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ABSTRACT 
 

In order to characterize thermal dependent physical properties of materials, potentially to be used in technological applications, 

an accurate interatomic-potential parameter set is a must. In general, conjugate-gradient methods and more recently, 

metaheuristics such as genetic algorithms are employed in determining these interatomic potentials, however, especially the 

use of metaheuristics specifically designed for optimization of real valued problems such as particle swarm and evaluation 

strategies are limited in the mentioned problem. In addition, some of these parameters are conflicting in nature, for which multi 

objective optimization procedures have a great potential for better understanding of these conflicts. In this respect, we aim to 

present a widely used interatomic potential parameter set, the Stillinger–Weber potential, obtained through three different 

optimization methods (particle swarm optimization, PSO, covariance matrix adaptation evolution strategies, CMA-ES, and 

non-dominated sorting genetic algorithm, NSGA-III) for two-dimensional materials MoS2, WS2, WSe2, and MoSe2. These two-

dimensional transition metal dichalcogenides are considered as a case mainly due to their potential in a variety of promising 

technologies for next generation flexible and low-power nanoelectronics, (such as photonics, valleytronics, sensing, energy storage, 

and optoelectronic devices) as well as their excellent physical properties (such as electrical, mechanical, thermal, and optical 

properties) different from those of their bulk counterparts. The results show that the outputs of all optimization methods converge 

to ideal values with sufficiently long iterations and at different trials. However, when we consider the results of the statistical 

analyses of different trials under similar conditions, we observe that the method with the lowest error rate is the CMA-ES. 

 

Keywords: Particle swarm optimization, Covariance matrix adaptation evolution strategies, NSGA-III, Two-dimensional 

transition metal dichalcogenides, Stillinger-Weber potential 
 

 

1. INTRODUCTION 
 

Transition metal dichalcogenides (TMDs) are layered materials having the chemical formula MX2, 

where M is a transition metal atom (i.e., Mo, W, Nb) and X is a chalcogen atom (i.e., S, Se, Te). The 

TMDs can exhibit different electronic properties such as semiconducting (as in MoS2 and WS2), metallic 

(as in WTe2 and NbS2) and even superconducting (as in NbSe2 and TaS2) [1]. Nowadays with the 

advance of fabrication technologies, the low-dimensional (LD) structures of these materials can be 

fabricated and used in device and sensor applications. It has already proven that these materials have 

great potential to be used in various future technological applications such as transistors, high speed 

electronics, emitters, detectors, next-generation solar cells, LEDs, photodetectors, fuel cells, 

photocatalytic, flexible devices and touchscreen display panels that have more powerful, faster, smaller 

and more efficient characteristics than those currently existing [2-9]. [2; [3];[4]; [5]; [6]; [7] [8]; [9]. 
 

Although there are many challenges in production, storage and conversion of the sustainable energy 

resources, the high-efficiency energy storage (e.g. supercapacitors and lithium ions batteries) and 

conservation (e.g. solar cells and electrocatalysis) initiatives are on the rise. It can be argued that both 

the market share and desire for working in the field will increase in the coming years [10] [11]. 

Moreover, the printed photodetectors in which such 2D nanomaterials is used, which is already in steady 

increase, estimated to reach a market share of 160 million dollars by 2023 

[http://www.idtechex.com/research/articles/flexible-sensors-come-to-market-thanks-to-tens-of-

millions-investment-00008464.asp]. Therefore, studying the physical properties of these TMD 
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monolayer structures is crucial to pave the way for the application of these materials in a wide variety 

of energy harvesting and storage related future technological applications [12], [2], [13]. 
 

For the scientific research of materials, computer simulation and modeling are indispensable methods 

in parallel with experimental work. First-principles calculation within the framework of density 

functional theory (DFT) has been extensively used in recent years to determine the properties of 

materials, and the obtained results have achieved a satisfactory level of accuracy that is comparable to 

experimental results [14], [15]. However, DFT simulations cannot be applied to large scale systems 

which is required to characterize size dependent material properties such as lattice thermal transport 

properties [16]. For this reason, molecular dynamics (MD) simulations are preferred in order to be able 

to model structures in a larger context. In order to realize a correct molecular dynamic simulation, it is 

necessary to predict a proper empirical potential to determine the interaction between the atoms (forces 

acting on the atoms). Developing the potential in accordance with the natural structure (metal, 

semiconductor, oxide, etc.) and purpose of the materials is crucial in determining the physical properties 

of the systems consistently. Many different potentials of interaction have been developed up to today 

and the obtained results are generally consistent with experimental data on different physical properties 

such as phase transition, structural, mechanical, and thermal properties of the materials studied [17]. 

These interactions are in general studied using conjugate gradient methods [18], and more recently, 

genetic algorithms [19], and particle swarm optimization [20], however, the results obtained using these 

methods are not generalized to the 2D material families and the accuracy of the generated potential on 

the vibrational properties of the crystal is limited. However, in order to understand the thermal dependent 

properties of a material (to determine its properties such as thermal expansion and conductivity) in a 

good way, it is very useful and intriguing to know its vibration properties, which mainly depends on the 

space derivative of the chosen potential. Therefore, it is of great importance to obtain the vibrational 

spectrum (phonon dispersion) of the system accurately with empirical potential, in addition to the basic 

properties such as lattice parameters, bond distances, elastic constants, and energy. In this optimization 

work, which we aim to develop empirical potential for some 2D TMDs, the target parameters consist of 

the equilibrium lattice parameter, bond distance and the phonon dispersion values, which we select for 

the specific wave vector points, that obtained by the first-principles calculation method. 
 

The overall objective of this study is the systematical investigation of the performances of two real-

valued metaheuristics, namely the particle swarm optimization and the covariance matrix adaptation 

evolution strategies and two different types of objective functions for simultaneous optimization of 

several different crystal characteristics. We implemented a methodical approach to determine the 

optimal parameter settings for the optimization of the structure of TMDs that is representative of two-

dimensional materials that can be used for the future technological applications mentioned above. 

