Fen Bilimleri Dergisi

2012

Sayı: 13

INTERPOLATION AND THE LAGRANGE POLYNOMAL

Mehmet KARAKAS

Sakarya University, Vocational School of Sakarya 54100 Sakarya/Turkey *E-mail: mkarakas@sakarya.edu.tr*

Abstract

We show that the interpolation polynomial in the lagrange form can be calculated with the some numbers of the arithetic operations. Given a set of (n+1) data points and a function f, the aim is to determine a polynomial of degree n which interpolates f at the points inquestion.

Key words: Interpolation, polynomial and laagrange.

Introduction

The problem of determining a polynomial of degree 1 that passes through the distince points (x_0, y_0) and (x_1, y_1) is the same as appmaximating a function f for which $f(x_0) = y_0$ and $f(x_1) = y_1$ by means of a first-decree polynomial interpolating or agreeing with the values of fort he given points [3-5].

Consider the linear polynomial

$$P(x) = \frac{(x - x_1)}{x_0 - x_1} y_0 + \frac{(x - x_0)}{x_1 - x_0} y_1$$
(1.1)

When $x = x_0$.

 $p(x_0) = 1.y_0 + 0.y_1 = y_0 = f(x_0)$ (1.2)

and when $x = x_1$

$$p(x_1) = 0.y_0 + 1.y_1 = y_1 = f(x_1)$$
(1.3)

so *p* has the required properties. (See Figure 1.1)

The tecnique used to construct p is the method of "intepolation" often used in trigonometric or logarithmic tables. What may not be obvious is that p is the only polynomial of degree 1 or less with the interpolating property. Has result, however follows.

To generalize the concept of linear interpolation consider the construction of a polynomial of degree at most n that passes through the n+1 points $(x_0, f(x_0)), (x_1, f(x_1)), \dots, (x_n, f(x_n)).$

The linear polynomial passing through $(x_0, f(x_0))$ and $(x_1 f(x_1))$ is constructed by using the quotients

$$L_0(x) = \frac{(x - x_1)}{(x_0 - x_1)}$$
 and $L_1(x) = \frac{(x - x_0)}{(x_1 - x_0)}$

When $x = y_0$, $L_0(x_0) = 1$ and $L_1(x_0) = 0$ when $x = x_1$, $L_0(x_1) = 0$ and $L_1(x_1) = 1$

For the general case, we need to construct, for each k=0, 1, 2..., n a quotient $L_{n,k}(x)$ with the property that $L_{n,k}(x_1) = 0$ when $i \neq k$ and $L_{n,k}(x) = 1$ To safety $L_{nk}(x_1) = 0$ for each $i \neq k$ requires that the numerator of $L_{nk}...$ the term

$$(x - x_0)(x - x_1)...(x - x_{k-1})(x - x_{k+1})...x_k$$
(5)

To satisfy $L_{n,k}(x_k) = 1$ the denominator of L_{nk} must he equal to when x = 1Thus,

$$L_{nk}(x) = \frac{(x - x_0)...(x - x_{k-1})(x - x_{k+1})...(x - x_n)}{(x_k - x_0)...(x_k - x_{k-1})(x_k - x_{k+1})...(x_k - x_n)} = \prod_{\substack{i=0\\i\neq k}}^n \frac{(x - x_i)}{x_k - x_i}$$
(6)

A sketch of the graph of a typical L_{nk} (in the case when *n* is even) is known in figure 1.3

The interpolating polynomial is easily described now that the form of L_{nk} is known. This polynomial called the *n*th Lagrange interpolation polynomial. Is defined in the following theorem [6], [7], [8].

