have $P^* \oplus Q^* \cong (R^{(I)})^* \cong R^I$, and thus P^* is \mathscr{C} -flat by [27, Theorem 3.3(4) and Proposition 2.6].

 $(2) \Rightarrow (3)$. It is clear.

 $(3) \Rightarrow (1)$. Let *I* be any index set. Then by (3), $R^I \cong (R^{(I)})^*$ is \mathscr{C} -flat, and so *R* is \mathscr{C} -coherent by [27, Theorem 3.3(4)].

Recall that a left *R*-module *M* is said to be *FP-injective* [19] if $\operatorname{Ext}_R^1(A, M) = 0$ for every finitely presented left *R*-module *A*; a left *R*-module *M* is said to be *P-injective* [16] if every homomorphism from a principal left ideal of *R* to *M* can be extended to a homomorphism of *R* to *M*, it is easy to see that a left *R*-module *M* is *P-injective* if and only if $\operatorname{Ext}_R^1(R/Ra, M) = 0$ for any $a \in R$. We recall also that a left *R*-module *M* is said to be *FI-injective* [13] (resp., *D-injective* [14], copure injective [8]) if $\operatorname{Ext}_R^1(G, M) = 0$ for every FP-injective (resp., *P-injective*, injective) left *R*-module *G*; a right *R*-module *N* is said to be *FI-flat* [13] (resp., *D-flat* [14], copure flat [8]) if $\operatorname{Tor}_1^R(N, G) = 0$ for every FP-injective (resp., P-injective, injective) left R-module G. Inspired by these concepts, we have the following concepts.

Definition 2.2. A left *R*-module *M* is said to be \mathscr{C} I-injective if $\operatorname{Ext}^{1}_{R}(G, M) = 0$ for every \mathscr{C} -injective left *R*-module *G*; a right *R*-module *F* is said to be \mathscr{C} I-flat if $\operatorname{Tor}^{R}_{1}(F, G) = 0$ for every \mathscr{C} -injective left *R*-module *G*.

Proposition 2.3. The following statements are equivalent for a left R-module M:

- (1) M is CI-injective.
- (2) For every exact sequence $0 \to M \to E \to L \to 0$ with $E \ C$ -injective, $E \to L$ is a C-injective precover of L.
- (3) M is the kernel of a \mathscr{C} -injective precover $f: E \to L$ with E injective.
- (4) *M* is injective with respect to every exact sequence $0 \to A \to B \to C \to 0$ with *C* \mathscr{C} -injective.

Proof. $(1) \Rightarrow (2)$ and $(1) \Rightarrow (4)$ are clear.

 $(2) \Rightarrow (3)$. It follows from the exact sequence $0 \to M \to E(M) \to E(M)/M \to 0$.

 $(3) \Rightarrow (1)$. Let M be the kernel of a \mathscr{C} -injective precover $f : E \to L$ with E injective. Then $f : E \to \operatorname{im}(f)$ is a \mathscr{C} -injective precover, so, for any \mathscr{C} -injective module N, the map $\operatorname{Hom}(N, E) \to \operatorname{Hom}(N, \operatorname{im}(f))$ is epic and hence the map $\operatorname{Hom}(N, E) \to \operatorname{Hom}(N, E/M)$ is epic. Thus, by the exactness of the sequence $0 \to \operatorname{Hom}(N, E) \to \operatorname{Hom}(N, E/M) \to \operatorname{Ext}^1_R(N, M) \to 0$, we have $\operatorname{Ext}^1_R(N, M) = 0$.

 $(4) \Rightarrow (1)$. For any \mathscr{C} -injective module N, there exists an exact sequence $0 \to K \to P \to N \to 0$, where P is projective. Hence we get an exact sequence $\operatorname{Hom}(P, M) \to \operatorname{Hom}(K, M) \to \operatorname{Ext}^{1}_{R}(N, M) \to \operatorname{Ext}^{1}_{R}(P, M) = 0$, and thus $\operatorname{Ext}^{1}_{R}(N, M) = 0$ by (4). Therefore, M is \mathscr{C} I-injective.

Remark 2.4. Since the class of all \mathscr{C} -injective modules is closed under extensions, by Wakamutsu's Lemma (see [23, Lemma 2.1.1]), any kernel of a \mathscr{C} -injective cover is \mathscr{C} I-injective.

Recall that a left R-module M is called reduced [9] if M has no nonzero injective submodules.

Proposition 2.5. Let R be a left C-coherent ring. Then the following statements are equivalent for a left R-module M:

- (1) M is a reduced CI-injective module.
- (2) M is the kernel of a \mathscr{C} -injective cover $f: E \to L$ with E injective.

Proof. (1) \Rightarrow (2). Since M is \mathscr{C} I-injective, by proposition 2.3, the natural mapping π : $E(M) \rightarrow E(M)/M$ is a \mathscr{C} -injective precover. Since R is left \mathscr{C} -coherent, by [27, Corollary 3.7], E(M)/M has a \mathscr{C} -injective cover. Note that there is no nonzero summand K of E(M) contained in M as M is reduced, by [23, Corollary 1.2.8], $\pi : E(M) \rightarrow E(M)/M$ is a \mathscr{C} -injective cover.

 $(2) \Rightarrow (1)$. Let M be the kernel of a \mathscr{C} -injective cover $f : E \to L$ with E injective. Then by proposition 2.3(3), M is a \mathscr{C} I-injective module. Now let K be an injective submodule of M. Suppose $E = K \oplus N, p : E \to N$ is the projective and $i : N \to E$ is the inclusion for some submodule N of M. It is easy to see that f(ip) = f since f(K) = 0. So ip is an isomorphism since f is a cover. Thus i is epic and hence E = N, K = 0. Therefore M is reduced.

Recall that a submodule A of left R-module B is said to be a pure submodule if for all right R-module M, the induced map $M \otimes_R A \to M \otimes_R B$ is monic, or equivalently, every finitely presented left R-module is projective with respect to the exact sequence $0 \to A \to B \to B/A \to 0$. In this case, the exact sequence $0 \to A \to B \to B/A \to 0$ is called *pure exact*. An exact sequence $0 \to A \to B \to L \to 0$ is called *RD-exact* [14] if, for any $a \in R$, R/Ra is projective with respect to this sequence. We call a short exact sequence of left *R*-modules $0 \to A \to B \to L \to 0$ *C*-*pure exact* if every $C \in \mathcal{C}$ is projective with respect to this sequence. Let *A* be a submodule of *B*, if the short exact sequence of left *R*-modules $0 \to A \to B \to B/A \to 0$ is *C*-pure exact, then we call *A* a *C*-pure submodule of *B* and B/A a *C*-pure quotient module of *B*.

