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 In this paper, we applied two approximate methods for the solution of a boundary value 

problem for a differential equation with retarded argument: 
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continuous functions.   
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Yava deikenli denklem için konulmu sınır deer probleminin çözümü için iki yaklaık 

metot verilmitir. Burada ( ), ( ), ( ) 0 (0 )a t f t t t Tτ ≥ ≤ ≤  ve 

)(tϕ 0(λ )0≤≤ t önceden verilmi sürekli fonksiyonlardır.   

Key world: ordinary differential equations, boundry value problem, succesive approximations 
method  
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A common method used for the analytical solution of the boundary value problems 
is the integral equation method [1,2]. With this method, we obtain an integral equation 
that is equivalent to the boundary value problem and the solution of the integral 
equation is defined as the  solution of the boundary value problem. The equivalent 
integral equation is usually a Fredholm equation in the classical theory. In this study we 
obtain a Fredholm-Volterra integral equation different from classical theory for the 
problem  
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where Tt ≤≤0  and ( ), ( ), ( ) 0 (0 )a t f t t t Tτ ≥ ≤ ≤ and 

)(tϕ 0(λ )0≤≤ t are known as continuous functions. The Fredholm operator 

included in the equivalent integral equation is an operator with a degenerated kernel. 
We applied the  modified successive method and consecutive substitution method for 
problem (1). One of these methods suggested by Ja. D. Mamedov [3] has been problem 
(1) by Aykut and Yıldız [4]. 

 

 In this study these  methods were applied to  the boundary value problem with 
retarted argument.  We investigated  the solution  for arbitrary continuous function 

)(tτ .  



In problem (1), if we take )()( ttt τλ −= then ],0[0 tt ∈  is a point located at the 

left side of T such that conditions  )( 0tλ 0= and )(tλ 0≤   )0( 0tt ≤≤  are 

satisfied, where, )(min
000 ttt λλ ≤≤= . We assume that )(tλ is a nondecreasing 

function in the interval ],[ 0 tt  and the equation  σλ =)(t  has  differential continuous 

solution )(σγ=t  for arbitrary )](,0[ tλσ ∈ . It can be seen that if  ∗x )(t is a 

solution of the boundary value for problem (1) then 
∗x )(t  is also the solution of the 

equation  
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Let ).(ss τσ −=  Therefore Eq. (2) can be written as follows: 
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Let )())(()]([)(1 σγσγσγσ ′−= aTK  and 

).())(()]([),( σγσγσγσ ′−= attK  Therefore we write  
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is the Fredholm operator, 
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is the Volterra operator. Eq. (6) is a Fredholm-Volterra integral equation and it is 
equivalent to problem (1)  

 



 Now, we will define the modified successive approximations for the integral 
equation (5), which are different from the ordinary successive approximations, as 
follows: 
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(7) 

In order to obtain a solution  of  problem (1) using this method, we will consider the 
following theorem. 

Theorem 1.  If 
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then the limit of the modified successive approximations  
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converges to the solution of the problem (1) and the convergence speed is 
determined by 
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Proof. In order to obtain the approximation of )(txn  we will use the auxiliary 

equation 
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Let  cyF =λ . 

 

 

 Then, 
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If we use Eq. (9) in Eq. (8), then we obtain 
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for c . By hypothesis we know  that ,0)/1(1 ≠−= tFT λα   therefore 

hFc ˆ)/1( λα=  and we can write 

 ˆ ˆ( ) .
t

y h t F h
T

λ
α

= +  

If we consider 1)()(ˆ −+= nxVthth λ  and use Eq. (7), then we have 
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Now, we will show that the approximations  { ( )}nx t , which are defined by Eq. 

(10), converge to the solution of  integral equation (5). Let us write  
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Therefore, we write the approximations of Eq. (10) as 
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Thus, Eq. (5) can be written as 
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Hence, the modified succesive approximations of Eq. (10) are similar to the ordinary 
successive approximations (12) which are equivalent to the integral equation (5). In 
order to show the convergence of  approximations (10) to Eq. (5) we must prove the 
convergence of approximations (11) to Eq. (12). If the  condition  

 || || || || ( 1)x x qΩ ≤ < , 

is satisfied then ordinary successive approximations (11) converge to the solution of  
Eq. (12) and the convergence speed is determined by 
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If we substitue  right side  of equation (6) instead of x in the operator V xλ  to 

equation (6) then we obtain  
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If we rewrite the right side of equation (6) instead of x  in the operator 
2V xλ  to 

equation (13) then we have 
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Now we can  proof that the formula  it is true 
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As a result of this we neclect the operator || 1xV n+
λ  in equation (15) for n ’s which 

are big enough. Thus the consecutive approximations are formed by taking the Volterra 
operator into consideration. 
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converges to the solution of problem (1) and the speed of the convergence is 
determined by 
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Proof: Eq. (18) is the Fredholm integral equation with a degerenated kernel.The 
solution of  
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This operation is the approximate solution of problem(1) that is, the limit of )(txn  

converges to the solution of problem (1). 

 

Now let us determine the error of the approximate solution of  eq.  (22). Using  (15) 
and (18), we reach 
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equation with a degenerated kernel 
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and we have  

 
[ ( )]

| ( ) ( ) | || ||
!

n

n n

K T
x t x t A x

n

λ
− ≤  (24) 

 

Example 1. Let us consider the boundary value problem: 
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This equation can be written as the Fredholm-Volterra integral equation 
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Therefore, the integral equation (19) can be written as  

 ( ) ( )x t h t tF x V xλ λ= + +  (27) 

and this equation is equivalent to problem (25). Some values of the solution of this 
equation are obtained by using the method of modified successive approximations and 
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the method of consecutive approximations of order two which are given in Table 1, 

where the first approximation is .)420/409()(0 ttx =   

Table 1. Values at some point inthe interval ]1,0[  

 
 

 

 

 

 

 

(2)
2x : The modified successive method; 

(3)
2x : The concecutive substitution method. 

1ε  and 2ε  are speed of the modified successive method and the concecutive 

substitution method, respectively. 
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it  )( itx  )()2(
2 itx  )()3(

2 itx  )(1 itε  )(2 itε  

0.00 0.00 0.0000000 0.0000000 0.000000 0.000000 

0.25 0.25 0.2501132 0.2501078 0.000113 0.000107 

0.50 0.50 0.5000794 0.5000684 0.000079 0.000068 

1.00 1.00 1.0000013 0.9999046 0.000001 -0.000095 