THEOREM 1. If $x_0, x_1, ..., x_n$ are (n+1) distinct numbers and f is a function whose values are given at these numbers, then there exists a unique polynomial p of degree at most n with the property that

 $f(x_k) = P(x_k)$ for each k = 0, 1, ..., n

This polynomial is given by

$$P(x) = f(x_0).L_k(x) + \dots + f(x_n)L_k(x) = \sum_{k=0}^n f(x_k).L_k(x)$$
(7)

Where
$$L_{n,k}(x) = \frac{x - x_0}{x_k - x_0} \dots \frac{x_k - x_{k-1}}{x_k - x_{k-1}} \dots \frac{x - x_{k+1}}{x_k - x_{k+1}} \dots \frac{x - x_n}{x_k - x_n} = \prod_{\substack{i=0\\i\neq k}}^n$$
(8)

for each k = 0, 1, 2, ..., n

EXAMPLE 1.

Using the numbers or nodels, $x_0 = 2$, $x_1 = 2.5$, and $x_2 = 4$ to find the second interpolating polynomial for f(x) = 1 requires that we first determine the coefficient.

Polynomials
$$L_0, L_1, and L_2$$
:

$$L_0(x) = \frac{(x-2.5)(x-4)}{(2-2.4)(2-4)} = (6-6.5)x + 10$$

$$L_1(x) = \frac{(x-2)(x-4)}{(2.5-2)(2.5-4)} = \frac{(-4x+24)x-32}{3}$$
and $L_2(x) = \frac{(x-2)(x-2.5)}{(4-2)(4-2.5)} = \frac{(x-4.5)x+5}{3}$
Since $\int (x_0) = \int (2) = 0.5, \int (x_1) = \int (2.5) = 0.4, and \int (x_2) = \int (4) = 0.25$

$$P(x) = \sum_{k=0}^2 f(x_k)L_k(x)$$

$$= 0.5((x-6.5)x+10) + 0.4 \frac{(-4x+24)x-32}{3} + 0.25 \frac{(x-4.5)x+5}{3} = (0.05x-0.425)x + 1.15$$
An approximation to $f(3) = 3$ is

 $f(3) \approx P(3) = 0.325$

Taylor polynomial (expanded about $x_0=1$) could be used to reasonably approximate f(3) = 3 (See Figure 1.1)

Figure 4.

The next step is to calculate a remainder term or bound for the error involved in approximating a function by an interpolating polynomial. This is done in the following.

THEOREM 2.

If x_0 , x_1 ,..., x_n are distinct numbers in the interval [a,b] a number $\xi(x)$ in (a,b) exists with.

$$f(x) = P(x) + \frac{f(n+1)}{(n+1)!}(x - x_0)(x - x_1)...(x - x_a)$$
 where *P* is the polynomial

given in Eq.(5)

Proof Note first that if $x = x_k$ for k = 0, 1, ..., n then $f(x_k) = P(x_k)$ and choosing $\xi(x_k)$ arbitrarily in (a,b) yields Eq.(3.5). If $x \neq x_k$ for any k = 0, 1, ..., n define the function g for t in [a,b] by

$$g(t) = f(t) - P(t) - [f(x) - P(x)] \frac{(t - x_0)(t - x_1)...(t - x_a)}{(x - x_0)(x - x_1)...(x - x_a)}$$
$$= f(t) - P(t) - [f(x) - P(x)] \prod_{t=0}^{a} \frac{(t - x_1)}{(x - x_1)}$$

Since

$$g(x_k) = f(x_k) - P(x_k) - [f(x) - P(x)] \prod_{t=0}^{n} \frac{(x_k - x_1)}{x - x_1}$$

= 0 - [f(x) - P(x].0) = 0

Moreover,

$$g(x) = f(x) - P(x) - [f(x) - P(x)] \prod_{i=0}^{n} \frac{(x_k - x_1)}{x - x_1}$$

= $f(x) - P(x) - [f(x) - P(x)] = 0$

Thus, $g \in C^{a+1}[a,b]$ and g vanishes at the n+2 distinct number $x, x_1, ..., x_a$ By the Generalized Rolle's Theorem, there exists $\xi \equiv \xi(x)$ in (a, b) for which $g^{(a+1)}(\xi) = 0$. Evaluating $g^{(a+1)}$ at ξ gives.