Next, we give some characterizations of $\mathscr C\text{-injective modules}.$

Theorem 2.6. Let M be a left R-module, then the following statements are equivalent:

- (1) M is \mathscr{C} -injective.
- (2) *M* is injective with respect to every exact sequence $0 \to A \to B \to C \to 0$ of left *R*-modules with $C \in \mathscr{C}$.
- (3) *M* is injective with respect to every exact sequence $0 \to K \to P \to C \to 0$ of left *R*-modules with $C \in \mathscr{C}$ and *P* finitely generated projective.
- (4) Every exact sequence $0 \to M \to M' \to M'' \to 0$ is \mathscr{C} -pure.
- (5) There exists a \mathscr{C} -pure exact sequence $0 \to M \to M' \to M'' \to 0$ of left R-modules with M' injective.
- (6) There exists a \mathscr{C} -pure exact sequence $0 \to M \to M' \to M'' \to 0$ of left R-modules with M' FP-injective.
- (7) There exists a \mathscr{C} -pure exact sequence $0 \to M \to M' \to M'' \to 0$ of left R-modules with $M' \mathscr{C}$ -injective.

Proof. $(1) \Rightarrow (2)$. It follows from the exact sequence

$$\operatorname{Hom}(B, M) \to \operatorname{Hom}(A, M) \to \operatorname{Ext}^{1}_{B}(C, M) = 0.$$

 $(2) \Rightarrow (3)$. It is obvious.

 $(3) \Rightarrow (1)$. It follows from the exact sequence

$$\operatorname{Hom}(P, M) \to \operatorname{Hom}(K, M) \to \operatorname{Ext}^{1}_{R}(C, M) \to \operatorname{Ext}^{1}_{R}(P, M) = 0.$$

 $(1) \Rightarrow (4)$. Assume (1). Then we have an exact sequence $\operatorname{Hom}(C, M') \to \operatorname{Hom}(C, M'') \to \operatorname{Ext}^1_R(C, M) = 0$ for every $C \in \mathscr{C}$, and so (4) follows.

 $(4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7)$ is obvious.

 $(7) \Rightarrow (1)$. By (7), we have a \mathscr{C} -pure exact sequence $0 \to M \to M' \xrightarrow{f} M'' \to 0$ of left R-modules where M' is \mathscr{C} -injective, and so, for each $C \in \mathscr{C}$, we have an exact sequence $\operatorname{Hom}(C, M') \xrightarrow{f_*} \operatorname{Hom}(C, M'') \to \operatorname{Ext}^1_R(C, M) \to \operatorname{Ext}^1_R(C, M') = 0$ with f_* epic. Which implies that $\operatorname{Ext}^1_R(C, M) = 0$, and (1) follows. \Box

Recall that a left *R*-module *M* is called *pure injective* [9, Definition 5.3.6] if it is injective with respect to every pure exact sequence of left *R*-modules; a left *R*-module *M* is called *RD-injective* [14] if it is injective with respect to every RD-exact sequence of left *R*modules. We call a left *R*-module $M \ C$ -pure injective if it is injective with respect to every C-pure exact sequence of left *R*-modules.

Proposition 2.7. Let R be a left C-coherent ring. Then every C-pure injective module M has a C-injective cover $f : N \to M$ with N injective. Moreover, Ker(f) is a reduced CI-injective left R-module.

Proof. By [27, Corollary 3.7], M has a \mathscr{C} -injective cover $f: N \to M$. Since N is \mathscr{C} -injective, by Theorem 2.6(4), the exact sequence $0 \to N \stackrel{i}{\to} E(N) \to E(N)/N \to 0$ is \mathscr{C} -pure exact, and so there exists $g: E(N) \to M$ such that gi = f. Note that f is a cover, there exists $h: E(N) \to N$ such that fh = g. Thus fhi = f and hence hi is an isormorphism. It follows that N is isomorphic to a direct summand of E(N) and so N is injective. By Proposition 2.5, $\operatorname{Ker}(f)$ is a reduced \mathscr{C} I-injective left R-module.

Theorem 2.8. Let R be a left C-coherent ring. Then a left R-module M is CI-injective if and only if M is a direct sum of an injective left R-module and a reduced CI-injective left R-module.

Proof. " \Leftarrow ". It is clear.

" \Rightarrow ". Let M be a \mathscr{C} I-injective left R-module. Then by Proposition 2.3, $E(M) \to E(M)/M$ is a \mathscr{C} -injective precover. Since R is left \mathscr{C} -coherent, E(M)/M has a \mathscr{C} -injective cover $L \xrightarrow{g} E(M)/M$ by [27, Corollary 3.7], so we have the following commutative diagram with exact rows:

where K is a reduced \mathscr{C} I-injective left R-module by Proposition 2.5. Note that $g = g(\beta\gamma)$, we have that $\beta\gamma$ is an isomorphism, so $E(M) = \text{Ker}(\beta) \oplus im(\gamma)$, and thus $\text{Ker}(\beta)$ is injective. Since $\sigma\phi$ is an isomorphism by the Five Lemma, we have that $M = \text{Ker}(\sigma) \oplus$ $im(\phi)$ and $im(\phi) \cong K$. Moreover, by the Snake Lemma [17, Theorem 6.5], we have that $\text{Ker}(\sigma) \cong \text{Ker}(\beta)$ is injective. This completes the proof. \Box

Proposition 2.9. Let M be a right R-module. Then M is CI-flat if and only if M^+ is CI-injective.

Proof. It follows from the isomorphism $\operatorname{Tor}_1^R(M,G)^+ \cong \operatorname{Ext}_R^1(G,M^+)$.

Corollary 2.10. A pure submodule of a CI-flat module is CI-flat.

Proof. Let M be a \mathscr{C} I-flat module and M_1 a pure submodule of M, then the pure exact sequence $0 \to M_1 \to M \to M/M_1 \to 0$ induces a split exact sequence $0 \to (M/M_1)^+ \to M^+ \to M_1^+ \to 0$. By Proposition 2.9, M^+ is \mathscr{C} I-injective, so M_1^+ is \mathscr{C} I-injective, and hence M_1 is \mathscr{C} I-flat by Proposition 2.9 again.

Proposition 2.11. Let R be a ring and C be a class of some finitely presented left R-modules.

- (1) If M is a finitely presented CI-flat module, then it is a cohernet of a C-flat preenvelope.
- (2) If R is left C-coherent and L is the coherent of a CI-flat preenvelope $f: M \to F$, then L is CI-flat.

Proof. (1). Let M be a finitely presented \mathscr{C} I-flat module. Then there exists an exact sequence of right R-modules $0 \to K \to P \to M \to 0$ with P finitely generated projective and K finitely generated. We claim that $K \to P$ is a \mathscr{C} -flat preenvelope. In fact, for any \mathscr{C} -flat module F, we have F^+ is \mathscr{C} -injective by [27, Theorem 2.7], and so $\operatorname{Tor}_1^R(M, F^+) = 0$ since M is \mathscr{C} I-flat. Hence, we have the following commutative diagram with α monic:

$$\begin{array}{cccc} K \otimes F^+ & \stackrel{\alpha}{\longrightarrow} & P \otimes F^+ \\ & & & & & \downarrow \tau_2 \\ & & & & \downarrow \tau_2 \\ & & & & \text{Hom}(K,F)^+ & \stackrel{\beta}{\longrightarrow} & \text{Hom}(P,F)^+ \end{array}$$

Since K is finitely generated and P is finitely presented, by [3, Lemma 2], τ_1 is epic and τ_2 is an isomorphism, this follows that β is monic, and hence $\operatorname{Hom}(P, F) \to \operatorname{Hom}(K, F)$ is epic, as required.

