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Abstract 

Despite Algeria has been able to join the group of countries with moderate tuberculosis (TB) 
prevalence since the 1980s, the disease remains one of the major public health issues in the country. 
Over the past decade, the annual incidence rate has hovered around 55 per 100 000 people. The 
incidence rate remains, however, very high in some provinces. The aim of this study was to describe 
the temporal patterns of TB in Médéa province which records the highest incidence rate in the country. 
In this retrospective study, the monthly pulmonary TB (PTB) and extrapulmonary TB (EPTB) data 
from 2008 to 2017, extracted from the national surveillance system, were analyzed and seasonal 
fluctuation was examined. The Box-Jenkins approach to fit seasonal autoregressive integrated moving 
average (SARIMA) model to the monthly PTB and EPTB notification data from 2008 to 2016 was 
performed. The models were used to predict the monthly cases of PTB and EPTB for the year 2017. 
The models were found to be adequate. Our findings indicate that SARIMA models are useful tools 
for monitoring and for predicting trends of TB incidence in Médea province.  

Keywords: Algeria, biostatistics, Box-Jenkins, seasonal autoregressive integrated moving average, 
times series analysis, tuberculosis 

1. Introduction

Tuberculosis (TB) is an infectious disease caused by a bacterium called Mycobacterium 
Tuberculosis (MTB). This bacterium was discovered by Robert Koch in 1882. The bacteria 
spread through the air when a person with active TB of the lungs coughs, sneezes, or talks. 
The probability of TB transmission per contact is low when compared of that of airborne 
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transmitted diseases such influenza, but nonetheless the infectious period of TB is longer. The 
risk of infection is substantial only for individuals who have frequent and close contacts with 
a person with active TB. The bacteria usually attack the lungs, causing pulmonary TB (PTB). 
But, these bacteria can also attack any other part of the body, causing extrapulmonary TB 
(EPTB). TB can be cured in almost all cases, if treated; its treatment takes six to nine months 
and sometimes longer.  Immunization with the Bacillus Calmette-Guérin (BCG) vaccine is 
used in many parts of the world. This vaccine is 70-80% effective against the most severe 
forms of TB, such as TB meningitis, however, it is less effective in preventing the form of TB 
that affects the lungs [1-3]. 
 
TB is the top infectious killer in the world and it is one of the top 10 causes of death 
worldwide. In 2017, 1.6 million people died from TB and 10 million people fell ill with TB. 
Yet, 87% of new TB cases occurred in the 30 high TB burden countries. Two-thirds of the 
new TB cases are reported in eight countries, namely, India, China, Indonesia, the Philippines, 
Pakistan, Nigeria, Bangladesh and South Africa. An estimated 54 million lives were saved 
through TB diagnosis and treatment between 2000 and 2017. Globally, TB incidence is falling 
at about 2% per year. Multidrug-resistant TB (MDR-TB) remains a public health issue. Only 
one in four people had access to MDR-TB treatment. Ending the TB epidemic by 2030 is 
among the health targets of the Sustainable Development Goals. However, funding gaps for 
research and also for the implementation of Directly Observed Treatment Short course 
(DOTS) in some affected regions may be an obstacle to achieving this target [1].   
 
Tuberculosis is one of the main public health issues in Algeria. Since 1962, the disease has 
become a health priority and benefits from a national control programme which is based on 
recommendations of the World Health Organization (WHO) and the International Union 
against Tuberculosis and Lung Disease. Algeria has been able to join the group of countries 
with moderate prevalence since the 1980s. The annual incidence rate has hovered around 55 
per 100000 people. The incidence rate remains, however, very high in some provinces, 
exceeding 100 per 100000 people [4]. 
 
This study aimed to describe the temporal patterns of TB in Médéa province that records a 
high incidence rate in Algeria. In this retrospective study, the monthly PTB and EPTB data 
from 2008 to 2017, extracted from the national surveillance system, were analysed and 
seasonal fluctuation was examined. The Box-Jenkins approach to fit seasonal autoregressive 
integrated moving average (SARIMA) model to the monthly PTB and EPTB notification data 
from 2008 to 2016 was performed. The models were used to predict the monthly cases of PTB 
and EPTB for the year 2017.  
 
Section 2 of this paper, describes the materials and methodology. Section 3 investigates the 
results of the data analysis and their discussion. Section 4 provides some concluding remarks. 
 

