Fen Bilimleri Dergisi Sayi: 13 2012

INTERPOLATION AND THE LAGRANGE POLYNOMAL

Mehmet KARAKAS

Sakarya University, Vocational School of Sakarya
54100 Sakarya/Turkey
E-mail: mkarakas@sakarya.edu.tr

Abstract

We show that the interpolation polynomial in the lagrange form canbe
calculatetod with the some numbers of the arithetic operations. Given a set of
(n+1) data points and a function f, the aim is to determine a polynomial of
degree n which interpolates f at the points inquestion.
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Introduction

The problem of determinig a polynomial of degree 1 that passes throwgh the
distince points (xo, yo) and (Xp yl) is the same as appmaximating a function f for which
f(x,)=y, and f(x)=y, by means of a first-decree polynomial interpolating or

agreeing with the values of fort he given points [3-5].

Consider the linear polynomial

P(X) - (X_Xl) o F (X_Xo) Y, (1.1)
Xo =X, X — Xy
When x = x,.
p(xo) =1-yo +O-y1 =Y = 1:(Xo) 12

and when x = x,

p(Xl) = O-yo +1-y1 =Y = f(Xl) (1.3)
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so p has the required properties. (See Figure 1.1)

Y1 = f(Xl) -1 y= f(X)

g %X:P(x)
Xy = f(Xo) 1

v

Figure 1.

The tecnique used to construct p is the method of “ intepolation” often used in
trigonometric or logarithmic tables. What may not be obvious is that p is the only
polynomial of degree 1 or less with the interpolating property. Has result , however
follows.

To generalize the concept of linear interpolation consider the construction of a

polynomial of degree at most n that passes through the n+1 points
(Xo» T (X)) (%0, £ O (X F(X,)).
The linear polynomial passing through (x,, f(x,)) and (x.f(x)) Iis

constructed by using the quotients

LX) and g e (X=%0)
LO(X)_(XO_Xl) " Ll(X)_(Xl_Xo)

When x=vy,,L,(x,)=1 and L, (x,) =0 when x=x,L,(x)=0 and L,(x)=1
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yA

Figure 2.

For the general case,we need to construct, for each k=0,1,2... n a quotient

L, (x)with the property that L  (x,)=0 when i=k and L , (x)=1 To safety

L, (x,) =0 for each i =k requires that the numerator of L ...the term

(X_XO)(X_Xl)"'(x_xk—l)(x_Xk+1)"'xk (®)

Tosatisfy L, (x,) =1 the denominator of L must he equal to when x=1

Thus,

(X_XO)"'(X_Xk—l)(X_Xk+1)"'(X_Xn) — i (X_Xi) (6)
(X = %) (X = X4 ) (X = Xiey1)- (X = X,) E;ﬁ X =X

Lnk (X) =

A sketch of the graph of a typical L, (in the case when n is even) is known in

figure 1.3
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I-n,k (X)

Figure 3.

The interpolating polynomial is easily described now that the form of L, is
known.This polynomial called the nth Lagrange interpolation polynomial. Is defined in
the following theorem [6], [7], [8].

THEOREM 1. If X;,X;,...,X, are (n+1)distinct numbers and fis a

function whose values are given at these numbers,then there exists a unique polynomial
p of degree at most n with the property that
f(x,)=P(x,) foreach k =0,1,...,n

This polynomial is given by

P(x) = f(Xo)-L, (X) + oo F (X)L () =D F (%)L (%) (7
k=0
Where | (g X% KX XXy X=X _py ®
' Xe=Xo X =X X —Xen X=X, o

izk
foreach k=0,1,2,...,n

EXAMPLE 1.
Using the numbers or nodels, x, =2,x, =2.5,and x, =4 to find the second

interpolating polynomial for f (x) =1 requires that we first determine the coefficent.
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Polynomials L,L, ,and L,:

L0 = X220 _ 6 _g5)x+10
(2-2.4)(2—4)
L= (KmDx=4) _ (Ax+24)x-32
T (25-2)(25-4) 3
and | (x)= X=D(X=25) _ (x-45)x+5
(4-2)(4-25) 3

Since [(x,)=[(2)=05,[(x)=[(25)=04,and [(x,) = [(4)=0.25

PO =3 1 (6L, (9

(x—=4.5)x+5

=0.5((x—-6.5)x+10)+ 0.4 +0.25

(4x+ 24)" -3 — (0.05x —0.425)x +1.15
An approximation to f (3) = 3 is

f(3)~P(3)=0.325

Taylor polynomial (expanded about x,=1) could be used to reasonably
approximate f(3) =3 (See Figure 1.1)

y4
4_
3
2 1
1717 P
f
T
1 2 3 4 5
Figure 4.