(2). There is an exact sequence $0 \to \operatorname{im}(f) \xrightarrow{i} F \to L \to 0$. We claim that $i : \operatorname{im}(f) \to F$ is a \mathscr{C} -flat preenvelope. In fact, for any \mathscr{C} -flat module F_1 and any homomorphism $\varphi : \operatorname{im}(f) \to F_1, \varphi f$ is a homomorphism from M to F_1 . Since $f : M \to F$ is a \mathscr{C} -flat preenvelope, there exists a $\psi : F \to F_1$ such that $\varphi f = \psi f$. Now, for any $y \in \operatorname{im}(f)$, write y = f(x). Then $\varphi f(x) = \psi i f(x)$, i.e., $\varphi(y) = \psi i(y)$. It shows that $\varphi = \psi i$, and so $i : \operatorname{im}(f) \to F$ is a \mathscr{C} -flat preenvelope. Let N be any \mathscr{C} -injective module. Since R is left \mathscr{C} -coherent, N^+ is \mathscr{C} -flat by [27, Theorem 3.3(8)], and so, the mapping $\operatorname{Hom}(F, N^+) \to \operatorname{Hom}(\operatorname{im}(f), N^+)$ is epic. Then, from the following commutative diagram :

$$\begin{array}{ccc} \operatorname{Hom}(F, N^{+}) & \stackrel{\alpha}{\longrightarrow} & \operatorname{Hom}(\operatorname{im}(f), N^{+}) \\ & & & & & \downarrow \sigma_{2} \\ & & & & & \downarrow \sigma_{2} \\ & & & & (F \otimes N)^{+} & \stackrel{\beta}{\longrightarrow} & (\operatorname{im}(f) \otimes N)^{+} \end{array}$$

where σ_1 and σ_2 are isomorphisms, we have that the mapping $(F \otimes N)^+ \to (\operatorname{im}(f) \otimes N)^+$ is epic. Thus, the mapping $\operatorname{im}(f) \otimes N \to F \otimes N$ is monic. But the \mathscr{C} I-flatness of F implies the exactness of $0 \to \operatorname{Tor}_1^R(L, N) \to \operatorname{im}(f) \otimes N \to F \otimes N$, and therefore $\operatorname{Tor}_1^R(L, N) = 0$. \Box

3. Strongly *C*-coherent rings

Theorem 3.1. The following statements are equivalent for a ring R:

- (1) R is a left strongly C-coherent ring.
- (2) If $0 \to K \to E \to L \to 0$ is an exact sequence of left *R*-modules with *K* C-injective and *E* FP-injective, then *L* is C-injective.
- (3) If $0 \to K \to E \to L \to 0$ is an exact sequence of left R-modules with $K \mathscr{C}$ -injective and E injective, then L is \mathscr{C} -injective.
- (4) R is left C-coherent, and if 0 → N → M → Q → 0 is an exact sequence of right R-modules with M and Q C-flat, then N is C-flat.
- (5) R is left \mathscr{C} -coherent, and if $0 \to N \to M \to Q \to 0$ is an exact sequence of right R-modules with M flat and Q \mathscr{C} -flat, then N is \mathscr{C} -flat.
- (6) R is left \mathscr{C} -coherent, and if $0 \to N \to P \to Q \to 0$ is an exact sequence of right R-modules with P projective and Q \mathscr{C} -flat, then N is \mathscr{C} -flat.

Proof. $(1) \Rightarrow (2)$. It follows from [28, Theorem 1(7)].

 $(2) \Rightarrow (3);$ and $(4) \Rightarrow (5) \Rightarrow (6)$ are trivial.

 $(3) \Rightarrow (1)$. Let *M* be a \mathscr{C} -injective left *R*-module. Then by (2), E(M)/M is \mathscr{C} -injective. And so *R* is left strongly \mathscr{C} -coherent by [28, Theorem 1(8)].

 $(1) \Rightarrow (4)$. It follows from [28, Theorem 1(9)] and [27, Proposition 3.11(2)].

 $(6) \Rightarrow (1)$. For any \mathscr{C} -flat right *R*-module *N*, there exists an exact sequence $0 \rightarrow K \rightarrow P \rightarrow N \rightarrow 0$ with *P* projective. So *K* is \mathscr{C} -flat by (6), and thus $\operatorname{Tor}_2^R(N, C) \cong \operatorname{Tor}_1^R(K, C) = 0$ for any $C \in \mathscr{C}$. Therefore *R* is left strongly \mathscr{C} -coherent by [28, Theorem 1(11)].

Proposition 3.2. Let R be a left strongly C-coherent ring. Then the following statements are equivalent for a left R-module M:

- (1) M is injective.
- (2) M is both C-injective and CI-injective.
- (3) There exists a \mathscr{C} -injective cover $f: M \to N$ with $N \,\mathscr{C}I$ -injective.

Proof. $(1) \Rightarrow (2)$. It is trivial.

 $(2) \Rightarrow (3)$. It is clear because $M \to M$ is a \mathscr{C} -injective cover of M.

 $(3) \Rightarrow (1)$. Consider the exact sequence $0 \to M \xrightarrow{i} E(M) \to E(M)/M \to 0$. Since R is a left strongly \mathscr{C} -coherent ring, by [28, Theorem 1(7)], E(M)/M is \mathscr{C} -injective, so $\operatorname{Ext}^1_R(E(M)/M, N) = 0$. Thus there exists a homomorphism $g: E(M) \to N$ such that

f = gi. Since f is a cover, there exists a homomorphism $h : E(M) \to M$ such that g = fh. Hence f(hi) = f, and so hi is an isomorphism, this follows that i is left split, and therefore M = E(M) is injective.

Theorem 3.3. The following statements are equivalent for a ring R:

- (1) R is a left strongly \mathscr{C} -coherent ring.
- (2) R is left \mathscr{C} -coherent, and every \mathscr{C} -injective \mathscr{C} I-injective left R-module is injective.
- (3) Each left R-module has a C-injective cover, and every C-injective CI-injective left R-module is injective.
- (4) R is left C-coherent, and for every CI-injective left R-module L, there there exists a C-injective cover E → L with E injective.
- (5) Each left R-module has a \mathscr{C} -injective cover, and for every \mathscr{C} I-injective left R-module L, there there exists a \mathscr{C} -injective cover $E \to L$ with E injective.
- (6) Every C-pure quotient of a C-injective left R-module has a C-injective cover, and for every CI-injective left R-module L, there exists a C-injective cover E → L with E injective.
- (7) Every C-pure quotient of a C-injective left R-module has a C-injective cover, and every C-injective CI-injective left R-module is injective.

Proof. (1) \Rightarrow (2). Since R is left strongly \mathscr{C} -coherent, by [28, Theorem 1(10)], it is left \mathscr{C} -coherent. Moreover, by Proposition 3.2, every \mathscr{C} -injective \mathscr{C} I-injective left R-module is injective.

 $(2) \Rightarrow (3)$. It follows from [27, Corollary 3.7].