Moreover, we also studied the characterization of the 2D materials problem as a multiobjective 

optimization problem and for this, we used one of the state-of-the-art optimization approaches, 

nondominated sorting genetic algorithm, NSGA-III. For the purposes of our optimization procedure, we 

chose Stillinger-Weber type interatomic potential which is described in a simpler form and with fewer 

empirical parameters than the other interatomic potentials, such as Tersoff potential [21]. 
 

2. MODEL 
 

The Stillinger-Weber (SW) potential is an empirical inter-atomic potential related to the distance and 

bond angles between atoms, embodying the two- and three-body interaction terms. At first, although 

this potential was developed for pure Si [23], afterwards it has been adapted to many other elements and 

compounds [24]. The form of the total energy of the crystal structure as a combination of two- and three-

body interactions of the SW potential can be expressed as follows: 
 

   
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where, while 
2  describe two-body potential term associated with scattering effect, 3  define the three-

body potential term taking into account the bond angle effect. The summation indices j and k refer to 

the neighbor atoms within the maximum distance of rmax from atom i at center. The terms rij and rik are 

the bond length between the atom pairs i; j and i; k, respectively. And as the last term θijk is the angle 

between the radial vectors from the central atom i towards neighbor atoms j and k (θ0,ijk is the equilibrium 

angle). The pair dependent parameters A, B, ρ and K are fitting parameters to be determined by varying 

for two-body (bond stretch) and three-body (bond bend) energies. 
 

Equation (1) represents the potential to be fitted, equations (2) and (3) are two-body and three body SW 

equations respectively. In our optimization process, we try to find the optimal values of the decision 

variables A, B, 𝜌, K, 𝑟𝑖𝑗
𝑚𝑎𝑥 , 𝑟𝑖𝑘

𝑚𝑎𝑥, 𝑎𝑛𝑑 𝜃0,𝑖𝑗𝑘 to obtain the desired crystal characteristics. 

 

In Figure 1, as an example of a single layer TMDs (MX2, M = Mo, W, and X = S, Se), we schematically 

present the top and side view of the MX2 configuration. In terms of location W and Mo are identical 

represented in red, and similarly, S and Se are identical for other materials, represented in green (MoS2, 

MoSe2, WS2 and WSe2). To describe this structure within the framework of the SW inter-atomic 

potential mentioned above, we need three types of stretching terms, namely for M-M, M-X, and X-X, 

where M and X are the corresponding transition metal and chalcogen atoms, respectively. Unlike the 

two-body interaction term, for the angle bending, it is essential to discriminate the chalcogen atoms due 

to the asymmetric chalcogen polyhedra around M (transition metal). The subscripts d and u are 

introduced to symbolize the chalcogen atoms below and above the M layer (M layer in Figure 1), 

respectively. Hereby, we define three types of three-body terms. The term Xd,(u)-M-Xd,(u) is the angle 

between two chalcogens (both below or above the M-plane) and M atom at the center. The term M-Xd,(u) -M 

describes the angle between two M and one chalcogen (either below or above the M-plane) at the center. The 

term Xd-M-Xu is the angle between two chalcogens (one below and one above the M-plane) and M atom 

which is at the center. These angles that are labeled as θ1, θ2, and θ3 are shown in Figure 1, respectively. 
 

 

Figure 1. Generic structure of a single layer TMDs, top view (above) and side view (below) 

3. OPTIMIZATION APPROACHES 
 

In this study, we used two different evolutionary algorithms, one based on swarm intelligence (PSO) 

and the other is CMA-ES. Before going into implementation details of the algorithms, it is necessary to 

elaborate on the search space. As explained in detail in Section 2, we have a total of 12 decision 

variables, 9 of which to be used to calculate two-body SW equations, whereas the remaining decision 
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variables are needed to compute three-body SW equations. Throughout the experimentation procedure, 

we preferred to maintain a search space that is as wide as possible. Hence, we determined the lower and 

upper bounds on decision variables as summarized in Table 1 and Table 2. 
 

Table 1. Lower (L) and upper (U) bounds (B) for two-body SW parameters in GULP format 

Material / 

Interaction 
Limit 

A (eV) 

M-X 

ρ (Å) 

M-X 

B (Å4) 

M-X 

A (eV) 

X-X 

ρ (Å) 

X-X 

B (Å4) 

X-X 

A (eV) 

M-M 

ρ (Å) 

M-M 

B (Å4) 

M-M 

MoS2, MoSe2, 

WS2, WSe2 

LB 1.0 0.1 1.0 0.1 0.1 1.0 0.1 0.1 1.0 

UB 30.0 3.0 30.0 5.0 1.0 20.0 5.0 1.0 100.0 

 

Table 2. Lower and upper bounds for three-body SW parameters in GULP format 

Material / 

Interaction 
Limit 

K (eV) 

M-Xd,(u)-Xd,(u); Xd,(u)-M-M 

ρ12, ρ13 (Å) 

M-Xd,(u)-Xd,(u); Xd,(u)-M-M; M-Xd-

Xu 

K (eV) 

M-Xd-Xu 

MoS2, MoSe2, 

WS2, WSe2 

LB 0.1 0.1 0.1 

UB 20.0 2.0 50.0 

 

The desired values of the variable parameters have been obtained by calculating the first-principles 

pseudopotential plane-wave solutions based on density functional theory and density functional 

perturbation theory using the VASP packet [25] [26] [27]. In order to minimize the periodic interactions 

caused by periodic boundary conditions for single layer structures, it has been assumed that these 

structures are placed in a supercell with a vacuum spacing of 20 Å along the z-direction. The calculation 

parameters have been determined by performing detailed test calculations to ensure a good convergence 

of total energy and force calculations. In this context, a plane wave basis set with 500 eV kinetic energy 

cut-off has been used for all monolayer structures. The Γ point centered 26×26×1 k-point mesh within 

the Monkhorst–Pack scheme has been used for the Brillouin zone integrations of the primitive cell. For 

the vibration frequencies, firstly, the force constants have been computed from the density function 

perturbation theory [28] by means of VASP, then the frequencies through these force constants have 

been obtained by using an open source code PHONOPY [29]. In addition, for all crystal structures, the 

phonon calculations have been carried out on 4×4×1 conventional supercell structure with Γ point 

centered 8×8×1 k-points grids for the Brillouin zone sampling. 
 

