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Abstract—Wireless Sensor Networks (WSNs) are advanced 

communication technologies with many real-world applications 

such as monitoring of personal health, military surveillance, and 

forest wildfire; and tracking of moving objects. Coverage 

optimization and network connectivity are critical design issues 

for many WSNs. In this study, the connected target coverage 

optimization in WSNs is addressed and it is solved using the self-

adaptive differential evolution algorithm (SADE) for the first time 

in literature. A simulation environment is set up to measure the 

performance of SADE for solving this problem. Based on the 

experimental settings employed, the numerical results show that 

SADE is highly successful for dealing with the connected target 

coverage problem and can produce a higher performance in 

comparison with other widely-used metaheuristic algorithms such 

as classical DE, ABC, and PSO. 

 

Index Terms—Connected Target Coverage, Metaheuristics, 

Optimization, Self-Adaptive, Wireless Sensor Networks.  

I. INTRODUCTION 

WIRELESS SENSOR Network (WSN) is one of the most 

widely used advanced communication technologies and 

have numerous application areas such as personal health 

monitoring [1], military surveillance [2], forest wildfire 

monitoring [3], air pollution monitoring [4], and moving object 

tracking [5].  

As one of the main design issues in WSN, a sensor 

deployment plan that places individual sensors in a given region 

should be provided. A good deployment plan will be useful for 

coverage maximizing, connectivity maximizing, energy 

efficiency, and lifetime optimization [6]. Coverage is a 

fundamental property of every WSN that a network cannot 

detect events in its environment and may become useless 

without a sufficient sensing area. Therefore, it is important to 

increase the total coverage ratio as much as possible. Coverage 

problems can be divided into two classes, namely area coverage 

and target coverage that the former aims to cover the whole area 

of interest, whereas the latter aims to cover some specific 

points. 
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Connectivity is another critical requirement for WSNs, and 

without it, it is not possible to transfer information, no matter 

how high the coverage rate is. Two sensors are considered as 

connected if they can communicate with each other (e.g. send 

and receive data) either directly or via other sensor nodes. Fully 

connected networks require the existence of at least one path 

between any node and the sink node. Sometimes, intermittent 

connectivity is allowed when mobile sinks are provided to 

move and collect data from disconnected nodes [7]. 

As optimal sensor deployment problem for coverage is a hard 

optimization task, there have been so many studies proposed 

using metaheuristic algorithms such as Genetic Algorithm [8]–

[11], Particle Swarm Optimization (PSO) [12]–[14], Artificial 

Bee Colony [15], Differential Evolution (DE) [16], [17], and 

Ant Colony Optimization [18]. However, the main drawback of 

optimization algorithms is the need for parameter tuning for 

each problem instance that is dealing with. Because of the fact 

that offline parameter tuning is an optimization problem itself 

and is mostly a time-consuming task [19], adaptive tuning or 

parameter control techniques can be used to overcome this 

issue.  

In this study, self-adaptive differential evolution (SADE) 

[20], which is one of the main adaptive metaheuristic 

algorithms in continuous optimization domain, is used to solve 

the connected target coverage optimization in WSNs for the 

first time in the literature. The effectiveness of SADE has been 

analyzed with an experimental study that is based on a 

simulation environment set up. In addition, the performance of 

SADE has been compared with other metaheuristic 

optimization algorithms in the literature. The results obtained 

showed the effectiveness of using SADE for the purpose of 

solving the connected target coverage problem for WSNs. 

The organization of the remaining sections of this paper is as 

follows. Section II formulates the connected target coverage 

problem in WSNs. Then, after reviewing the classical DE and 

SADE algorithms briefly, Section III defines how to use the 

SADE algorithm to solve this problem. After that, Section IV 

clearly explains the simulation environment that has been used 

to analyze the performance of the algorithm. Finally, Section V 

concludes the paper and gives some future work directions. 
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II. PROBLEM DEFINITION 

Let 𝑇 = {𝑡1𝑡2, … , 𝑡𝑛} is a set of targets, 𝑆 = {𝑠1𝑠2, … , 𝑠𝑘} is 

a set of sensors. Also, all sensors are identical with each other 

and each one is capable of sensing objects within its sensing 

range, 𝑟𝑠 . Assume that the elements of 𝑆 and 𝑇 are placed on an 

obstacle-free 2D Euclidean plane. When a target 𝑡𝑖 is positioned 

at (𝑥𝑖 , 𝑦𝑖) and a sensor 𝑠𝑗 is positioned at (𝑥𝑗, 𝑦𝑗).  Coverage of 

target 𝑡𝑖 by sensor 𝑠𝑗 is calculated as: 

 

𝑐(𝑡𝑖 , 𝑠𝑗) = {
1, 𝑖𝑓 𝑑(𝑡𝑖 , 𝑠𝑗) ≤ 𝑟𝑠

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

 

Where, 𝑑(𝑡𝑖 , 𝑠𝑗) is the Euclidean distance between target 𝑡𝑖 

and sensor 𝑠𝑗, i.e. √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2. 