The next step is to calculate a remainder term or bound for the error involved in

approximating a function by an interpolating polynomial. This is done in the following.
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THEOREM 2.

If X, X,,...,x, are distinct numbers in the interval [a,b]a number £(x)in (a,b)

exists with.

f(X):F’(X)+f(nﬂ)(X—Xo)(x—Xl)...(x_xa)where P is the polynomial
(n+1)!

given in Eq.(5)

Proof Note first that if x=x, for k=0,1,..,n then f(x)=P(x,)and
choosing &(x,) arbittarily in (a,b) yields Eq.(3.5). If X# X, for any k=0,1,...,n
define the function g for tin [a,b] by

(t= %)t = %) (t = %,)
(x— Xo)(X = %) (X=X,)

— £ () - P ~[f (0 P<x>]H (t-

g(t) = f ()~ P®) ~[f () — P(x)]

x)
Since

g(x) = f(x)=P(x)—[f(x) - P(X)]H(Xk )Z()
—0-[f(x)—P(x].0)=0

Moreover,

90 = £ -P(O-[f (9 -PCO] X2
= F00=PC)-[f () -P(}=0

Thus, g e C**[a,b] and g vanishes at the n+2 distinct number x,x, ...,x, By
the Generalized Rolle’s Theorem, there exists ¢&=¢(x)in (a, b) for which

g@P (&) =0. Evaluating g@®™Paté gives.

=g () = £V - PO -[f (- P(x)]dil(ﬁt‘xlj

1 ic0 X=X J,_
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Since P is a polynomial of degree at most n, the (n+1)st derivative, P@?, is

identically zero. Also

Hio (t=x) = S ! t*" + (lower — deg ree terms in t).
X)L - %

and

da (t—x)  (n+!
dta+1 H (X X ) Htazo (X . Xl)

Equation (2.9) now becomes

(n+1!

fED(E)-0-[f(X) - P(X)]-—;
Ht:O (x=x)

And, upon solving for f(x).

1 =pe+ ! O x)

The error Formula in Theorem 1.2 is an important theoretical restricted
because lagrange polynomials are used extensively for deriving numerical differentation
and gration methods. Error bounds for these techniques are obtain from the lagrange
error Formula. [9-12]

Note that the error form for the Lagrange polynomial is quite similation that for
Taylor polynomial. The Taylor polynomial of degree n about x, all rates all known

information at has an error term of the form

I (Y) n
(n+1)! (X=%)

The Lagrange polynomial of degree n uses information at the distinct numbers

Xy Xy -y X, and in place of (x—x,)" its error Formula uses a product the (n+1)

(X—XO),(X—Xl),...,(X—Xn)
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GO
(n+!

(X —=%)..(Xx=X,)

Specific use of this error Formula is restricted to those functions) who
derivaties known bounds.

EXAMPLE 2. Table 2.1 lists values of a function (The Bessel function of the
first kind of zero)various points.The approximations to f (1.5) obtained by various
Lagrange polynomials will be compared.[1], [2]

f(x)
0.7651977
0.6200860
0.4554022
0.2818186
0.1103623

N © OO W O |Xx

Table 1.