2. Materials and methods 
 

2.1 The study Region: Médéa province 
 

Médéa province is located in the heart of the Tellian Atlas, in northern Algeria. The province 
covers a land size of 8776 square kilometres. As 2017, the total resident population of the 
province reached 834809. Its climate is warm and temperate with an average annual 
temperature of 14.4 °C and an average annual rainfall of 736 mm [5]. 
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Table 1. Monthly notified cases of pulmonary TB (P) and extrapulmonary TB (EP). 
 

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 

 Month P EP P EP P EP P EP P EP P EP P EP P EP P EP P EP

Jan 7 31 5 29 11 26 10 48 12 56 15 57 10 38 7 96 14 74 12 67

Feb 14 46 10 42 9 33 11 50 12 40 12 71 5 46 6 70 13 72 10 102

Mar 15 37 22 53 26 34 15 58 9 56 10 55 17 50 13 81 9 88 14 110

Apr 22 44 25 40 17 55 14 82 12 90 16 55 15 67 21 91 11 75 12 119

May 15 46 23 49 9 52 23 93 13 59 17 46 14 66 22 81 10 75 12 106

Jun 15 35 25 46 20 36 12 67 18 44 11 57 9 51 12 88 7 71 8 79

Jul 22 34 15 40 16 33 11 70 21 49 19 71 16 39 14 55 8 33 15 79

Aug 22 32 23 23 24 30 18 57 10 52 14 28 18 46 15 54 15 56 4 73

Sep 18 26 24 20 23 24 11 48 11 52 22 53 12 49 15 50 10 41 7 55

Oct 14 29 14 31 9 35 19 63 13 70 19 34 16 57 7 56 10 68 16 83

Nov 4 39 14 25 8 33 20 46 7 44 14 23 11 82 11 61 7 39 9 82

Dec 9 40 19 27 11 40 13 39 17 52 12 29 9 62 3 53 2 50 7 51

 
 

2.2 Data 
 

The data sets of notified cases of PTB and EPTB used comprise 120 months from January 
2008 to December 2017 and are displayed in Table 1. They were provided by the Ministry of   
Health, Population and Hospital Reform. This study was approved by the National Council on 
Ethics of Health Sciences, Algeria, and the Committee of National Tuberculosis Control 
Programme. 
 

2.3 Box-Jenkins method 
 

Time series modelling allows to study the collected past observations and then to develop an 
appropriate model which describes the inherent structure of the series of observations. The 
built model is thereafter used to make forecasts.  Thus, time series forecasting allows 
predicting the future by understanding the past. One of the most popular and frequently used 
stochastic time series models is the Autoregressive Integrated Moving Average (ARIMA) 
model. If the series is observed to be seasonal of period S, Box and Jenkins had proposed a 
quite successful variation of ARIMA model, namely, the Seasonal ARIMA (SARIMA). The 
Box-Jenkins methodology is used in this study [6-7]. 
 
In adequate modelling, time series should be stationary. Often, in practice, a time series is not 
stationary, that is, has a non-stationary variance, or has a non-stationary mean, or has periodic 
or seasonal components. To stabilise the variance, various transformations can be applied to 
each observation tX  (t = 1,..., n) such as the logarithm, the square root, the reciprocal. To 

stabilise the mean, differencing to an appropriate order could render a non-stationary series to 
a stationary one. A SQDPqdp ),,(),,(   SARIMA model is defined by the following 

difference equation:  
 
          t

S
t

D
S

dS LLBXLLA )()()()(                        (1) 
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where the backward shift operator L is defined by ktt
k XXL    and where  d   is the thd  

difference of tX , D
S  is the thD  seasonal difference operator with S

S L 1 , and  t  is a 

white noise process. The polynomials )(  and  ),( ),( ),( LLLBLA    are respectively the 
autoregressive (AR), the moving average (MA), the seasonal autoregressive and the seasonal 
moving average polynomials. All roots of the polynomials )(  and  ),( ),( ),( LLLBLA   must 
be outside the unit circle so that the model is stationary and invertible.  
 
Fitting of a SARIMA model begins with the search of the orders d, p, q, D, P, Q and S. The 
seasonality is often apparent from the time plot of the time series. Moreover, the seasonality 
of period S is suggestive of a significant spike at the lag S in the correlogram with 
neighbouring spikes non-significant. A positive spike at lag S indicates the involvement of a 
seasonal AR component of lag 1, that is, P = 1 whereas a negative spike at lag S indicates the    
involvement of a seasonal MA component of lag 1, that is, Q = 1. The orders p and q are lags 
of the autocorrelation functions (ACF) and partial autocorrelation functions (PACF) 
respectively.  Once orders are set, the model equation (1) is then estimated. To test the model 
for goodness-of-fit, the residuals should be analysed. The residuals should be uncorrelated 
with zero mean and follow a Gaussian distribution; moreover, the autocorrelations of the 
residuals should not be significantly different from zero [7-8].  
 