A target is accepted as covered if it is sensed by at least one 

sensor: 

 

𝑐𝑜𝑣(𝑡𝑖) = {
1, 𝑖𝑓 ∑ 𝑐(𝑡𝑖 , 𝑠𝑗)𝑘

𝑗=1 ≥ 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

 

Another important property of each sensor is its 

communication range 𝑟𝑐 that two sensors can communicate with 

each other only if the distance between them is within the 𝑟𝑐 as: 

 

𝑐𝑜𝑛(𝑠𝑖 , 𝑠𝑗) = {
1, 𝑖𝑓 𝑑(𝑠𝑖 , 𝑠𝑗) ≤ 𝑟𝑐

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

  

A solution 𝑆 = {𝑠1𝑠2, … , 𝑠𝑘} that offers a deployment plan for 

all sensors is valid if it is connected, i.e. there is at least one 

communication path between all pairs of sensors. 

The goal of the problem is to find a valid (connected) solution 

that maximizes the target coverage ratio which is expressed as 

below: 

 

𝐶𝑅 =
∑ 𝑐𝑜𝑣(𝑡𝑖)𝑛

𝑖=1

𝑛
 (4) 

 

Fig 1 demonstrates the example of WSN deployment with 3 

sensors and 5 targets. Sensors s1 and s2 are connected with each 

other since they are positioned inside their 𝑟𝑐. On the other hand, 

sensor s3 is not connected with s1 and s2, because both of them 

are outside of its 𝑟𝑐. So, this is an example of an unconnected 

WSN deployment plan. In addition, 3 of the 5 targets are 

covered since they are located within 𝑟𝑠  of at least one of the 

sensors, whereas the remaining 2 are uncovered as they cannot 

meet this condition. 

III. SOLVING THE PROBLEM WITH SADE 

A. Review of DE and SADE Algorithms 

DE [21] is a population-based metaheuristic algorithm that is 

used to solve continuous optimization problems. Each 

individual (solution) in the population is a vector of real 

numbers �⃗�𝑖 = 𝑥1, 𝑥2, … , 𝑥𝐷, where 𝑖 = 1,2, … , 𝑁𝑃 is a solution 

index, 𝑁𝑃 is the size of a population, and 𝐷 is a dimension of a 

problem. The initial population is generally constructed 

randomly within the given upper and lower bounds. Then,  

 

 

Fig.1. A WSN deployment example with 3 sensors and 5 targets 

 

at each iteration of the search, the following operations are done 

in order: 

 Mutation: A mutant solution �⃗⃗�𝑖 is generated for each 

individual �⃗�𝑖, which is also called a target vector, 

using a mutation strategy. In the basic DE algorithm, 

DE/rand/bin strategy is applied as follows: 

 

�⃗⃗�𝑖 = �⃗�𝑟1 + 𝐹(�⃗�𝑟2 − �⃗�𝑟3) (5) 

 

Where 𝑖 is the solution index, 𝐹 is the differential 

weight, and 𝑟1, 𝑟2, and 𝑟3 are random solution indices 

that are different from each other as well as from 𝑖. 
Therefore, NP must be at least 4 to employ this strategy 

in the DE algorithm. 

 Crossover: In crossover operation, each dimension 𝑗 

of the target vector 𝑖 is tried to be changed and the trial 

vector �⃗⃗⃗�𝑖 is generated as follows: 

 

�⃗⃗⃗�𝑖,𝑗 = {
�⃗⃗�𝑖,𝑗, 𝑖𝑓 𝑟𝑖,𝑗 ≤  𝐶𝑂𝑅 𝑜𝑟 𝑗 = 𝐼

�⃗�𝑖,𝑗, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6) 

 

Where, 𝐼 ∈ [1, 𝐷] is the randomly selected dimension 

index which is used to guarantee the change of at least 

one of the dimensions, 𝐶𝑂𝑅 is the crossover rate, 𝑟𝑖,𝑗 is 

a random number that is selected uniformly in [0,1].  
 Selection: A trial solution is replaced with the target 

solution if its fitness value is better: 

�⃗�𝑖 = {
�⃗⃗⃗�𝑖 , 𝑖𝑓 (�⃗⃗⃗�𝑖) ≤  𝑓(�⃗�𝑖)

�⃗�𝑖 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7) 

  

The self-adapted differential evolution algorithm (SADE) 

algorithm [20] maintains multiple DE mutation strategies to 

address optimization problems in different characteristics. 