Since 1.5 is between 1.3 and 1.6 the linear polynomial at 1.5 given by

P,(1.5) = @.5-16) (0.6200860) + (15_1‘;’; (0.4554022) = 0.5102968

(1.3-1.6) 16-1

Two polynomials of degree two could reasonably be used ,one by letting
X, =1.3

x, =1.6 and x, =1.9 which gives

P (L5) = (1.5-1.6)(1.5-1.9) (0.6200860) + (1.5-1.3)(1.5-1..9) (0.4554022)
2 1.3-1.6)(1.3-1.9) (1.6-1.3)1.6-1.9)

L (45-1.9A5-16)  »515166) - 0.5112857
(1.9-1.3)(1.9-1.6)

and the other by letting x, =1.3, x, =1.6, x, =19 and x, =1.6 in which case

P,(L5) = 05124715
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In the third-degree case there are also two choices for the polynomial. One is

with x, =1.3, x, =1.6, x, =1.9, and x, = 2.2, which gives
P, =(1.5) =0.5118302
The other is obtained by letting x, =1.0, x, =1.3,x, =1.6 ,and x, =19 giving
P, (1.5) = 0.5118200
The fourth-degree Lagrange polynomial uses all the entries in the table. With

X, =1.0,%x,=13,x,=16, x, =19 and x, =2.2 itcan be shown that

P, (1.5) = 0.5118200

Since |53(1,5), P,(1.5) and P,(1.5)all agree to within 2 x 10~° units,we expect

P,(1.5) to be the most accurate approximation and to be correct to within 2 x 10~ units.

The actual value of f (1.5) is known to be 0.5118277, so the true accuracies of

the approximations are as follows:

IP,(1.5) - f(1.5) ~1.53 x 10°

|P,(L5) - f(1.5) ~5.42 x 10

P.(L5)— f(L5) ~ 6.44 X 10

P,(L5)— f(L5)|~ 25 x10°

P3(L5) - f(1.5) ~1.50 X 10°

P, (1.5)— f(1.5)|~ 7.7 X 10°
P, is the most accurate approximation. However, with no knowledge of the

actual value of f(1.5),P, would be accepted as the best approximation. Note that the

error or remainder term derived in Theorem 2.3 cannot be applied here, since no

knowledge of the fourth derivative of f is available. Unfortunately, this is generally the

case.[13]
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EXAMPLE 3.

We wish to interpolate f(x) = x*over the range 1< x < 3, given these three points:
Xo =1 f(x,)=1
X, =2 f(x)=4
Xs =3 f(x)=9

The interpolating polynomial is:

L(x):1.)(_2+4.X_1.X_3+9.X_1.X_2 = x>
1-2 2-12-3 3-13-2
EXAMPLE 4.
We wish to interpolate f (x) = x* over the range 1< x <3 given these 3 points:
Xo =1 f(x,)=1
X, =2 f(x,)=8
X, =3 f(x;) =27

The interpolating polynomial is:

X—2 X-3 8 Xx-1 x—3+27 X-1 x-2

) +8. ) . ) =6x*—-11x+6
1-2 1-2 2-12-3 3-13-2

L(x)=1.:

EXAMPLE 5.
Let x, =0, x, =0.6, x, =0.9, f(x)=cos(x?).
a. Find the Lagrange interpolating polynomial P,(x) and R,(x)-

b. Approximate rcos(xz)dxby rpz(x)dx and estimate the approximation
0 0

error.
a p(x)= f (O)W 4 f (0,6)w +f (o_g)w
(~0.6)(_0.9) 0.6(-03) 0.9(03)
P, (x) = T;(x —0.6)(x—09) —% X(x—0.9) + % X(x—0.6)
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0.6 ]

0.2 0.4 0.6 0.8 1
—y=008(x*),———y =P,(x)
f'(x) ==2xsin(x?), f"(x) =-2(sin(x?)) + 2x* cos(x?),
f"'(x) = —2(2xcos(x?)) + 4xcos(x*) —4x®sin(x?)) = —4(3x cos(x?) — 2x3sin(x?))