Model equation estimation and analyses were performed using EViews 9, a statistical 
software offering access to powerful statistical, forecasting, and modelling tools [9]. 
 

3. Results and discussion 
 
Of the 8128 TB cases notified between 2008 and 2017 in Médéa province, 1632 (20.1%) were 
patients affected by PTB and 6496 (79.9%) were patients affected by EPTB. The yearly 
evolution of notified cases of PTB and EPTB along with the yearly incidence rate per 100000 
people from 2008 to 2017, are displayed in Figure 1. The highest annual number of notified 
PTB (respectively EPTB) cases occurred in 2009 (respectively 2017) with 219 (respectively 
1006) cases and the lowest one occurred in 2016 (respectively 2009) with 116 (respectively 
425) cases. TB is notified throughout the year with peaks in the spring months.  Indeed, 29% 
(respectively 28%, 24%, 19%) of PTB cases occurred in the spring (respectively summer, 
autumn, winter) and 31% (respectively 24%, 23%, 22%) of EPTB cases occurred in the spring 
(respectively winter, summer, autumn). 
 

 
 

Figure 1. Annual evolution of cases of PTB and EPTB, and the incidence rate per 100000 
people in Médéa Province 2008-2017. 
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Table 2. Descriptive statistics of the monthly EPTB and PTB data from 2008 to 2017 
 
Statistics EPTB PTB 
 
Mean 

 
54.13 
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13.6 

0

4

8

12

5 10 15 20 25  

Median 51.5 13 
Maximum 119 26 
Minimum 20 2 
Std. Dev. 20.66 5.33 
Jarque-Bera 11.19 3.19 
Probability 0.003709 0.202207 

 
 
The mean ± SD of the monthly PTB cases and monthly EPTB cases is 13.6 ± 5.3 (95% CI 
12.7 to 14.5) and 54.1 ± 20.6 (95% CI 50.4 to 57.8) respectively. The median (IQR) of the 
monthly PTB and EPTB is 13 (17 – 10 = 7) and 51.5 (67.75 - 39 = 28.75) respectively, and 
the mode is 12 and 46 respectively. The PTB data are normally distributed (p-value 0.202207) 
while the EPTB data are not normally distributed (p-value 0.003709) see Table 2. 
 
The data were partitioned into two periods: the data from January 2008 to December 2016 
have been used for model identification, and the data from January 2017 to December 2017 
have been used for model validation and for forecasting. The time series plots (see Figure 2) 
show an increasing trend of EPTB and a decreasing trend of PTB; a similar trend has been 
observed in other countries [10-13].  Both series are not stationary. A 12-month differencing 
of the EPTB original data and logarithm transformation were required to obtain a stationary 
time series, which we have noted by D12LNEPTB, and a 12-month differencing of the PTB 
original data were required to obtain a stationary time series, which we have noted by 
D12PTB. Both series D12LNEPTB and D12PTB exhibit an overall horizontal trend and no 
observable regular seasonality (see Figure 3).   
 
The autocorrelation functions (ACF) and partial autocorrelation functions (PACF) have 
allowed us to identify the appropriate SARIMA form to model the obtained stationary series 
D12LNEPTB and D12PTB. 
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Figure 2. Monthly notified cases of EPTB and PTB between 2008 and 2017 in Médea 
province. 
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Figure 3. The obtained stationary time series D12LNEPTB and D12PTB. 
 
 
To select the best-fit model, we applied some criteria such as the smallest Akaike information 
criterion (AIC), Standard Error Regression (SEE), the highest adjusted R2, the stationary and 
invertibility condition, and the white noise condition for residuals. After several trials, 
(1,0,1) (0,1,1)12   has been selected as appropriate to the EPTB time series data and      
(4,0,0)  (0,1,1)12 has been selected as  appropriate for the PTB time series data. Estimation 
outputs are displayed in Table 3 and Table 4.  
 
All features of the best model were fulfilled. The models can, therefore, be used to estimate 
the forecasts. The simulated EPTB and PTB cases for the period 2008-2016 were closely 
approximated to the recorded data (Figure 4 and Figure 5) with strong correlation (Pearson 
product-moment correlation coefficient: r = 0.80288  and r = 0.6933). The models were then 
used for predicting the monthly EPTB and PTB cases from January 2017 to December 2017. 
The fitted data agree considerably with the actual data. All these conclusions attest to the 
adequacy of the models. 
 