3.1. PARTICLE SWARM OPTIMIZATION – PSO 
 

The optimization techniques that emerged in the 1990s began to be inspired by the social interactions 

that are common in nature as well as the evolutionary process. One of these methods is Particle Swarm 

Optimization (PSO). PSO is inspired by the collective behavior observed in animal feed (fish and bird 

flocks [30]). Especially with the bird flocks, when a food or water supply are discovered by a member 

of a flock, the entire flock is known for its ability to turn to the corresponding source quite quickly. In 

the same way, when a fish flock meets a threat, all of the flock can quickly move away from the area 

where the threat exists. It is often seen that opportunities and threats are rapidly transmitted to all 

members of the herd in all animal species that act as a community. Kennedy and Eberhart have shown 

that these behaviors observed in nature can be an effective method of optimization [30]. In PSO, each 

particle is represented by three vectors (x, p, and v), and two objective functions (f(x) and f(p)). In PSO, 

x vector represents the current position of the particle, p is the particle's best position, and v is the speed 

and motion direction of the particle. Lengths of these vectors are the same as each other, and each 

element in the vector corresponds to a decision variable. f(x) represents the value of the objective 

function corresponding to the vector x, and f(p) represents the objective function corresponding to the 

vector p. Each particle in the swarm uses its information from its search history and collectively gather 

the knowledge of the swarm to direct its own search, bringing it together in a vector v that determines 

the direction and speed of movement. A pseudocode of the PSO algorithm is provided below:  
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Algorithm1: PSO 

for each particle i = 1, ..., S do 

   Initialize the particles: xi ~ U(blo, bup) 

   Initialize the particle's best known position: pi ← xi 

   if f(pi) < f(g) then 

    Update the swarm's best known  position: g ← pi 

    Initialize the particle's velocity: vi ~ U(-|bup-blo|, |bup-blo|) 

end for 

while a termination criterion is not met do: 

   for each particle i = 1, ..., S do 

      for each dimension d = 1, ..., n do 

         Pick random numbers: rp, rg ~ U(0,1) 

         vi,d ← κ(vi,d + φp rp (pi,d-xi,d) + φg rg (gd-xi,d)) 

         xi ← xi + vi 

         if f(xi) < f(pi) then 

           Update the particle's best known position: pi ← xi 

         if f(pi) < f(g) then 

            Update the swarm's best known position: g ← pi 

      end for 

   end for 

end while 

 

Figure 2. PSO Pseudocode 

 

In the above pseudocode i represents the ith particle of the swarm, φ1 and φ2 are the coefficients governing 

the cognitive and social aspects of a particle’s search, g represents the particle with the best objective 

function in the swarm, and d represents the dth dimension of the corresponding particle. The 

representation of U (0, 1) is a random number from a continuous uniform distribution with a lower 

bound of 0 and an upper bound of 1. In the PSO algorithm, the constriction coefficient κ is a function 

of φ1 and φ2 [31] and it is mainly used to provide control and stability on the growth of vector v. In the 

PSO algorithm, the current position (x) of the particle is changed at each iteration using the updated v, 

taking into account the social and cognitive effects. If the new position of the particle is better than the 

previously discovered ones by that particle, p and f(p) are also updated. In this way the PSO continues 

its iterations until all the particles in the swarm (hopefully) converges to the same solution. The 

termination criterion generally depends on the problem at hand, but in general either a constant number 

of iterations or number of iterations that did not change the best known solutions are preferred. 
 

As mentioned earlier, one of the cornerstones of the PSO algorithm is the communication between the 

solution candidates in the swarm. Different neighborhood definitions have been developed for this. The 

most commonly used neighborhood definitions are the ring topology and the global topology. In the 

ring topology, each particle can communicate with the other two particles closest to it, and each particle 

in the global topology can communicate with every other member of the swarm. Thus, when global 

topology is used, the swarm can be aware of the other members that discovers "good" solution 

alternatives more quickly. However, this may lead to premature convergence [31], which would prevent 

the PSO algorithm from achieving a better solution than expected. 
 

3.2. COVARIANCE MATRIX ADAPTATION EVOLUTION STRATEGIES – CMA-ES 
 

Evolutionary strategies (ES) belong to the class of evolutionary algorithms in nature-inspired search and 

optimization methods. Like other optimization methods in this class, it aims to achieve better results 

step by step by using mechanisms based on the theory of evolution such as recombination, mutation, 

and selection in a population of candidate solutions. The first studies on ES were carried out by Bienert, 

Rechenberg, and Schwefel, as stated in [32]. ES can be implemented in optimization problems where 
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decision variables are either continuous or discrete. ES can also be used in situations where there are 

constraints that limit solution space as well as in combinatorial optimization problems. These elasticities 

about the structure of decision variables are also valid for the objective function. The objective function can 

be defined for the ES by a mathematical function, an empirical model, or even physical measurements. 
 

(μ, λ) and (μ + λ) are the most commonly used representations of an ES algorithm. In this notation, μ 

denotes the number of solution candidates in one generation of ES population, and λ denotes the number 

of new solutions to be derived using recombination and mutation from a generation. At each step of any 

ES algorithm, 6 to 8 times the number of solution candidates in a generation is generally derived as a new 

candidate solution [33]. In order to keep the population size constant, in (μ, λ) ES the new generation of 

solutions are selected among the λ newly generated candidate solutions, the next generation in (μ + λ) ES 

all the new solution candidates produced, as well as μ member of the previous generation struggle to 

survive to the next generation. For this reason, (μ + λ) -ES is called an "elitist" evolution strategy.  
 