$$0 = g^{(a+1)}(\xi) = f^{(a+1)}(\xi) - P^{(a+1)}(\xi) - \left[f(x) - P(x)\right] \frac{d^{a+1}}{d_1^{a+1}} \left(\prod_{i=0}^a \frac{t - x_i}{x - x_i}\right)_{t = \xi}$$

Since *P* is a polynomial of degree at most *n*, the (n+1)st derivative, $P^{(a+1)}$, is identically zero. Also

$$\prod_{t=0}^{a} \frac{(t-x_1)}{(x-x_1)} = \left(\frac{1}{\prod_{t=0}^{a} (x-x_1)}\right) t^{a+1} + (lower - \deg ree terms in t)$$

and

$$\frac{d^{a+1}}{dt^{a+1}}\prod_{t=0}^{a}\frac{(t-x_1)}{(x-x_1)} = \frac{(n+1)!}{\prod_{t=0}^{a}(x-x_1)}$$

Equation (2.9) now becomes

$$0 = f^{(a+1)}(\xi) - 0 - [f(x) - P(x)] \frac{(n+1)!}{\prod_{t=0}^{a} (x - x_t)}$$

And, upon solving for f(x).

$$f(x) = P(x) + \frac{f^{(a+1)}(\xi)}{(n+1)!} \prod_{t=0}^{a} (x - x_t)$$

The error Formula in *Theorem 1.2* is an important theoretical restricted because lagrange polynomials are used extensively for deriving numerical differentation and gration methods. Error bounds for these techniques are obtain from the lagrange error Formula. [9-12]

Note that the error form for the Lagrange polynomial is quite similation that for Taylor polynomial. The Taylor polynomial of degree *n* about x_0 all rates all known information at has an error term of the form

$$\frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)^{n+1}$$

The Lagrange polynomial of degree *n* uses information at the distinct numbers $x_0, x_1, ..., x_n$ and in place of $(x - x_0)^n$ its error Formula uses a product the (n+1) $(x - x_0), (x - x_1), ..., (x - x_n)$

$$\frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)...(x-x_n)$$

Specific use of this error Formula is restricted to those functions) who derivaties known bounds.

EXAMPLE 2. Table 2.1 lists values of a function (The Bessel function of the first kind of zero)various points. The approximations to f (1.5) obtained by various Lagrange polynomials will be compared. [1], [2]

x	f(x)
0	0.7651977
3	0.6200860
6	0.4554022
9	0.2818186
2	0.1103623

Since 1.5 is between 1.3 and 1.6 the linear polynomial at 1.5 given by

$$P_1(1.5) = \frac{(1.5 - 1.6)}{(1.3 - 1.6)}(0.6200860) + \frac{(1.5 - 1.3)}{(1.6 - 1.3)}(0.4554022) = 0.5102968$$

Two polynomials of degree two could reasonably be used , one by letting $x_{\rm 0}=1.3$

 $x_1 = 1.6$ and $x_2 = 1.9$ which gives

$$\begin{split} P_2(1.5) &= \frac{(1.5-1.6)(1.5-1.9)}{(1.3-1.6)(1.3-1.9)}(0.6200860) + \frac{(1.5-1.3)(1.5-1..9)}{(1.6-1.3)(1.6-1.9)}(0.4554022) \\ &+ \frac{(1.5-1.3)(1.5-1.6)}{(1.9-1.3)(1.9-1.6)}(0.2818186) = 0.5112857 \end{split}$$

and the other by letting $x_0 = 1.3$, $x_1 = 1.6$, $x_2 = 1.9$ and $x_3 = 1.6$ in which case

$$P_2(1.5) = 0.5124715$$

In the third-degree case there are also two choices for the polynomial. One is with $x_0 = 1.3$, $x_1 = 1.6$, $x_2 = 1.9$, and $x_3 = 2.2$, which gives