Specifically, it includes DE/rand-to-best/2/bin, DE/rand/2/bin, 

and DE/current-to-rand/1 strategies, which are shown in (8) – 

(10), respectively, in addition to DE/rand/1/bin strategy, which 

was previously shown in (5). 
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�⃗⃗�𝑖 = �⃗�𝑖 + 𝐹(�⃗�𝑏𝑒𝑠𝑡 − �⃗�𝑖) + 𝐹(�⃗�𝑟1 − �⃗�𝑟2) + 𝐹(�⃗�𝑟3 − �⃗�𝑟4)(8) 

�⃗⃗�𝑖 = �⃗�𝑟1 + 𝐹(�⃗�𝑟2 − �⃗�𝑟3) + 𝐹(�⃗�𝑟4 − �⃗�𝑟5) (9) 

�⃗⃗�𝑖 = �⃗�𝑖 + 𝐾(�⃗�𝑟1 − �⃗�𝑟2) + 𝐹(�⃗�𝑟3 − �⃗�𝑟4) (10) 
  

SADE can select among these 4 strategies adaptively using 

success and failure memory tables that store successful and 

unsuccessful applications. That is, the more the strategy leads 

to an improvement over the current best solution, the more it 

has a chance to be selected again at later iterations. 

Furthermore, SADE can also adaptively decide parameter 𝐶𝑂𝑅 

by maintaining a list that stores the successful applications of 

the parameter values. Then, new values of the 𝐶𝑂𝑅 are 

generated randomly by setting the median value of the list as a 

mean value of a normal distribution. As for parameter 𝐹, the 

parameter value is determined randomly by using a normal 

distribution with mean=0.5 and standard deviation=0.3. The 

interested reader should refer [20] to see other implementation 

details of this algorithm. 

B. Designing Problem-dependent Parts of the Algorithm 

Although SADE is a general-purpose numerical optimization 

method, the structure of solution representation and the fitness 

function evaluation subjects are left to the algorithm designer. 

Therefore, this section clearly explains how these algorithm 

components are designed to solve connected target coverage 

optimization problems for WSNs. 

1) Representation of solutions 

A solution to the problem should provide the locations of each 

individual sensor. In this study, the solution representation is 

designed as in Fig. 2, where 𝑆𝑖 represents the sensor 𝑖 and 𝑥𝑖and 

𝑦𝑖 represent the 2D Euclidean coordinates of that sensor. So, the 

problem dimension 𝐷 = 2 × 𝑘, where 𝑘 is the total number of 

sensors. 

 

 
Fig.2. The solution representation 

 

2) Fitness function evaluation 

The fitness function evaluates the quality of a solution 

according to a given problem. In this study, the objective is to 

maximize the target coverage while preserving the overall 

network connectivity. So, the fitness function (maximization) is 

designed to handle these two conditions as in (11): 

 

𝑓𝑖𝑡 = 𝑊1 × 𝐶𝑅 + 𝑊2 × (1.0 𝐶𝐶⁄ ) (11) 

 Where 𝐶𝑅 is the coverage ratio, 𝐶𝐶 is the connected 

component count (the number of unconnected sub-WSNs), 𝑊1  

and 𝑊2  are the weighting factors. As it can be seen from the 

formula, higher values of 𝐶𝑅 are rewarded, whereas higher 

values of 𝐶𝐶 are penalized. Actually, the maximum fitness 

value is 2.0 and it is obtained when the full coverage of target 

points (e.g.  𝐶𝑅 = 1.0) and full connectivity (e.g. 𝐶𝐶 = 1) are 

both achieved. 

 The solution will be useless if it does not provide full 

connectivity, regardless of how high coverage it provides. So, 

in order to ensure that the connectivity is achieved first, the 

fitness function is divided into two phases. In the first phase, 

the weight settings of 𝑊1 = 0.0 and 𝑊2 = 1.0 are used for 

making the algorithm work for only the connectivity purpose. 