There are many different implementations of ES proposed in the literature. In this study, we prefer to use 

covariance matrix adaptation evolutionary strategy (CMA-ES), first introduced by [34], [35] as it is one of 

the most successful variants of the ES [32]. In CMA-ES, recombination is performed via weighted summation 

of the best μ individuals and the mutation is performed using a multivariate normal distribution. At each 

iteration, mutation parameters are updated according to the equations provided within the pseudocode. As with 

the most evolutionary search algorithms, the search is terminated when the maximum number function 

evaluations is reached. Pseudocode of the CMA-ES algorithm is provided below Bäck et al. [32]:  
 

Algorithm2: CMA-ES 

Initialization 

Initialize x   

0

,







t

c 0pp

IC


 

while stopping criterion is not met do 

 //sample and evaluate offspring 

 1 tt  

 B and D eigendecomposition of C 

 for  ,...,1i  do 

   I0z ,Ni   

  
ii BDzy   

  
ki yxx   

   ii ff x  

 end 

 sort  ix  with respect to  if x  

 //internal update (path and parameters) 

  




1 :i ii ywy  
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Figure 3. CMA-ES Pseudocode 
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In the pseudocode above, x represents the candidate solutions. cp and p represent the two evolution 

paths governing the covariance matrix adaptation and the global step size adaptation respectively, 

whereas C represents the covariance matrix. To improve readability, the mutation operation used in 

generating new candidate solutions is denoted by y. For the purposes of our implementation, of the 

CMA-ES is performed using the parameter settings as proposed by [36]. That is to say, the initial values 

of IC , 0pp ,c  are used and the initial population is generated randomly between the lower and 

the upper bounds of the decision variables. At each iteration,    nln3410   (where n 

represents the number of decision variables) new individuals are generated and μ = λ/2 individuals are 

allowed in the next generation of candidate solutions. Lastly, in order to provide a fair comparison with 

PSO implementation in terms of total number of function evaluations, number of iterations for the CMA-

ES is the same as of PSO implementation, which is 200. 

 

3.3. OBJECTIVE FUNCTION 
 

For the problem at hand, an “accurate” potential parameter set can be defined as the accuracy on the 

calculated physical properties of a crystal such as lattice constant, bond distance and phonon dispersion. 

It is possible to calculate these parameters using different approaches. One of these approaches is called 

first principles method, as implemented in VASP, The Vienna a b initio Simulation Package, [37] that 

gives results comparable with experimental measurements for a crystal systems having up to 500 atoms. 

Another method is known as molecular dynamics simulations, as implemented in a computer simulation 

package called GULP, General Utility Lattice Program, [38] that can be used to calculate temperature 

dependent physical properties of a crystal system having up to millions of atoms. However, the accuracy 

of Classical Molecular Dynamics simulations significantly depends on the empirical potential parameter 

set used. Therefore, in order to produce the required parameter set which can be used for large scale 

material simulations, we chose a crystal system which can be simulated using first principles approach, in 

other words, VASP. Then, we predicted the parameter set that provides us with the results having minimal 

deviation from the VASP calculations by the fitting algorithms mentioned above. Here, in order to perform 

MD simulations GULP program is employed. Thus, the objective function of the problem is defined as: 
 

  





J

j j

jj

j
t

at
wf

1

x           (4) 

Where  xf  is the objective function, 
jt  is the value of the jth crystal characteristic obtained through 

VASP, ja  is the value of the jth crystal characteristic obtained through GULP and jw  is the weight of 

the jth crystal characteristic in the objective function. The first characteristic defined in the objective 

function is the bond distance, and the second one is the lattice constant. The remaining 28 characteristics 

define the phonon dispersion frequencies over the high-symmetry directions of the Brillouin zone 

(minimum unsymmetrical crystal Fourier space in which lattice vibration waves can be defined). Phonon 

dispersion diagrams are especially important in assessing the high temperature crystal properties such 

as thermal conductivity. Since it is not possible to represent the dispersion diagrams in the objective 

function as a whole, we choose to sample some critical points representative of the phonon diagrams. 

The weights are determined by considering the importance of different crystal characteristics relative to 

each other. Throughout the experimentation phase, two different version of the objective function are 

used. In the first version, all crystal characteristics are treated as equal, which makes 1jw  for all j. In 

the second version, the characteristics considered to be the least important are assigned 1jw , 

moderately important characteristics has a weight value of 2, and the most important characteristics has 

a weight value of 4. In our calculations, the highest weights are assigned to the optic phonon frequencies, 

along with the bond distance and lattice constant. During experimentation, we attempted to answer two 
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questions: whether there is a statistically significant difference between the two optimization procedures 

in terms of performance, and whether the use of weights contribute significantly to the performance of 

these optimization algorithms. Answers to both these questions are discussed in detail in the next section. 

 

3.4. STATISTICAL ANALYSIS  
 

In this section, we provide the results of the experimentation performed using two different optimization 

procedures, namely the PSO and the CMA-ES, and two different objective functions, one with weights, 

and the other without weights. Thus, we obtained four different experimental settings. For each 

experimental setting, we ran the algorithm 30 times and the best solution obtained at each trial are recorded. 

We then compared the performance of each configuration by evaluating the average, best (minimum) and 

worst (maximum) objective function values as summarized in Table 3. Both PSO and CMA-ES are coded 

using MATLAB and ran on a MacBook with a 1.7 GHz Intel Core i7 processor with 8 GB of RAM. 

 

In Table 3 below, we summarize the results for four different single layer crystal structures, namely 

MoS2, MoSe2, WS2 and WSe2 obtained using PSO and CMA-ES and weighted and unweighted versions 

of the objective function. In order to make a fair comparison between the weighted and the unweighted 

versions of the objective functions, the results obtained using the weighted version of the objective 

function is converted into unweighted version by removing the effect of weights from the objective 

function values. It is observed that, the sum of deviations from the desired crystal characteristics, on 

average, is smaller when the CMA-ES is used as the optimization procedure, except for the MoS2. It can 

be also verified from Table 3 that the range between the minimum and the maximum values of the 

objective functions are much smaller with the CMA-ES.  
 

