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Abstract 

We show that the interpolation polynomial in the lagrange form canbe 

calculatetod with the some numbers of the arithetic operations. Given a set of 

(n+1) data points and a function f, the aim is to determine a polynomial of 

degree n which interpolates f at the points inquestion. 
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Introduction 

The problem of determinig a polynomial of degree 1 that passes throwgh the 

distince points  00 , yx  and ( )11, yx  is the same as appmaximating a function f for which 

00 )( yxf   and 
11)( yxf   by means of a first-decree polynomial interpolating or 

agreeing with  the values of  fort he given points [3-5]. 

Consider the linear polynomial 
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When x = .0x   

)(.0.1)( 00100 xfyyyxp   (1.2) 

and when 
1xx   

)(.1.0)( 11101 xfyyyxp   (1.3) 
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so p has the required properties. (See Figure 1.1) 
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Figure 1. 

The tecnique used to construct  p is the method of “ intepolation” often used in 

trigonometric or logarithmic tables. What may not be obvious is that p is the only 

polynomial of degree 1 or less with the interpolating property. Has result , however 

follows. 

To generalize the concept of linear interpolation consider the construction of a 

polynomial of degree at most n that passes through the n+1 points 

)).(,()),......,(,()),(,( 1100 nn xfxxfxxfx  

The linear polynomial passing through ))(,( 00 xfx  and ))(.( 11 xfx  is 

constructed by using the quotients 
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When 1)(, 000  xLyx and 0)( 01 xL  when 0)(, 101  xLxx  and 1)( 11 xL  
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For the general case,we need to construct, for each k=0,1,2… n     a quotient 

)(, xL kn
with the property that 0)( 1, xL kn

 when ki   and 1)(, xL kn
 To safety 

0)( 1 xLnk
 for each ki   requires that the numerator of ...nkL the term  

kkk xxxxxxxxx )...)()...()(( 1110    (5) 

To satisfy 1)(, kkn xL  the denominator of 
nkL  must he equal to when 1x   

Thus, 
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A sketch of the graph of a typical nkL  (in the case when n is even) is known in 

figure 1.3 
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Figure 3. 

The interpolating polynomial is easily described now that the form of nkL  is 

known.This polynomial called the nth Lagrange interpolation polynomial. Is defined in 

the following theorem [6], [7], [8]. 

THEOREM 1. If nxxx ,...,, 10  are )1( n distinct numbers and f is a 

function whose values are given at these numbers,then there exists a unique polynomial  

p  of degree at most n with the property that 

)()( kk xPxf   for each nk ,...,1,0  

This polynomial is given by  
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Where 







 

















n

ki
ink

n

kk

k

kk

kk

k

kn
xx

xx

xx

xx

xx

xx

xx

xx
xL

01

1

1

1

0

0
, .......)(  (8) 

for each nk ,...,2,1,0  

EXAMPLE 1. 

Using the numbers or nodels, 4,5.2,2 210  xandxx  to find the second 

interpolating polynomial for 1)( xf  requires that we first determine the coefficent. 
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Polynomials 
210 ,, LandLL : 

10)5.66(
)42)(4.22(

)4)(5.2(
)(0 




 x

xx
xL  

3

32)244(

)45.2)(25.2(

)4)(2(
)(1









xxxx
xL  

and 
3

5)5.4(

)5.24)(24(

)5.2)(2(
)(2









xxxx
xL  

Since        25.0)4()(,4.0)5.2()(,5.0)2()( 210 xandxx  

)()()(
2

0

xLxfxP k

k

k




15.1)425.005.0(
3

5)5.4(
25.0

3

32)244(
4.0)10)5.6((5.0 





 xx

xxxx
xx

An approximation to f (3) = 3 is 

325.0)3()3(  Pf  

Taylor polynomial (expanded about x0=1) could be used to reasonably 

approximate )3(f  = 3 (See Figure 1.1) 
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Figure 4. 

The next step is to calculate a remainder term or bound for the error involved in 

approximating a function by an interpolating polynomial. This is done in the following. 
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THEOREM 2. 