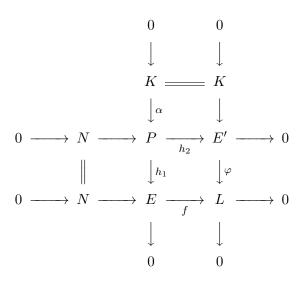
 $(1) \Rightarrow (4)$. It is clear that R is left \mathscr{C} -coherent. Let L be any \mathscr{C} I-injective left R-module. Then by [27, Corollary 3.7], L has a \mathscr{C} -injective cover $f : E \to L$, and by Proposition 3.2, E is injective.

 $(4) \Rightarrow (5)$. It follows from [27, Corollary 3.7].

 $(3) \Rightarrow (7)$, and $(5) \Rightarrow (6)$ are trivial.

 $(6) \Rightarrow (7)$. Let M be a \mathscr{C} -injective \mathscr{C} I-injective left R-module. Then by (6), there exists a \mathscr{C} -injective cover $f : E \to M$ with E injective. Note that $1_M : M \to M$ is also a \mathscr{C} -injective cover of M, we have that $M \cong E$, and hence M is injective.

 $(7)\Rightarrow(1)$. Let $0 \to N \xrightarrow{i} E \xrightarrow{f} L \to 0$ be an exact sequence of left *R*-modules with *N* \mathscr{C} -injective and *E* injective. Then by Theorem 2.6(4), this exact sequence is \mathscr{C} -pure, and so *L* has a \mathscr{C} -injective cover $\varphi : E' \to L$. Thus there exists a homomorphism $g : E \to E'$ such that $f = \varphi g$. Since *f* is epic, φ is also epic. Now, forming a pullback we obtain the following commutative diagram with exact rows and columns (see [21, 10.3(1)]).



where $P = \{(x,y) \in E' \oplus E \mid \varphi(x) = f(y)\}, K = \text{Ker}(\varphi), \alpha : K \to P, k \mapsto (k,0)$, $h_1(x,y) = x, h_2(x,y) = y$. Let $\beta : P \to E', (x,y) \mapsto x - g(y)$. Then $\varphi\beta(x,y) = \varphi(x) - \varphi g(y) = \varphi(x) - f(y) = 0$, so $\beta(x,y) \in K$, and hence β is a homomorphism from P to K. Note that $\beta\alpha(k) = \beta(k,0) = k - g(0) = k$, we have that $\beta\alpha = 1_K$. Since N and E' are both \mathscr{C} -injective, P is also \mathscr{C} -injective, and so K is \mathscr{C} -injective. Note that K is \mathscr{C} -injective, and hence R is a left strongly \mathscr{C} -coherent ring by Theorem 3.1(3). \Box

Let \mathcal{F} be a class of *R*-modules. According to [5], an \mathcal{F} -cover $\phi: F \to M$ is said to have the unique mapping property if for any homomorphism $f: F' \to M$ with $F' \in \mathcal{F}$, there is a unique homomorphism $g: F' \to F$ such that $f = \phi g$.

Theorem 3.4. The following statements are equivalent for a ring R:

- (1) Every left R-module is C-projective.
- (2) Every nonzero left R-module has a nonzero C-projective submodule.
- (3) R is left strongly C-coherent, and every (C-injective) left R-module has a C-projective cover with the unique mapping property.

Proof. $(1) \Rightarrow (2)$ and $(1) \Rightarrow (3)$ are obvious.

 $(2) \Rightarrow (1)$. Assume (2). To prove (1), we need only to prove that every \mathscr{C} -injective module E is injective by [28, Theorem 6(3)].

Let I be a left ideal of R, $i: I \to R$ be the inclusion map and $f: I \to E$ be any homomorphism. It suffices to show that there is $g: R \to E$ that extends f. Let \mathscr{A} consist of all pair (I', g'), where $I \subseteq I' \subseteq R$ and $g': I' \to E$ extends f. Since $(I, f) \in \mathscr{A}, \mathscr{A} \neq \phi$. \mathscr{A} is a partially set by saying $(I', g') \leq (I'', g'')$ if $I' \subseteq I''$ and g'' extends g'. By Zorn's Lemma, there is a maximal element (I_0, g_0) in \mathscr{A} . If $I_0 \neq R$, then $R/I_0 \neq 0$. By (2), there is a nonzero \mathscr{C} -projective submodule K/I_0 of R/I_0 . Note that $\operatorname{Ext}^1_R(K/I_0, E) = 0$, we have that g_0 can be extended to K, this contradicts to the maximality of (I_0, g_0) . Thus, $I_0 = R$ and E is injective, as required.

 $(3) \Rightarrow (1)$. Assume (3). To prove (1), we need only to prove that every \mathscr{C} -injective module E is \mathscr{C} -projective by [28, Theorem 6(4)]. By (3), E has a \mathscr{C} -projective cover $\phi : P \to E$ with the unique mapping property. Let $K = \operatorname{Ker}(\phi)$, $i : K \to P$ be the inclusion map and $\varphi : P' \to K$ be a \mathscr{C} -projective cover of K. Then $\phi i \varphi = 0 = \phi 0$, and so $i \varphi = 0$ by the unique mapping property. Since every \mathscr{C} -projective cover is epic, φ and ϕ are epic, so ϕ is an isomorphism, and thus E is \mathscr{C} -projective. This completes the proof. \Box

According to [28], the \mathscr{C} -injective dimension of a module _RM is defined by

$$\mathscr{C}$$
J- $dim(_RM) = inf\{n : \operatorname{Ext}_R^{n+1}(C, M) = 0 \text{ for every } C \in \mathscr{C}\};$

the \mathscr{C} -injective global dimension of a ring R is defined by

 \mathscr{C} J-GLD(R)=sup{ \mathscr{C} J-dim(M): M is a left R-module};

the \mathscr{C} -flat dimension of a module M_R is defined by

$$\mathscr{CF}$$
-dim $(M_R) = inf\{n : \operatorname{Tor}_{n+1}^R(M, C) = 0 \text{ for every } C \in \mathscr{C}\};$

the \mathscr{C} -weak global dimension of a ring R is defined by

 \mathscr{C} -WD(R)=sup{ \mathscr{C} F-dim(M): M is a right R-module}.

Theorem 3.5. Let R be a left strongly C-coherent ring, M a left R-module and n a nonnegative integer. Then the following statements are equivalent:

- (1) $\mathscr{C}\mathfrak{I}\text{-}dim(_RM) \leq n.$
- (2) $\operatorname{Ext}_{R}^{n+k}(P,M) = 0$ for all \mathscr{C} -projective module P and all positive integers k.
- (3) $\operatorname{Ext}_{R}^{n+1}(P, M) = 0$ for all \mathscr{C} -projective module P.

Proof. (1) \Rightarrow (2). Assume (1). Then since R is left strongly \mathscr{C} -coherent, by [28, Theorem 2], there exists an exact sequence of left R-modules $0 \to M \stackrel{\varepsilon}{\to} E_0 \stackrel{d_0}{\to} \cdots \to E_{n-1} \stackrel{d_{n-1}}{\to} E_n \to 0$ such that $E_0, \cdots, E_{n-1}, E_n$ are \mathscr{C} -injective. Thus, by [28, Theorem 1(12)], we have $\operatorname{Ext}_R^{n+1}(P, M) \cong \operatorname{Ext}_R^n(P, im(d_0)) \cong \operatorname{Ext}_R^{n-1}(P, im(d_1)) \cong \cdots \cong \operatorname{Ext}_R^1(P, im(d_{n-1})) = \operatorname{Ext}_R^1(P, E_n) = 0$ for any \mathscr{C} -projective module P, and $\operatorname{Ext}_R^{n+k}(P, M) \cong \operatorname{Ext}_R^1(P, 0) = 0$ for any k > 1. So (2) follows. (2) \Rightarrow (3) \Rightarrow (1). It is trivial.