After the connectivity is obtained, the weight settings of  𝑊1 =
1.0 and 𝑊2 = 1.0 are used for making the algorithm focus on 

increasing the coverage rate while preserving the connectivity. 

IV. SIMULATION RESULTS 

A. Simulation Environment 

To analyze the performance of SADE for solving the 

connected target coverage optimization problem in WSNs, the 

following simulation environment was set up on a computer 

with Intel® Core™ i7 6700 3.40 GHz CPU using a single core: 

 simulation area boundaries:  100 x 100 unit2 

 𝑘 (# of sensors):  50, 𝑛 (# of targets): 100 

 deployment of targets: random 

 𝑟𝑠  (sensing range): 8 

 𝑟𝑐 (sensing range): {6, 8, 10, 12, 14} 

 
Fig.3. An example simulation steps for 𝑟𝑐=12. a) initial random positions of 

target points b) sensor positions after 500 FEs c) sensor positions after 50,000 
FEs d) sensor positions after 250,000 FEs 

 

For the implementation of the SADE algorithm, the 

guidelines in [20] were followed and the 𝑁𝑃 was set to 50. In 

addition, the maximum number of function evaluations (FEs) 

were set to 𝑘 × 5,000 for each run of the algorithm. 

 Fig. 3 shows an example of simulation steps with 𝑟𝑐 = 12. 

Fig. 3-a shows the positions of target points that were placed 

randomly in the simulation area. Then, the sensor positions that 

were produced by the SADE algorithm at different FEs counts 

are shown in Fig. 3 b-d. It is seen that in earlier iterations of the 

algorithm, connectivity was not achieved yet. As the iterations 

passed, the connectivity was provided, and CR was improved. 
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B. Numerical Results 

In this section, the numerical simulation results that were 

obtained with the SADE algorithm to solve the target coverage 

problem are provided and discussed. For this purpose, coverage 

and connectivity performances of the algorithm were measured 

with different 𝑟𝑐 values.  

The results obtained for 10 independent runs are presented in 

Table 1 that 𝐶𝑅 (Avg.) gives the average coverage rate, 𝐶𝑅 

(S.D.) gives the standard deviation of coverage rates, and “# of 

succ.” gives how many times the algorithm could produce a 

feasible solution (i.e. fully connected deployment plan). 

 It is seen from the table that the algorithm is very successful 

at producing connected solutions with 10/10 success rate, 

regardless of the communication ranges. The simulation results 

also reveal that as the communication range is increased the 

algorithm can produce solutions with higher 𝐶𝑅 values because 

it can cover more target points without violating the 

connectivity constraint. Indeed, when 𝑟𝑐 = 6, which implies 

𝑟𝑐 < 𝑟𝑠 , the 𝐶𝑅 is around 0.37. It increases to 0.57 when 𝑟𝑐 = 𝑟𝑠  

and can achieve 0.91 with 𝑟𝑐 ≥ 1.5 × 𝑟𝑠 . 

 
TABLE I 

SIMULATION RESULTS FOR VARIOUS COMMUNICATION RANGE 
VALUES 

 

𝑟𝑐 = 6 

𝐶𝑅 (Avg.) 0.37 

𝐶𝑅 (S.D.) 0.04 

# of succ. 10/10 

𝑟𝑐 = 8 

𝐶𝑅 (Avg.) 0.57 

𝐶𝑅 (S.D.) 0.04 

# of succ. 10/10 

𝑟𝑐 = 10 

𝐶𝑅 (Avg.) 0.75 

𝐶𝑅 (S.D.) 0.03 

# of succ. 10/10 

𝑟𝑐 = 12 

𝐶𝑅 (Avg.) 0.91 

𝐶𝑅 (S.D.) 0.03 

# of succ. 10/10 

𝑟𝑐 = 14 

𝐶𝑅 (Avg.) 0.99 

𝐶𝑅 (S.D.) 0.01 

# of succ. 10/10 

C. Comparison with Other Optimization Algorithms 

This section compares the performance of the SADE 

algorithm with other common metaheuristic algorithms in the 

continuous optimization domain. For this purpose the classical 

version of DE, which uses DE/rand/1/bin strategy, Artificial 

Bee Colony (ABC) [22], and Particle Swarm Optimization 

(PSO) [23]. 