If 
nxxx ,...,, 10

 are distinct numbers in the interval  ba , a number )(x in (a,b) 

exists with. 
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 where P is the polynomial 

given in Eq.(5) 

Proof Note first that if 
kxx  for nk ,...,1,0  then )()( kk xPxf  and 

choosing )( kx  arbittarily  in (a,b) yields Eq.(3.5). If kxx  for any nk ,...,1,0  

define the function g for t in  ba ,  by 
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Thus,  baCg a ,1   and g vanishes at the n+2 distinct number 
axxx ,...,, 1
 By 

the Generalized Rolle’s Theorem, there exists )(x  in (a, b) for which 

0)()1(  ag . Evaluating )1( ag at  gives. 
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Since P is a polynomial of degree at most n, the (n+1)st derivative, )1( aP , is 

identically zero. Also  
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Equation (2.9) now becomes 
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And, upon solving for f(x). 
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The error Formula in Theorem 1.2 is an important theoretical restricted  

because lagrange polynomials are used extensively for deriving numerical differentation 

and gration methods. Error bounds for these techniques are obtain from the lagrange 

error Formula. [9-12] 

Note that the error form for the Lagrange polynomial is quite similation that for 

Taylor polynomial. The Taylor polynomial of degree n about  x0  all  rates all known 

information at  has an error term of the form 
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The Lagrange polynomial of degree n uses information at the distinct numbers 

nxxx ,...,, 10
 and in place of nxx )( 0  its error Formula uses a product the (n+1) 

)(,...),(),( 10 nxxxxxx   
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Specific use of this error Formula is restricted to those functions) who 

derivaties known bounds.  

EXAMPLE 2. Table 2.1 lists values of a function (The Bessel function of the 

first kind of zero)various points.The approximations to f (1.5) obtained by various 

Lagrange polynomials will be compared.[1], [2] 

1103623.02

2818186.09

4554022.06

6200860.03

7651977.00

)(xfx

 

Table 1. 

Since 1.5 is between 1.3 and 1.6 the linear polynomial at 1.5 given by 

5102968.0)4554022.0(
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Two polynomials of degree two could reasonably be used ,one by letting 

3.10 x  

6.11 x  and 9.12 x  which gives 
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and the other by letting 6.19.1,6.1,3.1 3210  xandxxx  in which case 

5124715.0)5.1(2 
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In the third-degree case there are also two choices for the polynomial. One is 

with 2.2,9.1,6.1,3.1 3210  xandxxx , which gives 

5118302.0)5.1(3 P  

The other is obtained by letting 9.1,6.1,3.1,0.1 3210  xandxxx giving 

5118200.0)5.1(3 


P  

The fourth-degree Lagrange polynomial uses all the entries in the table. With 

2.29.1,6.1,3.1,0.1 43210  xandxxxx   it can be shown that 

5118200.0)5.1(4 P  

Since )5.1(3



P , )5.1(3P  and )5.1(4P all agree to within 2 x 510   units,we expect 

)5.1(4P  to be the most accurate approximation and to be correct to within 2 x 510  units. 

The actual value of f (1.5) is known to be 0.5118277, so the true accuracies of 

the approximations are as follows: 

53.1)5.1()5.1(1  fP  x 10
-3 

42.5)5.1()5.1(2  fP  x 10
-4 

44.6)5.1()5.1(2 


fP  x 10
-4 

5.2)5.1()5.1(3  fP  x 10
-6 

50.1)5.1()5.1(3 


fP  x 10
-5 

7.7)5.1()5.1(4  fP  x 10
-6 

3P  is the most accurate approximation. However, with no knowledge of the 

actual value of 
4,)5.1( Pf  would be accepted as the best approximation. Note that the 

error or remainder term derived in Theorem 2.3 cannot be applied here, since no 

knowledge of the fourth derivative of f  is available. Unfortunately, this is generally the 

case.[13] 
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EXAMPLE 3. 

We wish to interpolate 2)( xxf  over the range 31  x , given these three points: 
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The interpolating polynomial is: 
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EXAMPLE 4. 

We wish to interpolate 3)( xxf  over the range 31  x  given these 3 points: 
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The interpolating polynomial is: 
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EXAMPLE 5. 

Let ).cos()(,9.0,6.0,0 2

210 xxfxxx   

a. Find the Lagrange interpolating polynomial )()( 22 xRandxP . 

b. Approximate  
1

0

1

0
22 )()cos( dxxPbydxx  and estimate the approximation 

error. 
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True error 

0155939.09201181.09045242.0)()cos(
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An approximation error: 
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Observe that  ))((''' xf  6.5, and the function )9.0)(6.0(  xxx changes 

signs over [0,1]: 
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EXAMPLE 6. 
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EXAMPLE 7. 

Lets calculate 062sin as fifth find the five digits after the comma correctly  

Solition: Taylor series according to  x moment? 

...cos
!3

)(
sin

!2

)(
cos)(sinsin

32







 






xx

xx dır. 

062 take the closest and trigonometric functions as take known angle. 
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060 take.  034907,0
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EXAMPLE 8. 

97,0ln find the seven digits after the comma correctly 
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