 $P_3 = (1.5) = 0.5118302$

The other is obtained by letting $x_0 = 1.0$, $x_1 = 1.3$, $x_2 = 1.6$, and $x_3 = 1.9$ giving

 $\bar{P}_3(1.5) = 0.5118200$

The fourth-degree Lagrange polynomial uses all the entries in the table. With $x_0 = 1.0$, $x_1 = 1.3$, $x_2 = 1.6$, $x_3 = 1.9$ and $x_4 = 2.2$ it can be shown that

 $P_4(1.5) = 0.5118200$

Since $\overline{P_3}(1.5)$, $P_3(1.5)$ and $P_4(1.5)$ all agree to within 2 x 10⁻⁵ units, we expect $P_4(1.5)$ to be the most accurate approximation and to be correct to within 2 x 10⁻⁵ units.

The actual value of f(1.5) is known to be 0.5118277, so the true accuracies of the approximations are as follows:

$$\begin{aligned} \left| P_1(1.5) - f(1.5) \right| &\approx 1.53 \text{ x } 10^{-3} \\ \left| P_2(1.5) - f(1.5) \right| &\approx 5.42 \text{ x } 10^{-4} \\ \left| \bar{P}_2(1.5) - f(1.5) \right| &\approx 6.44 \text{ x } 10^{-4} \\ \left| P_3(1.5) - f(1.5) \right| &\approx 2.5 \text{ x } 10^{-6} \\ \left| \bar{P}_3(1.5) - f(1.5) \right| &\approx 1.50 \text{ x } 10^{-5} \\ \left| P_4(1.5) - f(1.5) \right| &\approx 7.7 \text{ x } 10^{-6} \end{aligned}$$

 P_3 is the most accurate approximation. However, with no knowledge of the actual value of f(1.5), P_4 would be accepted as the best approximation. Note that the error or remainder term derived in Theorem 2.3 cannot be applied here, since no knowledge of the fourth derivative of f is available. Unfortunately, this is generally the case.[13]

EXAMPLE 3.

We wish to interpolate $f(x) = x^2$ over the range $1 \le x \le 3$, given these three points:

$x_0 = 1$	$f(x_0) = 1$
$x_1 = 2$	$f(x_1) = 4$
$x_3 = 3$	$f(x_3) = 9$

The interpolating polynomial is:

$$L(x) = 1 \cdot \frac{x-2}{1-2} + 4 \cdot \frac{x-1}{2-1} \cdot \frac{x-3}{2-3} + 9 \cdot \frac{x-1}{3-1} \cdot \frac{x-2}{3-2} = x^2$$

EXAMPLE 4.

We wish to interpolate $f(x) = x^3$ over the range $1 \le x \le 3$ given these 3 points:

$x_0 = 1$	$f(x_0) = 1$
$x_1 = 2$	$f(x_1) = 8$
$x_2 = 3$	$f(x_3) = 27$

The interpolating polynomial is:

$$L(x) = 1 :: \frac{x-2}{1-2} \cdot \frac{x-3}{1-2} + 8 \cdot \frac{x-1}{2-1} \cdot \frac{x-3}{2-3} + 27 \cdot \frac{x-1}{3-1} \cdot \frac{x-2}{3-2} = 6x^2 - 11x + 6$$

EXAMPLE 5.

Let $x_0 = 0$, $x_1 = 0.6$, $x_2 = 0.9$, $f(x) = \cos(x^2)$.

a. Find the Lagrange interpolating polynomial $P_2(x)$ and $R_2(x)$.

b. Approximate $\int_0^1 \cos(x_2) dx by \int_0^1 P_2(x) dx$ and estimate the approximation

error.

a.
$$P_2(x) = f(0) \frac{(x-0.6)(x-0.9)}{(-0.6)(-0.9)} + f(0.6) \frac{x(x-0.9)}{0.6(-0.3)} + f(0.9) \frac{x(x-0.6)}{0.9(0.3)}$$

$$P_2(x) = \frac{1}{0.54}(x - 0.6)(x - 0.9) - \frac{\cos(0.36)}{0.18}x(x - 0.9) + \frac{\cos(0.81)}{0.27}x(x - 0.6)$$