Corollary 3.6. Let R be a left strongly C-coherent ring and $0 \to A \to B \to C \to 0$ an exact sequence of left R-modules. If two of CJ-dim(A), CJ-dim(B), CJ-dim(C) are finite, then so is the third. Moreover:

- (1) $\mathscr{C}\mathfrak{I}\text{-}dim(B) \leq \sup\{\mathscr{C}\mathfrak{I}\text{-}dim(A), \mathscr{C}\mathfrak{I}\text{-}dim(C)\}.$
- (2) \mathscr{C} J-dim $(A) \le \sup\{ \mathscr{C}$ J-dim $(B), \mathscr{C}$ J-dim $(C) + 1 \}.$ (3) \mathscr{C} J-dim $(C) \le \sup\{ \mathscr{C}$ J-dim $(B), \mathscr{C}$ J-dim $(A) - 1 \}.$
 - In particular, CJ-dim $(A \oplus C) = sup\{CJ$ -dim(A), CJ-dim $(C)\}$.

Let *n* be a positive integer. then according to [4], a left *R*-module *M* is said to be *n*-presented in case there is an exact sequence of left *R*-modules $F_n \to F_{n-1} \to \cdots \to$ $F_1 \to F_0 \to M \to 0$ in which every F_i is finitely generated free. It is easy to see that a left *R*-module *M* is *n*-presented if and only if there exists an exact sequence of left *R*-modules $0 \to K_n \to F_{n-1} \to \cdots \to F_1 \to F_0 \to M \to 0$ such that F_0, \cdots, F_{n-1} are finitely generated free and K_n is finitely generated.

Lemma 3.7. Let R be a left strongly C-coherent ring. Then every $C \in C$ is n-presented for any positive integer n.

Proof. Use induction on n. If n = 1, then it is clear that the result holds. Assume that every $C \in \mathscr{C}$ is n-presented. Then for any $C \in \mathscr{C}$ and any FP-injective module N, we have $\operatorname{Ext}_{R}^{n+1}(C,N) = 0$ by [28, Theorem 1(5)] because R is left strongly \mathscr{C} -coherent. Let $0 \to K_n \to F_{n-1} \to \cdots \to F_1 \to F_0 \to C \to 0$ be an exact sequence of left R-modules with F_0, \cdots, F_{n-1} finitely generated free left R-modules and K_n finitely generated. Then $\operatorname{Ext}_{R}^{1}(K_n, N) \cong \operatorname{Ext}_{R}^{n+1}(C, N) = 0$, so K_n is finitely presented by [7], and hence C is (n+1)-presented. \Box

Theorem 3.8. Let R be a left strongly C-coherent ring and M a left R-module. Then \mathcal{CJ} -dim $(M) = \mathcal{CF}$ -dim (M^+) .

Proof. Let n be a positive integer, $C \in \mathscr{C}$. Since R is left strongly \mathscr{C} -coherent, by Lemma 3.7, C is (n+2)-presented. So, by [2, Lemma 2.7(2)], we have $\operatorname{Tor}_{n+1}^{R}(M^{+}, C) \cong \operatorname{Ext}_{R}^{n+1}(C, M)^{+}$. Consequently, \mathscr{C} J-dim $(M) = \mathscr{C}$ F-dim (M^{+}) by [28, Theorem 2, Theorem 3].

Theorem 3.9. Let R be left strongly C-coherent and $_RR$ be C-injective. If $_RM$ is C-projective with finite projective dimension, then $_RM$ is projective.

Proof. Suppose that $_RM$ is \mathscr{C} -projective with $pd(M) = n < \infty$. Then by [28, Theorem 5], there exists an exact sequence of left R-modules

$$0 \to P_n \xrightarrow{d_n} P_{n-1} \xrightarrow{d_{n-1}} \cdots \to P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} M \to 0$$

such that P_0, \dots, P_{n-1}, P_n are projective. Since $_RR$ is \mathscr{C} -injective and direct sums and direct summands of \mathscr{C} -injective modules are \mathscr{C} -injective by [28, Proposition 2.5], each P_i is \mathscr{C} -injective for $i = 0, 1, \dots, n$. Clearly, $im(d_n) \cong P_n$ is \mathscr{C} -injective. Note that R is left strongly \mathscr{C} -coherent, by [28, Theorem 1(7)], $im(d_{n-1})$ is \mathscr{C} -injective. Continues in this way, one can get that $im(d_1)$ is \mathscr{C} -injective, so $\operatorname{Ext}^1_R(M, im(d_1)) = 0$, and thus the exact sequence $0 \to im(d_1) \to P_0 \to M \to 0$ is split, this follows that $_RM$ is projective, as required.

Recall that, by [28, Example 1], a left \mathscr{C} -coherent ring need not be left strongly \mathscr{C} coherent. As the end of this section, we give another example which shows that even if Ris a left artinian ring, it need not be left strongly \mathscr{C} -coherent.

Example 3.10. Let K be a field and L be a proper subfield of K such that $\rho: K \to L$ is an isomorphism. Let $K[x; \rho]$ be the ring of twisted right polynomials over K where $kx = x\rho(k)$ for all $k \in K$. Set $R = K[x; \rho]/(x^2)$, and $\mathscr{C} = \{R/Ra : a \in R\}$. If b_1, b_2 is a basis for K as a vector space over L, then R is left artinian and hence left \mathscr{C} -coherent, but it is not left strongly \mathscr{C} -coherent.

Proof. Since K has finite vector space dimension over L, by [18, Example 1], R is left artinian. Since the only proper right ideal of R is $\mathbf{r}_R(x) = xR = xK$, it is readily verified that $\mathbf{r}_R \mathbf{l}_R(a) = aR$ for any $a \in R$, so $_RR$ is P-injective by [16, Lemma 1.1]. Now, we define $f: Rxb_1 + Rxb_2 \to R$ by $f(r_1xb_1 + r_2xb_2) = r_1x + r_2x$, then it is easy to see that f is a left R-homomorphism. We claim that this homomorphism can not be extended to an endomorphism of R. Otherwise, there exists a $c = k_0 + xk'_0 \in R$ such that $f = \cdot c$. Clearly, $k_0 \neq 0$. Thus, $f(xb_1 - xb_2) = (xb_1 - xb_2)(k_0 + xk'_0)$, and so $0 = x - x = (xb_1 - xb_2)k_0$, this follows that $b_1 = b_2$, a contradiction. Observing that $\mathbf{l}_R(x) = xK = xR = Rxb_1 + Rxb_2$, we have $\operatorname{Ext}^1_R(Rx, R) \cong \operatorname{Ext}^1_R(R/(Rxb_1 + Rxb_2), R) \neq 0$, and hence R is not left strongly \mathscr{C} -coherent.