Climate factors were associated with TB disease in some studies [14]. We therefore examined 
the relationship between monthly PTB and EPTB cases and some climate variables. An 
extension of SARIMA modelling in an attempt to predict the PTB and EPTB cases using 
temperature, relative humidity, precipitation, sunshine hours and wind speed variables have 
been undertaken, however no best model was found. 
 

4. Conclusion 
 
This study revealed that SARIMA models are useful tools for monitoring and for predicting 
trends of TB incidence in Médea province, and may help public health authorities to get a 
better handle on the incidence trends of both PTB and EPTB cases in this endemic area.        
A (1,0,1) (0,1,1)12 (respectively (4,0,0)x(0,1,1)12) SARIMA model was fitted to EPTB 
(respectively PTB) data in Médéa province and the models proved to be adequate.  
The forecasts were solely based on tuberculosis notified cases. All other conditions that may 
affect TB incidence, such as risk factors, socio-economic determinants, climate and 
environmental factors, and control programme, which may vary over time, were not taken on 
board. Therefore, the outcomes should be read with care.  
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Table 3. Model estimation 
 

Dependent Variable: D12LNEPTB   
Method: ARMA Maximum Likelihood (OPG - BHHH)  
Sample: 2009M01 2016M12   
Included observations: 96   
Convergence achieved after 36 iterations  

Variable Coefficient Std. Error t-Statistic Prob.   

C 0.072515 0.025605 2.832119 0.0057 
AR(1) 0.855435 0.106824 8.007882 0.0000 
MA(1) -0.519694 0.150774 -3.446850 0.0009 

SMA(12) -0.873322 0.173650 -5.029200 0.0000 
SIGMASQ 0.054395 0.010555 5.153499 0.0000 

R-squared 0.636394    Mean dependent var 0.062235 
Adjusted R-squared 0.620412    S.D. dependent var 0.388812 
S.E. of regression 0.239550    Akaike info criterion 0.200744 
Sum squared resid 5.221947    Schwarz criterion 0.334303 
Log likelihood -4.635697    Hannan-Quinn criter. 0.254731 
F-statistic 39.81778    Durbin-Watson stat 2.088899 
Prob(F-statistic) 0.000000    

Inverted AR Roots       .86   
Inverted MA Roots       .99      .86+.49i    .86-.49i       .52 

  .49-.86i      .49+.86i    .00-.99i -.00+.99i 
 -.49-.86i     -.49+.86i   -.86+.49i -.86-.49i 
      -.99   
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Table 4. Model estimation 
 
 

Dependent Variable: D12PTB   
Method: ARMA Maximum Likelihood (BFGS)  
Sample: 2009M01 2016M12   
Included observations: 96   
Convergence achieved after 12 iterations  

Variable Coefficient Std. Error t-Statistic Prob.   

C -0.713888 0.179257 -3.982482 0.0001 
AR(1) 0.169820 0.094350 1.799906 0.0753 
AR(2) -0.078120 0.105752 -0.738712 0.4620 
AR(3) 0.099089 0.113874 0.870168 0.3865 
AR(4) -0.256158 0.103854 -2.466510 0.0156 

MA(12) -0.833139 0.185935 -4.480804 0.0000 
SIGMASQ 20.63767 4.328834 4.767490 0.0000 

R-squared 0.470863    Mean dependent var -0.635417 
Adjusted R-squared 0.435191    S.D. dependent var 6.277981 
S.E. of regression 4.718142    Akaike info criterion 6.157833 
Sum squared resid 1981.217    Schwarz criterion 6.344817 
Log likelihood -288.5760    Hannan-Quinn criter. 6.233415 
F-statistic 13.19972    Durbin-Watson stat 1.964138 
Prob(F-statistic) 0.000000    

Inverted AR Roots  .53-.47i      .53+.47i   -.44-.56i -.44+.56i 
Inverted MA Roots       .98      .85+.49i    .85-.49i  .49+.85i 

  .49-.85i     -.00-.98i   -.00+.98i -.49-.85i 
 -.49+.85i     -.85+.49i   -.85-.49i      -.98 
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Figure 4. Residual Actual and Fitted (D12LNEPTB). 
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Figure 5. Residual Actual and Fitted (D12PTB). 
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