We also provide the box plots for the ranges of best solutions identified in different trials of each 

optimization method using two different versions of the objective functions in Figure 4 and Figure 5. 

As can be verified from the boxplots, the range of the “best” solutions identified by the PSO algorithm 

is much greater than the ones identified by the CMA-ES. The difference between the maximum and the 

minimum objective function values is even more pronounced for the PSO when the weighted objective 

function is used, however, the effect of weighted objective function on CMA-ES is hardly detectable. It 

is our conjecture that this difference can be attributable to the new candidate solution generation 

mechanisms of PSO and CMA-ES. In PSO, new candidate solutions are generated by using the 

information on the particle’s best position and the best position of the overall swarm using uniform 

distribution, whereas in CMA-ES the new solutions are generated using a multigaussian distribution. 

Consequently, once CMA-ES identifies a promising region in the objective function space, this information 

quickly propagates across the whole population, whereas for PSO this would take more time and number of 

iterations. On one hand, this helps PSO to find better solutions occasionally, and on the other hand, it also 

leads to keep the search algorithm in exploration stage too long, as indicated by the greater range between 

maximum and minimum values of the identified “best” solutions at different trials of the PSO algorithm. 

 
 

Table 3. Summary of results for MoS2, Mo Se2, WS2, WSe2 

Objective 
 MoS2 MoSe2 WS2 WSe2 

Function  PSO CMA-ES PSO CMA-ES PSO CMA-ES PSO CMA-ES 

wj = 1 

Max 

(Worst) 

1.118 0.843 1.924 1.676 2.842 0.811 1.584 0.882 

Min (Best) 0.747 0.784 1.489 1.570 0.711 0.743 0.781 0.814 

Average 0.800 0.809 1.679 1.622 0.879 0.778 0.931 0.848 

wj ≠ 1 

Max 

(Worst) 

2.346 0.843 2.276 1.676 1.291 0.873 1.859 0.955 

Min (Best) 0.763 0.787 1.562 1.577 0.745 0.732 0.808 0.816 

Average 0.847 0.808 1.673 1.625 0.852 0.789 1.005 0.881 

 



Karaaslan et al. / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 20 (3) – 2019 

 

381 

 

Figure 4. Boxplots of fitness functions, MoS2 and MoSe2 - CMA-ES vs PSO 

 

Figure 5. Boxplots of fitness functions, WS2 and WSe2 - CMA-ES vs PSO 

 

In order to assess whether there is a significant difference between the two optimization procedure and, 

the two objective functions, ANOVA test is performed. Thus, there are two factors with two levels each 

e.g. optimization procedure (PSO vs CMA-ES) and the type of the objective function (unweighted vs 

weighted). All statistical analyses are performed using 95% level of confidence. We also considered the 

interaction between the optimization procedure and the type of the objective function. For brevity, we 

summarized the results as in Table 4, only reporting the computed F statistics and the corresponding p 

value (in parentheses). We also run ANOVA tests to see specifically if there is a significant contribution 

of the factors defined above on Lattice Constant, Bond Distance and Phonon Frequencies as reported in 

Table 5, Table 6 and Table 7 respectively. 

 

Overall, CMA-ES outperforms PSO in three out of four crystal structures, namely, MoSe2, WS2, and 

WSe2, as observed in Table 4. Also can be verified from Table 4 that the type of the objective function 

has no statistically significant effect on the performance of the algorithms on overall level. In order to 

continue with the statistical analyses on further detail, we decompose the overall objective function into 

its constituents as Lattice Constant, Bond Distance and Phonon Frequencies. The weight value used for 

lattice constant and bond distance is w1 = w2 = 4. For the lattice constant, the use of weights proved to 

be an effective tool in reducing the average deviation from the corresponding ideal value of the lattice 

constant for both MoS2 and MoSe2 whereas for the other two crystals the use of weights did not 

contribute significantly to the same purpose (Table 5). For the lattice constant, the only significant 

difference between optimization approaches found for WS2, which is in favor of CMA-ES again. The 

effect of the use of weights to reduce the average deviation from the ideal values are even more 

pronounced in the case of bond distance, as can be verified from Table 6. The objective function with 

the weights produced a smaller deviation from the ideal values of all bond distances for all crystal 

structures considered. For the bond distance alone, there is no statistically significant difference between 
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the performances of CMA-ES and PSO for all crystals except for MoSe2. Lastly, for the sum of the 

deviations from the ideal phonon frequency values, MoS2 and MoSe2, favors the weighted objective 

function, whereas for the other two crystals there is no statistically significant difference present in the 

type of objective function Table 7. For the frequencies again, CMA-ES comes forward as the choice of 

optimization procedure for MoSe2, as summarized in Table 7. 
 

When all these results are considered as a whole, the CMA-ES with objective function in which wj = 1 

for all characteristics j = 1, ..., 30 turns out to be the best option for the optimization of the crystal 

structures considered in this study. The type of the objective function is only significant for the 

deviations from the ideal bond distance values across all crystals, however, even in the worst case the 

actual deviation from the ideal value of the bond distance is only around 5%, which is well within the 

acceptable range. For the sake of simplicity and the greater potential of convergence to a solution that 

is acceptable from the view of all crystal characteristics, CMA-ES with unweighted objective function 

turns out to be a better option. 
 