4. C-semihereditary rings

We begin with the following definition.

Definition 4.1. A ring R is called weakly \mathscr{C} -semihereditary, if whenever $0 \to K \to P \to C \to 0$ is exact, where $C \in \mathscr{C}$, P is finitely generated projective, then K is flat.

Recall that a ring R is called *left weakly n-semihereditary* [25] if every *n*-generated left ideal is flat; a ring R is called a *left p.f ring* [11] if every principal left ideal of R is flat. By [11, Theorem 2.2], a ring R is left p.f if and only if it is right p.f; a ring R is called a *left FS-ring* [12, 22] if $Soc(_RR)$ is flat.

Example 4.2. (1). Let $\mathscr{C} = \{R/I : I \text{ is an } n \text{-generated left ideal of } R\}$. Then the ring R is weakly \mathscr{C} -semihereditary if and only if R is left weakly n-semihereditary.

(2). Let $\mathscr{C} = \{R/Ra : a \in R\}$. Then the ring R is weakly \mathscr{C} -semihereditary if and only if R is left p.f.

(3). Let $\mathscr{C} = \{R/Ra : Ra \text{ is a minimal left ideal of } R\}$. Then the ring R is weakly \mathscr{C} -semihereditary if and only if every minimal left ideal of R is flat, if and only if R is a left FS-ring.

Theorem 4.3. The following statements are equivalent for a ring R:

- (1) R is a left weakly C-semihereditary ring.
- (2) Every submodule of a C-flat right R-module is C-flat.
- (3) Every submodule of a flat right R-module is C-flat.
- (4) Every submodule of a projective right R-module is C-flat.
- (5) Every submodule of a free right R-module is \mathscr{C} -flat.
- (6) Every finitely generated right ideal of R is \mathscr{C} -flat.

Proof. $(2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6)$ is trivial.

 $(1)\Rightarrow(2)$. Assume (1). Let A be a submodule of a \mathscr{C} -flat right R-module B and let $C \in \mathscr{C}$. Then there exists an exact sequence of left R-modules $0 \to K \to P \to C \to 0$, where P is finitely generated projective. By (1), K is flat. Then the exactness of $0 = \operatorname{Tor}_2^R(B/A, P) \to \operatorname{Tor}_2^R(B/A, C) \to \operatorname{Tor}_1^R(B/A, K) = 0$ implies that $\operatorname{Tor}_2^R(B/A, C) = 0$. And thus from the exactness of the sequence $0 = \operatorname{Tor}_2^R(B/A, C) \to \operatorname{Tor}_1^R(A, C) \to \operatorname{Tor}_1^R(B, C) = 0$ we have $\operatorname{Tor}_1^R(A, C) = 0$. It shows that A is \mathscr{C} -flat.

 $(6)\Rightarrow(1).$ Let $C \in \mathscr{C}.$ There exists an exact sequence of left *R*-modules $0 \to K \to P \to C \to 0$, where *P* is finitely generated projective. For any finitely generated right ideal *I* of *R*, we have an exact sequence $0 \to \operatorname{Tor}_2^R(R/I, C) \to \operatorname{Tor}_1^R(I, C) = 0$ since *I* is \mathscr{C} -flat. So $\operatorname{Tor}_2^R(R/I, C) = 0$, and hence we obtain an exact sequence $0 = \operatorname{Tor}_2^R(R/I, C) \to \operatorname{Tor}_1^R(R/I, K) \to 0$. Thus, $\operatorname{Tor}_1^R(R/I, K) = 0$. And so *K* is flat. \Box

Proposition 4.4. If R is a left weakly \mathscr{C} -semihereditary ring, then \mathscr{C} -WD(R) ≤ 1 .

Proof. Let M be any right R-module and let $C \in \mathscr{C}$. Then there exists an exact sequence of left R-modules $0 \to K \to P \to C \to 0$, where P is finitely generated projective. Since R is left weakly \mathscr{C} -semihereditary, K is flat. So $\operatorname{Tor}_2^R(M, C) \cong \operatorname{Tor}_1^R(M, K) = 0$. It shows that \mathscr{C} -WD(R) ≤ 1 .

Lemma 4.5. Let \mathcal{F} be a class of some right *R*-modules. If $N \xrightarrow{f_1} N_1$ and $N \xrightarrow{f_2} N_2$ are \mathcal{F} -preenvelopes, then $N_1 \oplus N_2/f_2(N) \cong N_2 \oplus N_1/f_1(N)$.

Proof. Let $\varepsilon_i : N_i \to N_1 \oplus N_2$ be the injections, i = 1, 2. We obtain a morphism $q^* = \varepsilon_1 f_1 + \varepsilon_2 f_2 : N \to N_1 \oplus N_2$. Let $\overline{\varepsilon_1} : N_1 \to Coker(q^*); n_1 \mapsto (n_1, 0) + im(q^*)$, $\overline{\varepsilon_2} : N_2 \to Coker(q^*); n_2 \mapsto (0, n_2) + im(q^*)$ and $Q = Coker(q^*)$. Then we get the following pushout diagram:

$$\begin{array}{cccc} N & \stackrel{f_2}{\longrightarrow} & N_2 \\ f_1 & & \overline{\varepsilon_2} \\ \\ N_1 & \stackrel{\overline{\varepsilon_1}}{\longrightarrow} & Q \end{array}$$

And so, by the proof of [21, 10.6(1)(i)], we have the following commutative diagram with exact rows, where $g: Q \to N_2/f_2(N); (n_1, n_2) + im(q^*) \mapsto n_2 + f_2(N):$

Since $N \stackrel{f_2}{\to} N_2$ is an \mathcal{F} -preenvelope and $N_1 \in \mathcal{F}$, there exists a homomorphism $\alpha : N_2 \to N_1$ such that $f_1 = \alpha f_2$. If $\overline{\varepsilon_1}(n_1) = 0$, then $(n_1, 0) = q^*(n) = (f_1(n), f_2(n))$ for some $n \in N$, so $f_2(n) = 0, f_1(n) = n_1$, and hence $n_1 = f_1(n) = \alpha f_2(n) = 0$. It shows that $\overline{\varepsilon_1}$ is monic. Now, we define $h: Q \to N_1$ by $(n_1, n_2) + im(q^*) \mapsto n_1 - \alpha(n_2)$. Then h is well-defined, and $h\overline{\varepsilon_1}(n_1) = h((n_1, 0) + im(q^*)) = n_1 - \alpha(0) = n_1$ for each $n_1 \in N_1$, so $h\overline{\varepsilon_1} = 1_{N_1}$, and then $\overline{\varepsilon_1}$ is left split. Thus, we have $Q \cong N_1 \oplus N_2/f_2(N)$. Similarly, we have also that $Q \cong N_2 \oplus N_1/f_1(N)$ and so $N_1 \oplus N_2/f_2(N) \cong N_2 \oplus N_1/f_1(N)$.

Next, we give some new characterizations of left C-semihereditary rings.

Theorem 4.6. The following statements are equivalent for a ring R:

(1) R is left C-semihereditary.

(2) R is left C-coherent and left weakly C-semihereditary.