In the experimental work, the population sizes of these 3 

algorithms are determined as 𝑁𝑃 = 50, as they will be the same 

with the SADE algorithm. Also, the results were collected after 

10 independent runs per algorithm with the same simulation 

environment that was defined in Section IV-A.  After some 

preliminary testing, the following parameter values were used 

for the algorithms compared. For the DE algorithm, 𝐶𝑂𝑅 = 0.3 

and 𝐹 = 0.5; for ABC algorithm, 𝑙𝑖𝑚𝑖𝑡 = (𝑑𝑖𝑚 × 𝑁𝑃/2); and 

for PSO algorithm 𝑤 =  1.0/(2.0 ∗ 𝑙𝑜𝑔2), 𝑐1 = 𝑐2 = 0.5 +
𝑙𝑜𝑔2, and 𝐾 = 3. 

 Using the experimental setting above, the computational 

results obtained are presented in Table 2. One of the major 

findings is that SADE and PSO are both good at meeting the 

connectivity condition by producing 10/10 success rates for 

each 𝑟𝑐 value. However, SADE outperforms PSO in terms of 

coverage rates in all cases. The results also reveal that SADE 

outperforms basic DE in terms of both CR and success rates. It 

can be seen that ABC can produce high CR values which are 

close to SADE, however, this is only valid for higher 𝑟𝑐 values. 

Indeed, the ABC algorithm could not produce feasible solutions 

with 𝑟𝑐 ≤ 𝑟𝑠 . As for the processing times of the algorithms, it is 

seen that SADE, DE, ABC, and PSO spend around 6.48 s., 6.53 

s., 5.36 s., and 9.22 s., respectively. These results suggest that 

the SADE, DE, and ABC can produce results faster than PSO. 

Together, the results indicate that the SADE algorithm is 

preferable to solve the connected target coverage problem in 

comparison with its competitors that are considered in this 

experimental study. 

 
TABLE II 

COMPARISON THE PERFORMANCE OF SADE WITH OTHER 
COMMON METAHEURISTICS 

 

 SADE DE ABC PSO 

𝑟𝑐 = 6 

𝐶𝑅 

(Avg.) 
0.37 0.28 N/A 0.22 

𝐶𝑅 

(S.D.) 
0.04 0.02 N/A 0.03 

# of 

succ. 
10/10 5/10 0/10 10/10 

Time 
(Avg. s.) 

6.71 6.91 5.38 8.86 

𝑟𝑐 = 8 

𝐶𝑅 

(Avg.) 
0.57 0.40 N/A 0.32 

𝐶𝑅 

(S.D.) 
0.04 0.04 N/A 0.05 

# of 

succ. 
10/10 8/10 0/10 10/10 

Time 
(Avg. s.) 

6.54 6.87 5.85 9.50 

𝑟𝑐 = 10 

𝐶𝑅 

(Avg.) 
0.75 0.53 0.71 0.42 

𝐶𝑅 

(S.D.) 
0.03 0.03 0.09 0.06 

# of 

succ. 
10/10 10/10 7/10 10/10 

Time 
(Avg. s.) 

6.42 6.28 5.30 9.02 

𝑟𝑐 = 12 

𝐶𝑅 

(Avg.) 
0.91 0.65 0.93 0.55 

𝐶𝑅 

(S.D.) 
0.03 0.03 0.01 0.05 

# of 

succ. 
10/10 10/10 10/10 10/10 

Time 
(Avg. s.) 

6.35 6.30 5.27 8.89 

𝑟𝑐 = 14 

𝐶𝑅 

(Avg.) 
0.99 0.76 0.99 0.67 

𝐶𝑅 

(S.D.) 
0.01 0.02 0.01 0.06 

# of 

succ. 
10/10 10/10 10/10 10/10 

Time 
(Avg. s.) 

6.39 6.29 5.02 9.81 
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V. CONCLUSION 

This paper uses the SADE algorithm to solve the 

connected target coverage optimization problem in WSNs 

for the first time in the literature. For this purpose, a fitness 

function with two stages that consider both connectivity and 

coverage rate is developed. To measure the performance of 

the SADE algorithm for solving this problem, the simulation 

environment was built, and the numerical results were 

obtained. Based on the experimental settings employed, the 

numerical results show that SADE is highly successful for 

dealing with the connected target coverage problem and can 

provide better performance in comparison with other 

common metaheuristic algorithms such as classical DE, 

ABC, and PSO. 

Future work might extend this study by considering other 

variants of self-adaptive differential evolution algorithms 

such as [24] and [25]. In addition, the problem can be 

generalized to 𝑘-connected coverage variant in which targets 

must be covered by at least 𝑘 sensors. 
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