Table 4. Summary of results for MoS2, MoSe2, WS2, WSe2 

Overall PSO vs CMA-ES (1) Type of Obj. Func. (2) (1)×(2) 

MoS2 0.30 (0.59) 0.69 (0.41) 0.71 (0.40) 

MoSe2 8.77 (0.00) 0.00 (0.94) 0.05 (0.83) 

WS2 5.20 (0.02) 0.05 (0.82) 0.29 (0.59) 

WSe2  11.12 (0.00) 2.94 (0.09) 0.01 (0.50) 

 

Table 5. Summary of results for MoS2, MoSe2, WS2, WSe2 

Lattice 

Constant 

PSO vs CMA-ES (1) Type of Obj. Func. (2) (1)×(2) 

MoS2 0.22 (0.64) 4.98 (0.03) 1.00 (0.32) 

MoSe2 0.8 (0.38) 13.65 (0.00) 5.75 (0.02) 

WS2 3.80 (0.05) 3.61(0.06) 2.43 (0.12) 

WSe2 13.75 (0.00) 1.73 (0.19) 3.32 (0.07) 

 

Table 6. Summary of results for MoS2, MoSe2, WS2, WSe2 

Bond Distance PSO vs CMA-ES (1) Type of Obj. Func. (2) (1)×(2) 

MoS2 7.06 (0.01) 40.83 (0.00) 1.68 (0.20) 

MoSe2 1.47 (0.23) 62.60 (0.00) 0.58 (0.45) 

WS2 8.05 (0.00) 4.17 (0.04) 4.19 (0.04) 

WSe2 20.35 (0.00) 21.42 (0.00) 0.64 (0.43) 

 

Table 7. Summary of results for MoS2, MoSe2, WS2, WSe2 

Frequencies PSO vs CMA-ES (1) Type of Obj. Func. (2) (1)×(2) 

MoS2 0.00 (0.99) 4.41 (0.04) 1.22 (0.27) 

MoSe2 5.86 (0.02) 6.00 (0.02) 0.00 (0.97) 

WS2 2.97 (0.09) 0.07 (0.79) 0.00 (0.95) 

WSe2 3.49 (0.06) 3.40 (0.07) 1.87 (0.17) 

 

We also provide phonon frequency diagrams for all four crystals using PSO and CMA-ES along with 

weighted and not weighted objective functions in Figure 6 for MoS2, Figure 7 for MoSe2, Figure 8 for 

WS2, and Figure 9 for WSe2. Overall, both methods and objective functions produce quite satisfactory 

results with respect to phonon dispersion diagrams, however, based on the statistical analyses results, 
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we can claim that the CMA-ES with not weighted objective function provides smaller deviations 

across all characteristics.  

 

Figure 6. Phonon dispersions of single-layer MoS2 structure along high-symmetry directions of the Brillouin zone: CMA-ES vs PSO 

(GULP results are for the SW parameters giving the best results belonging to the corresponding optimization method) 

 

 

Figure 7. Phonon dispersions of single-layer MoSe2 structure along high-symmetry directions of the Brillouin zone: CMA-ES 

vs PSO (GULP results are for the SW parameters giving the best results belonging to the corresponding optimization 

method) 
 

 

Figure 8. Phonon spectrums of monolayer WS2 along the ΓMKΓ direction in the Brillouin zone: CMA-ES vs PSO (GULP 

results are for parameter set with the lowest error obtained using the relevant optimization method) 
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Figure 9. Phonon spectrums of monolayer WSe2 along the ΓMKΓ direction in the Brillouin zone: CMA-ES vs PSO (GULP 

results are for parameter set with the lowest error obtained using the relevant optimization method). 

 

4. MULTIOBJECTIVE MODEL 
 

As explained previously, the objective function is composed of thirty different characteristics; bond 

distance, lattice constant, 28 points sampled from the phonon frequency diagrams that represent acoustic 

and optic frequencies. When there are many objectives to be considered simultaneously, multiobjective 

optimization techniques can also be used, in addition to the single objective approach discussed in the 

previous section. By doing so, we can also have an understanding of whether these objectives are 

conflicting or not. Another motivation for implementing a multiobjective optimization method is that 

using “Pareto optimal” solutions, the decision maker can assess the trade-offs to choose a solution 

among a set of alternative solutions to specifically minimize the deviation from the desired characteristic 

values and observe the worsening readily on the remaining objective functions. For this reason, we also 

created a three objective model and used NSGA-III as explained in [39] to solve the three-objective 

model. Although Deb and Jain stated that the NSGA-III is developed for optimization problems with 

four or more objective functions, they also presented test problems with three objective functions as 

well [39] with satisfactory results. A pseudocode of the NSGA-III algorithm is provided in Figure 10. 

As with most other multiobjective evolutionary algorithms (MOEA), NSGA-III also uses recombination 

and mutation to generate new offspring. NSGA-III specifically addresses two important issues: (1) 

NSGA-III uses a special domination rule based on adaptively discretizing the Pareto-optimal front to 

find a well-distributed set of points in the Pareto-optimal front and (2), instead of using predefined 

multiple search directions, multiple reference points are specified in NSGA-III beforehand to find a set 

of widely distributed Pareto-optimal points. In addition, recombination strategies are tuned to ensure 

creating near-parent solutions. For the details of the NSGA-III procedure, the reader is referred to [39]. 

 

For our problem, we defined three objective function. The first objective function is defined as the 

average normalized deviation of the bond distance and lattice constant values from their desired values. 

The second and third objective functions are the average normalized deviation of 16 optic and 12 

acoustic phonon frequencies from their desired values, respectively. With these settings, NSGA-III is 

allowed to run for 5000 iterations with a population size of 100 individuals, creating 100 offspring at 

each iteration. Following the recommendations of Deb and Jain [39], we used simulated binary 

crossover, SBX, for creating offspring, and these offspring are mutated with a probability of 0.02. 