(3) R is left strongly C-coherent and every C-projective left R-module has a monic C-injective cover.

(4) Every C-projective left R-module has projective dimension at most 1.

(5) R is left C-coherent and every CI-injective module is injective.

(6) Every left R-module has a C-injective cover and every CI-injective module is injective.

(7) Every C-pure quotient of a C-injective left R-module has a C-injective cover and every CI-injective module is injective.

(8) R is left strongly C-coherent and every CI-injective module is C-injective.

(9) R is left strongly C-coherent and the kernel of any C-injective precover of a left R-module is C-injective.

(10) R is left strongly C-coherent and the kernel of any C-injective cover of a left R-module is C-injective.

(11) R is left strongly C-coherent and the cokernel of any C-injective preenvelope of a left R-module is C-injective.

(12) R is left strongly C-coherent and the kernel of any C-flat precover of a right R-module is C-flat.

(13) R is left strongly C-coherent and the kernel of any C-flat cover of a right R-module is C-flat.

(14) R is left strongly C-coherent and the cokernel of any C-flat preenvelope of a right R-module is C-flat.

Proof. (1) \Leftrightarrow (2). It follows from [27, Theorem 4.3(2)] and Theorem 4.3(2).

 $(1) \Rightarrow (3)$. Suppose that R is left \mathscr{C} -semihereditary. Then it is left strongly \mathscr{C} -coherent by [28, Theorem 4]. Moreover, by [27, Theorem 4.3(7)], every \mathscr{C} -projective left R-module has a monic \mathscr{C} -injective cover.

 $(3) \Rightarrow (1)$. Let E be any injective left R-module and K any submodule of E. By [27, Theorem 4.3(6)], we need only to prove that E/K is \mathscr{C} -injective. In fact, since $(\mathscr{CP}, \mathscr{CI})$ is a complete cotorsion pair by [27, Theorem 2.10(1)], there exists an exact sequences $0 \to K \to E_1 \xrightarrow{f} P \to 0$ with $P \mathscr{C}$ -projective and $E_1 \mathscr{C}$ -injective. By (3), P has a monic \mathscr{C} -injective cover $\varphi : E_2 \to P$. So, there exists a homomorphism $g : E_1 \to E_2$ such that $f = \varphi g$. Thus φ is epic, and hence φ is an isomorphism. This implies that P is \mathscr{C} -injective. For any $C \in \mathscr{C}$, we have the exact sequence

$$0 = \operatorname{Ext}_{R}^{1}(C, P) \to \operatorname{Ext}_{R}^{2}(C, K) \to \operatorname{Ext}_{R}^{2}(C, E_{1}).$$

But R is left strongly \mathscr{C} -coherent, by [28, Theorem 1(6)], $\operatorname{Ext}_R^2(C, E_1) = 0$, and so $\operatorname{Ext}_R^2(C, K) = 0$. On the other hand, the short exact sequence $0 \to K \to E \to E/K \to 0$ induces the exact sequence

$$0 = \operatorname{Ext}_{R}^{1}(C, E) \to \operatorname{Ext}_{R}^{1}(C, E/K) \to \operatorname{Ext}_{R}^{2}(C, K) = 0.$$

so, we have $\operatorname{Ext}^{1}_{R}(C, E/K) = 0$, and hence E/K is \mathscr{C} -injective. Consequently, R is left \mathscr{C} -semihereditary by [27, Theorem 4.3(6)].

 $(1)\Rightarrow(4)$. Let M be a \mathscr{C} -projective module and N be any left R-module. Since R is left \mathscr{C} -semihereditary, by [27, Theorem 4.3(6)], E(N)/N is \mathscr{C} -injective. So, by the exactness of the sequence

$$0 = \operatorname{Ext}^1_R(M, E(N)/N) \to \operatorname{Ext}^2_R(M, N) \to \operatorname{Ext}^2_R(M, E(N)) = 0.$$

We have $\operatorname{Ext}^2_B(M, N) = 0$, and hence M has projective dimension at most 1.

 $(4) \Rightarrow (1)$. Let $C \in \mathscr{C}$ and $0 \to K \to P \to C \to 0$ be exact, where P is finitely generated projective. Note that C is \mathscr{C} -projective, by (4), $pd(C) \leq 1$, and so K is projective by Schanuel's Lemma.

 $(1)\Rightarrow(5)$. Since R is left \mathscr{C} -semihereditary, by [27, Theorem 4.3], R is left \mathscr{C} -coherent and every quotient module of an injective left R-module is \mathscr{C} -injective. Let M be a \mathscr{C} I-injective left R-module. Then E(M)/M is \mathscr{C} -injective, so M is injective with respect to the exact sequence $0 \to M \to E(M) \to E(M)/M \to 0$ by Proposition 2.3, and hence M = E(M) is injective.

 $(5) \Rightarrow (6)$. It follows from [27, Corollary 3.7].

 $(6) \Rightarrow (1)$. Let M be a quotient of an injective left R-module. By (6), M has a \mathscr{C} -injective cover. Suppose $f : F \to M$ is a \mathscr{C} -injective cover of M. Then f is epic. By Remark 2.4, $\operatorname{Ker}(f)$ is \mathscr{C} I-injective, and so it is injective by (6). Thus, M is isomorphic to a direct summand of F and hence it is \mathscr{C} -injective. Hence, by [27, Theorem 4.3(6)], R is left \mathscr{C} -semihereditary.

 $(6) \Rightarrow (7)$. It is obvious.

 $(7) \Rightarrow (8)$. It follows from Theorem 3.3(7).

 $(8) \Rightarrow (5)$. Assume (8). Then by [28, Theorem 1(10)], R is left \mathscr{C} -coherent. Let M be a \mathscr{C} I-injective module. Then by (8), M is \mathscr{C} -injective. But R is left strongly \mathscr{C} -coherent, by [28, Theorem 1(7)], E(M)/M is \mathscr{C} -injective. Thus, by Proposition 2.3(4), M is injective.

(1) \Rightarrow (9). Clearly, R is left strongly \mathscr{C} -coherent. Let $f : F \to M$ be a \mathscr{C} -injective precover and K = Ker(f). Since R is left \mathscr{C} -semihereditary, by [27, Theorem 4.3(7)], there exists a monic \mathscr{C} -injective cover $\varphi : G \to M$. Thus, by [9, Lemma 8.6.3], we have $K \oplus G \cong F$, and so K is \mathscr{C} -injective.

 $(9) \Rightarrow (10)$. It is obvious.

 $(10) \Rightarrow (1)$. Let M be a quotient of a \mathscr{C} -injective left R-module. Since R is left \mathscr{C} coherent, by [27, Corollary 3.7], M has a \mathscr{C} -injective cover $f: F \to M$. Clearly, f is epic.
So, by (10), we have that $\operatorname{Ker}(f)$ is \mathscr{C} -injective, this implies that M is also \mathscr{C} -injective by
[28, Theorem 1(7)] as R is left strongly \mathscr{C} -coherent. Therefore, by [27, Theorem 4.3(5)], R is left \mathscr{C} -semihereditary.