True error

$$\left| \int_{0}^{1} \cos(x^{2}) dx - \int_{0}^{1} P_{2}(x) dx \right| = \left| 0.9045242 - 0.9201181 \right| = 0.0155939$$

An approximation error:

$$Error_{approx} = \left| \int_{0}^{1} \cos(x^{2}) dx - \int_{0}^{1} P_{2}(x) dx \right| \le \int_{0}^{1} \left| R_{2}(x) dx \right| = \int_{0}^{1} \frac{\left| f'''(c) \right|}{3!} \left| x(x - 0.6)(x - 0.9) \right| dx$$

Observe that $|f'''(\Im(x))| \le 6.5$, and the function x(x-0.6)(x-0.9) changes signs over [0,1]:

 $y = x(x-0.6)(x-0.9), \quad 0 \le x \le 1$ x(x-0.6)(x-0.9) = (x-0.6+0.6)(x-0.6-0.3)

$$= \left[(x-0.6)^{2} + 0.6(x-0.6) \right] (x-0.6-0.3) = (x-0.6)^{3} + 0.3(x-0.6)^{2} - 0.18(x-0.6)$$
$$x(x-0.6)(x-0.9) = (x-0.9+0.9)(x-0.9+0.3)(x-0.9)$$
$$= \left((x-0.9)^{2} + 1.2(x-0.9) + 0.27 \right) (x-0.9) = (x-0.9)^{3} + 1.2(x-0.9)^{2} + 0.27(x-0.9)$$
$$Error_{approx} \le \frac{6.5}{6} \left(\int_{0}^{0.6} x(x-0.6)(x-0.9) dx - \int_{0.6}^{0.9} x(x-0.6)(x-0.9) dx + \int_{0.9}^{1} x(x-0.6)(x-0.9) dx \right)$$

$$\begin{bmatrix} \frac{1}{4}(x-0.6)^4 + 0.1(x-0.6)^3 - 0.09(x-0.6)^2 \end{bmatrix}_{0}^{0.6} - \begin{bmatrix} \frac{1}{4}(x-0.6)^4 + 0.1(x-0.6)^3 - 0.09(x-0.6)^2 \end{bmatrix}_{0.6}^{0.9} + \begin{bmatrix} \frac{1}{4}(x-0.9)^4 + 0.4(x-0.9)^3 + \frac{0.27}{2}(x-0.9)^2 \end{bmatrix}_{0.9}^{1} + \frac{1}{4}(0.6)^4 + 0.1(0.6)^3 - 0.09(0.6)^2 - \frac{1}{4}(0.3)^4 - 0.1(0.3)^3 + 0.09(0.3)^2 + \frac{1}{4}(0.1)^4 + 0.4(0.1)^3 + \frac{0.27}{2}(0.1)^2 = 0.0268979$$

EXAMPLE 6.

 $\sin\left(\frac{1}{4}\pi + x\right) = \frac{1}{2}\sqrt{2}(1+x)$ find the approximate formula lets we develop

approximate formula and we, this formula to calculate sin43°

In Taylor formula the next term in the twin terms

$$f(a+h) = f(a) = h f''(a) + \frac{h^2}{2} f''(a) + \dots$$

$$\sin\left(\frac{1}{4}\pi + x\right) = \sin\frac{1}{4}\pi + x\cos\frac{1}{4}\pi = \frac{1}{2}\sqrt{2} + \frac{\sqrt{2}}{2}x = \frac{1}{2}\sqrt{2}(\lambda + x)$$

$$\sin 43^0 = \sin\left[\frac{1}{4}\pi + \left(-\frac{\pi}{90^0}\right)\right] = \frac{1}{2}\sqrt{2}(1 - 0.0349x) = \frac{1}{2}\sqrt{2}(\lambda + x)$$

$$\sin 43^0 = \sin\left[\frac{1}{4}\pi + \left(-\frac{\pi}{90^0}\right)\right] = \frac{1}{2}\sqrt{2}(1 - 0.0349x) = 0.6824$$

EXAMPLE 7.