NSGA-III is allowed to run for a much lengthier period of time in comparison to PSO and CMA-ES, 

and the Pareto optimal solutions found as a result are then compared to the results reported in the 

previous section. The main reason for not having repetitions for the NSGA-III is the fact that all the 

solutions identified at the end of a single run are all optimal solutions in the Pareto-preference sense. 
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Algorithm3: NSGA-III procedure at generation t  

Input: H structured reference points Zs, parent population Pt  

Output: Pt+1  

Begin  

St ← Ø, i ← 1;  

Qt ← Variation (Pt);  

Rt ← Pt  Qt;  

(F1, F2, ...) ← Non-dominated_Sort (Rt);  

while | St | ≥ N do 

 St ← St  Fi; i ← i+1;  

end 

Fl ← Fi; //Last front to be included  

if | St | = N then  

 Pt+1 ← St;  

else  

 
1

11



 
l

j jt FP  

 //Number of points to be chosen from Fl 

 K ← N – | Pt+1 |;  

 //Normalize objectives and create reference set Z r 

 Normalize (F M ; St ; Z r ; Z s );  

 //Associate each member s of St with a reference point 

 // π(s): closest reference point  

 // d(s): distance between s and π(s) 

 [π(s), d(s)] ← Associate (St ; Z r );  

 //Compute niche count of reference point j  Z r   

    


lt FSs sj j
/

0:1? ;  

 //Choose K members one at a time from Fl to construct Pt+1 

 Niching (K, ρj, π(s), d(s), Z r , Fl, Pt+1  );  

end if  

end 

 

Figure 10. NSGA-III Pseudocode 
 

4.1. STATISTICAL ANALYSIS: CMA-ES VS NSGA-III 
 

The results obtained from NSGA-III is only compared with that of CMA-ES. We already established in 

the previous sections that CMA-ES produces better results compared to PSO. In addition, the 

unweighted objective function performs better than the weighted objective function, so the statistical 

analysis performed in this section only compares the results obtained using CMA-ES with unweighted 

objective function with that of NSGA-III. 

 

We begin statistical analysis by comparing the maximum (worst) minimum (best) and average 

deviations from the desired values of crystal characteristics, as summarized in Table 8. As can be 

verified from the t-stat column of Table 8, overall the sum of deviations from the desired crystal 

characteristics on average, is smaller with the CMA-ES in comparison to NSGA-III, with 95% level of 

confidence. For WS2, NSGA-III provides slightly better results than CMA-ES, however, the difference 

is not significant according to the t-test performed. We also provide the boxplots on overall results 

summarized in Table 9 on Figure 11 for MoS2 and MoSe2 and for WS2 and WSe2 on Figure 12. 

 

 

 

 

 



Karaaslan et al. / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 20 (3) – 2019 

 

386 

Table 8. Comparison of Results: CMA-ES vs NSGA-III on the basis of defined objective functions for NSGA-III 

 
 

 
Overall 

 

 Optimization 
Procedure 

CMA-ES NSGA-III t stat. 

 
Maximum 

0.843 2.097 

-10.56 (0.000) MoS2 
Minimum 

0.784 0.855 

 
Mean 

0.809 0.947 

 
Maximum 

1.676 1.832 

-6.52 (0.000) MoSe2 
Minimum 

1.570 1.633 

 
Mean 

1.622 1.656 

 
Maximum 

0.811 0.810 

1.14(0.262) WS2 
Minimum 

0.743 0.748 

 
Mean 

0.778 0.774 

 
Maximum 

0.882 1.276 

-33.52 (0.000) WSe2 
Minimum 

0.814 0.997 

 
Mean 

0.848 1.045 

 

 
 

Figure 11. Boxplots of fitness functions, MoS2 and MoSe2 - CMA-ES vs NSGA-III 

 

 

Figure 12. Boxplots of fitness functions, WS2 and WSe2 - CMA-ES vs NSGA-III 

 

In addition to the overall analysis, we decomposed the crystal characteristics in two different ways. First, 

we converted the results obtained using CMA-ES to that of NSGA-III and listed below in Table 9. For 

the first objective function (average deviation from the bond distance and lattice constant), the average 

deviation from the desired values of those characteristics are smaller with NSGA-III compared to CMA-
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ES, however, for the second and third objective functions (deviations from the optic and acoustic 

frequencies, respectively), CMA-ES provides better results compared to NSGA-III, in general. As can 

be further verified from Table 10, the difference for the first objective function is in favor of NSGA-III, 

whereas for the third objective function, the average deviation from the desired values of the frequencies 

are smaller with CMA-ES with 95% level of confidence across all crystal structures experimented with. 

For the second objective function, on the other hand, CMA-ES produced better results for MoS2 and 

NSGA-III produced better results for MoSe2. For the remaining two crystals, there is no statistically 

significant difference between the two. 

 
Table 9. Comparison of Results: CMA-ES vs NSGA-III on the basis of defined objective functions for NSGA-III 

 
 

Variable 
1st Objective Function 2nd Objective Function 3rd Objective Function 

 Optimization 

Procedure 
CMA-ES NSGA-III CMA-ES NSGA-III CMA-ES NSGA-III 

 
Maximum 

0.050 0.025 0.036 0.104 0.024 0.048 

MoS2 
Minimum 

0.008 0.003 0.028 0.032 0.017 0.022 

 
Mean 

0.028 0.012 0.032 0.035 0.020 0.031 

 
Maximum 

0.085 0.006 0.035 0.027 0.100 0.120 

MoSe2 
Minimum 

0.011 0.001 0.021 0.023 0.088 0.100 

 
Mean 

0.037 0.003 0.028 0.025 0.092 0.104 

 
Maximum 

0.055 0.012 0.036 0.035 0.023 0.025 

WS2 
Minimum 

0.009 0.001 0.026 0.031 0.016 0.016 

 
Mean 

0.024 0.003 0.032 0.032 0.018 0.021 

 
Maximum 

0.055 0.011 0.032 0.046 0.031 0.062 

WSe2 
Minimum 

0.015 0.001 0.025 0.026 0.022 0.043 

 
Mean 

0.032 0.005 0.029 0.028 0.027 0.049 

 

 

Table 10. Summary of t-tests for MoS2, MoSe2, WS2, WSe2: the difference between CMA-ES and NSGA-III 

 
 Bond Distance + Lattice Constant Optic Frequencies Acoustic Frequencies 

MoS2 7.53 (0.00) -2.67 (0.01) -19.29 (0.00) 