 $(1) \Rightarrow (11)$. Clearly, R is left strongly \mathscr{C} -coherent. And by [27, Theorem 4.3(5)], every quotient module of a \mathscr{C} -injective module is \mathscr{C} -injective, so the cokernel of any \mathscr{C} -injective preenvelope of a left R-module is \mathscr{C} -injective.

 $(11) \Rightarrow (1)$. Let M be any left R-module. Since the class of all \mathscr{C} -injective left R-modules is closed under pure submodules, isomorphisms and direct product, by [29, Theorem 2.6], M has a \mathscr{C} -injective preenvelope $f : M \to E$. By (11), E/im(f) is \mathscr{C} -injective. It is easy to see that f is monic. Since R is left strongly \mathscr{C} -coherent, by [28, Theorem 2(5)], \mathscr{C} J- $dim(_RM) \leq 1$. And so, \mathscr{C} J-GLD(R) ≤ 1 . Therefore, by [28, Theorem 4(2)], R is left \mathscr{C} -semihereditary.

 $(1) \Rightarrow (12)$. Clearly, R is left strongly \mathscr{C} -coherent. And by [27, Theorem 4.3(2)], the kernel of any \mathscr{C} -flat precover of a right R-module is \mathscr{C} -flat.

 $(12) \Rightarrow (13)$. It is obvious.

 $(13) \Rightarrow (1)$. Let N be any right R-module. Then by [27, Theorem 2.10(2)], N has a \mathscr{C} -flat cover $f: F \to N$. Clearly, f is epic. By (13), we have that Ker(f) is \mathscr{C} -flat. But R is left strongly \mathscr{C} -coherent, by [28, Theorem 3(5)], \mathscr{CF} -dim $(N_R) \leq 1$. Thus, \mathscr{C} -WD(R) ≤ 1 . Consequently, by [28, Theorem 4(3)], we have that R is left \mathscr{C} -semihereditary.

 $(1) \Rightarrow (14)$. Clearly, R is left strongly \mathscr{C} -coherent. Let $\varphi : N \to F$ be a \mathscr{C} -flat preenvelope of a right R-module N and $L = coker(\varphi)$. Since R is left \mathscr{C} -semihereditary, by [27, Theorem 4.3(8)], N has an epic \mathscr{C} -flat envelope $\phi : N \to G$. Hence, by Lemma 4.5, we have $F \cong G \oplus L$, and so L is \mathscr{C} -flat.

 $(14) \Rightarrow (1)$. Let N be a submodule of a \mathscr{C} -flat module. Since R is left \mathscr{C} -coherent, by [27, Theorem 3.3(12)], N has a \mathscr{C} -flat preenvelope $f : N \to F$. It is easy to see that f is monic. By (14), F/im(f) is \mathscr{C} -flat. Note that R is left strongly \mathscr{C} -coherent, by Theorem 3.1(4), N is \mathscr{C} -flat. Therefore, by [27, Theorem 4.3(2)], R is left \mathscr{C} -semihereditary. \Box

Acknowledgment. The authors would like to thank the referee for the useful suggestions and comments. This research was supported by the Natural Science Foundation of Zhejiang Province, China(LY18A010018).

References

- [1] S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97, 457-473, 1960.
- [2] J. L. Chen and N. Q. Ding, On n-coherent rings, Comm. Algebra 24 (3), 3211-3216, 1996.
- [3] R. R. Colby, Rings which have flat injective modules, J. Algebra 35, 239-252, 1975.
- [4] D. L. Costa, Parameterizing families of non-noetherian rings, Comm. Algebra 22 (10), 3997-4011, 1994.

- [5] N. Q. Ding and J. L. Chen, On envelopes with the unique mapping property, Comm. Algebra 24 (4), 1459-1470, 1996.
- [6] D. E. Dobbs, S. Kabbaj, and N. Mahdou, n-coherent rings and modules, Lecture Notes in Pure and Appl. Math. 185, 269-281, 1997
- [7] E. Enochs, A note on absolutely pure modules, Canad. Math. Bull. 19 (3), 361-362, 1976.
- [8] E. E. Enochs and O. M. G. Jenda, Copure injective resolutions, flat resolutions and dimensions, Comment. Math. Univ. Carolin 34 (2), 203-211, 1993.
- [9] E. E. Enochs and O. M. G. Jenda, *Relative Homological Algebra*, Walter de Gruyter. Berlin-New York, 2000.
- [10] E. E. Enochs, O. M. G. Jenda and J. A. Lopez-Ramos, The existence of Gorenstein flat covers, Math. Scand 94 (1), 46-62, 2004.
- [11] S. Jøndrup, p.p.rings and finitely generated flat ideals, Proc. Amer. Math. Soc. 28 (2), 431-435, 1971.
- [12] Z. K. Liu, Rings with flat left socles, Comm. Algebra 23 (5), 1645-1656, 1995.
- [13] L. X. Mao and N. Q. Ding, *FI-injective and FI-flat modules*, J. Algebra **309** (1), 367-385, 2007.
- [14] L. X. Mao and N. Q. Ding, On divisible and torsionfree modules, Comm. Algebra 36 (2), 708-731, 2008.
- [15] L. X. Mao, On mininjective and min-flat modules, Publ. Math. Debrecen 72 (3-4), 347-358, 2008.
- [16] W. K. Nicholson and M. F. Yousif, Principally injective rings, J. Algebra 174 (1), 77-93, 1995.
- [17] J. J. Rotman, An Introduction to Homological Algebra, Academic press, New Yock, 1979.
- [18] E. A. Rutter, *Rings with the principle extension property*, Comm. Algebra **3** (3), 203-212, 1975.
- [19] B. Stenström, Coherent rings and FP-injective modules, J. London Math. Soc. 2, 323-329, 1970.
- [20] J. Trlifaj, Cover, envelopes, and cotorsion theories, in: Homological Methods in Module Theory. Lecture notes for the workshop, Cortona, 10-16, 2000.
- [21] R. Wisbauer, Foundations of Module and Ring Theory, London-Tokyo: Gordon and Breach 1991.
- [22] Y. F. Xiao, Rings with flat socles, Proc. Amer. Math. Soc. 123 (8), 2391-2395, 1995.
- [23] J. Z. Xu, *Flat Covers of Modules*, Lecture Note in Math. Springer-Verlag, Berlin-Heidelberg-New York, **1634**, 1996.
- [24] X. X. Zhang , J. L. Chen and J. Zhang, On (m,n)-injective modules and (m,n)coherent rings, Algebra Colloq. 12 (1), 149-160, 2005.
- [25] X. X. Zhang and J. L. Chen, On n-semihereditary and n-coherent rings, Int. Electron. J. Algebra 1, 1-10, 2007.
- [26] Z. M. Zhu, On n-coherent rings, n-hereditary rings and n-regular rings, Bull. Iranian Math. Soc. 37 (4), 251-267, 2011.
- [27] Z. M. Zhu, *C*-coherent rings, *C*-semihereditary rings and *C*-regular rings, Studia Sci. Math. Hungar 50 (4), 491-508, 2013.
- [28] Z. M. Zhu, Strongly C-coherent rings, Math. Rep. 19 (4), 367-380, 2017.
- [29] Z. M. Zhu, On Π-coherence of rings, Hacet. J. Math. Stat. 46 (5), 875-886, 2017.