—4(3xcos(c) — 2¢®sin(c))

IR, (x)| = 5 x(x —0.6)(x—0.9) Where cisin (0,1).
b. j:Pz(x)dx:j ((x 0.6)(x—-0.9) COS(OS%) X(X —09)+C°S(O 8D v(x —os)j
c0s(0.36) co0s(0.81) 2, ,
@ “((x—0.6)* ~0.3(x — 0.6) Jx— o is j( ~09)dx+ = [ (x* ~0.6x)dx
_1[1( 06y —%(x 06) J| _cos(0.36)(1x3_o.9xzjl1+cos(0.81)(1 3_%)( j|
- 054(3 2 °© 018 \3° 27 )% o027 (37 2
1 3_7 +,03 _cos(0.36)(1 0.9) cos(0.8)(1 0.6
054( 047 -- 04743 (06)+ (06)) 0.18 (3 2j+ 027 (3 2)

=0.9201181
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True error
‘ chos(xz)dx - jol P, (x)dx‘ ~(0.9045242 - 0.9201181 = 0.0155939

An approximation error;
il

”'(C) | [x(x—0.6)(x — 0.9)[cx

Error. =U01 COS(xz)dX—f:Pz(X)dX‘SE‘RZ(X)dX‘ZE 3

approx

Observe that |f "' (J(x))|< 6.5, and the function x(x—0.6)(x—0.9) changes

signs over [0,1]:

0.05 —+
0.04 L
0.03 —+
0.02

0.01 + /
0 | | | | |

-0.01 0.2 0.4 X 0.6 0. 1

y=X(x—0.6)(x-0.9), 0<x<1
X(x—0.6)(x—0.9) =(x—0.6+0.6)(x—0.6-0.3)
= [(x—0.6)? +0.6(x—0.6) [x— 0.6 - 0.3) = (x — 0.6)° +0.3(x — 0.6) —0.18(x — 0.6)
X(x—0.6)(x —0.9) = (x — 0.9+ 0.9)(x — 0.9+ 0.3)(x — 0.9)

= ((x—0.9)% +1.2(x—0.9) + 0.27|x — 0.9) = (x— 0.9)° +1.2(x—0.9)% +0.27(x — 0.9)

Error, . < %Ujs X(x—0.6)(x —0.9)dx — J'::x(x —0.6)(x—0.9)dx + Eg X(x—0.6)(x - O.9)dx)

approx =
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B(X_O'G)A +0.1(x-0.6)° —0.09(x—0.6)2} [ —B(x—o.ay‘ +0.1(x-06)° —O.OQ(X—O.G)Z} [
{ (x—0.9)* +0.4(x—0.9)° +027(x 0.9) }j

+%(0.6)4 +0.1(0.6)° —0.09(0.6)° —%(0.3)4 ~0.1(0.3)° +0.09(0.3)° +%(0.1)“ +04(0.0)° + 22 - 1)?
=0.0268979

EXAMPLE 6.

sin(iﬁ+xj:;ﬁ(l+x) find the approximate formula lets we develop

approximate formula and we, this formula to calculate sin43°

In Taylor formula the next term in the twin terms

2

fa+h)=f(a)=h f"(a)+h7f"(a)+...

Sin(lﬂ'+Xj =sin£7r+xcosln:1ﬁ+£x:1ﬁ(i+x)
4 4 4 2 2 2

90°

sin43°:sinE7r [ ”ﬂ 1f(l 0,0349x) = = f(/1+x)

sm43°—smE ( &ﬂ:iﬁa—o,oaw):o,fsfm

EXAMPLE 7.
Lets calculate sin62°as fifth find the five digits after the comma correctly

Solition: Taylor series according to (X - a)moment?
2 3
. . X— . X—
sin x :Slna+(X—a)COSa—%SIna—%COSCI%—... dur.

62°take the closest and trigonometric functions as take known angle.
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a=60"take. x_ g =62°-60° =2° = ﬁ =0,034907 and

sin62° = £ .1 5 (0,034907) - £ (0,034907)° — — (o 034907)° +..

= 0,866025 + 0,017454 - 0,000528 —0,00004 +....= 0,88295

EXAMPLE 8.

In 0,97 find the seven digits after the comma correctly

X X X X
h@-x)=ha-————-—- -
( ) 2a* 3a’ na"
a=1 and x=0,03take
In0,97 = —0,03—1(0,03)2 —1(0,03)3 —3(0,03)4 —1(0,03)5 —....=—0,0304592
2 3 4 5
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