Lets calculate $\sin 62^{\circ}$ as fifth find the five digits after the comma correctly Solition: Taylor series according to $(x - \alpha)$ moment?

$$\sin x = \sin \alpha + (x - \alpha) \cos \alpha - \frac{(x - \alpha)^2}{2!} \sin \alpha - \frac{(x - \alpha)^3}{3!} \cos \alpha + \dots \operatorname{dur}.$$

62[°] take the closest and trigonometric functions as take known angle.

$$\alpha = 60^{\circ} \text{ take.} \quad x - \alpha = 62^{\circ} - 60^{\circ} = 2^{\circ} = \frac{\pi}{90^{\circ}} = 0,034907 \text{ and}$$
$$\sin 62^{\circ} = \frac{\sqrt{3}}{2} + \frac{1}{2}(0,034907) - \frac{\sqrt{3}}{4}(0,034907)^{\circ} - \frac{1}{12}(0,034907)^{3} + \dots$$
$$= 0,866025 + 0,017454 - 0,000528 - 0,00004 + \dots = 0,88295$$

EXAMPLE 8.

ln 0,97 find the seven digits after the comma correctly

$$\ln(a - x) = \ln a - \frac{x}{a} - \frac{x^2}{2a^2} - \frac{x^3}{3a^2} - \dots + \frac{x^n}{na^n} - \dots$$

$$a = 1 \quad and \quad x = 0,03 \ take$$

$$\ln 0,97 = -0,03 - \frac{1}{2}(0,03)^2 - \frac{1}{3}(0,03)^3 - \frac{1}{4}(0,03)^4 - \frac{1}{5}(0,03)^5 - \dots = -0,0304592$$

References

[1]. Aho. A.V. Hopcroft J.E and Ullman J.D. The desing and analysis of computer algoritms, Addison Wesley.reading mass. 470 pp. Qa76.6.A.36 (1974)

[2]. Ames. W.F Numerial methods for partial differential equations (second edition). Academic pres. New York: 365 pp QA374 A46 (1977).

[3]. Bailey N.T.J., The mathematical theory of epidemics, C.griffin.london: 194 pp. RA652. B3 (1957).

[4]. Barnadelli H. "Population Waves" Journal of the Burma Research society: 31, 1-18 (1941).

[5]. Birkhoff.G. and Rota G. Ordinary differential equations. John wiley&sons New York: 342 pp. QA372.B58 (1978).

[6]. Bracewel.R. The fourier transform and its application (second edition). McGaw Hill. New York: 444 pp. QA403.5.B7 (1978).

[7]. Belirsch.R, Bemerkungen zur romberg-integration, Numerische Mathematik 6.6.16 (1964).

[8]. Fehlberg.E., New high-order Runge-Kutta formulas with step-size control for systems of first-and second-order differential equations, Zeitschrift für angewandte mathematic and mechanic.44.17-29. (1964).

[9]. Gladwell.I. and R.Wait. A survey of numerical methods for partial differential equations. Oxford university pres; 424 pp. QA377. S96 (1979).

[10]. Golub,G.H,and Van Loan C.F. Matrix computations, John Hopkins university press Baltimore; 476 pp. QA188. G65 (1963)

[11]. Hamming.R.W. Numerical methods for scientists and engineers (second edition). McGraw-hill,New York; 721 pp QA297. H28 (1973).

[12]. Householder.A.S. The numerical treatment of a single nonlinear equation McGraw-Hill, New York;216 pp QA218.H68 (1970).

[13]. Wilkinson .J.H. The algebraic eigenvalue problem.Clarendon pres.oxford; 64 pp.QA218.W5 (1965).