MoSe2 9.69 (0.00) 4.24 (0.00) -22.39 (0.00) 

WS2 9.81 (0.00) -1.78 (0.09) -5.29 (0.00) 

WSe2 13.60 (0.00) 1.50 (0.14) -38.70 (0.00) 

 

The second decomposition is performed based on the lattice constant, the bond distance and the phonon 

frequencies and summarized in Table 11. As can be verified both Table 11 and Table 12, NSGA-III 

performs better than the CMA-ES on the basis of both the bond distance and lattice constant, however, 

on the basis of average deviation from the average frequencies, CMA-ES is the better performing 

optimization method. Considering the fact that average frequency considers 28 crystal characteristics 

simultaneously, once again CMA-ES stands out as a better option. 
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Table 11. Comparison of Results: CMA-ES vs NSGA-III on the basis of Lattice Constant, Bond Distance and Average Phonon 

Frequencies 

 

 
Variable Lattice Constant Bond Distance Average Frequency 

 

Optimization 

Procedure 
CMA-ES NSGA-III CMA-ES NSGA-III CMA-ES NSGA-III 

 Maximum 0.029 0.009 0.088 0.041 0.028 0.075 

MoS2 Minimum 0.000 0.000 0.001 0.000 0.025 0.030 

 Mean 0.010 0.002 0.045 0.021 0.026 0.033 

 Maximum 0.044 0.005 0.130 0.006 0.057 0.063 

MoSe2 Minimum 0.000 0.000 0.008 0.002 0.050 0.056 

 Mean 0.013 0.002 0.062 0.004 0.054 0.057 

 Maximum 0.055 0.012 0.082 0.013 0.027 0.028 

WS2 Minimum 0.001 0.000 0.002 0.001 0.024 0.025 

 Mean 0.015 0.001 0.033 0.005 0.026 0.027 

 Maximum 0.065 0.007 0.115 0.015 0.032 0.044 

WSe2 Minimum 0.000 0.000 0.002 0.000 0.025 0.034 

 Mean 0.027 0.002 0.045 0.007 0.029 0.036 

 
Table 12. Summary of t-tests for MoS2, MoSe2, WS2, WSe2: The difference between CMA-ES and NSGA-III 

 
 Bond Distance Lattice Constant Frequencies 

MoS2 5.44 (0.00) 5.37 (0.00) -13.47 (0.00) 

MoSe2 9.94 (0.00) 5.03 (0.00) -10.02 (0.00) 

WS2 7.22 (0.00) 5.85 (0.00) -4.13 (0.00) 

WSe2 9.25 (0.00) 6.53 (0.00) -18.30 (0.00) 

 

 

In Figure 13 and Figure 14, we provide examples of the phonon frequency diagrams for the crystals 

considered in this study. For the acoustic frequencies which is shown on the lower half of the diagrams, 

NSGA-III closely matches the results obtained from VASP. However, for the optic frequencies, the 

deviations are much higher in all four crystals.  

 

 

 

Figure 13. Phonon frequency diagrams drawn along high-symmetry directions in reciprocal space according to VASP and 

GULP (for parameter set that has the lowest error obtained using the NSGA-III method) results: MoS2 and MoSe2 
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Figure 14. Phonon frequency diagrams drawn along high-symmetry directions in reciprocal space according to VASP and 

GULP (for parameter set that has the lowest error obtained using the NSGA-III method) results: WS2 and WSe2 

 

5. CONCLUSION AND FUTURE WORK 
 

In this study, we implemented three different evolutionary optimization methods to the theoretical 

optimization of two-dimensional transition metal dichalcogenides characteristics. To the best of our 

knowledge, this is the first study in the literature that systematically compares various optimization 

methods’ performances on the problem. According to the results, CMA-ES turns out to be the best 

option among the alternatives in optimizing the theoretical characteristics of such materials. Researchers 

in the field can benefit from both results reported here, and the optimization approach as a whole, as the 

solution approach presented here is quite new for the field of theoretical/computational physics.  
 

As stated previously, in implementing multiobjective optimization model, one of our motivations was 

to be able to obtain even smaller average deviation values in objective functions. However, even the 

smallest values for the defined objective functions for the optic and acoustic frequencies obtained using 

NSGA-III turned out to be greater than the ones obtained using CMA-ES. Even then, by carefully 

selecting and defining more objective functions, one can possibly achieve smaller deviations on a 

specific set of crystal characteristics, which is the case for the first objective function of the NSGA-III 

model. From that respect, we cannot claim that we fully exploited the potential of the NSGA-III algorithm. 
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[33] Bäck T., Evolutionary algorithms in theory and practice : evolution strategies, evolutionary 

programming, genetic algorithms. 1996; New York: Oxford University Press. xii, 314 p. 
 

[34] Hansen N. and A. Ostermeier. Adapting arbitrary normal mutation distributions in evolution 

strategies: the covariance matrix adaptation. in Proceedings of IEEE International Conference on 

Evolutionary Computation. 1996. 
 

[35] Hansen N. and A. Ostermeier, Completely Derandomized Self-Adaptation in Evolution Strategies. 

Evolutionary Computation, 2001; 9(2): p. 159-195. 
 

[36] Hansen N. and S. Kern. Evaluating the CMA Evolution Strategy on Multimodal Test Functions. in 

Parallel Problem Solving from Nature - PPSN VIII. 2004; Berlin, Heidelberg: Springer Berlin 

Heidelberg. 
 

[37] Kresse G. and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and 

semiconductors using a plane-wave basis set. Computational Materials Science, 1996. 6(1): p. 15-50. 
 

[38] Gale J.D. and A.L. Rohl, The General Utility Lattice Program (GULP). Molecular Simulation, 

2003; 29(5): p. 291-341. 
 

[39] Deb K. and H. Jain, An Evolutionary Many-Objective Optimization Algorithm Using Reference-

Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. 

IEEE Transactions on Evolutionary Computation, 2014; 18(4): p. 577-601. 


