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Abstract

The purpose of this paper is to analyze the significance of new g-topologies defined in
statistical metric spaces and we prove various properties for the neighbourhoods defined by
Thorp in statistical metric spaces. Also, we give a partial answer to the questions, namely
”What are the necessary and sufficient conditions that the g-topology of typeV to be of
typeVD?, the g-topology of typeVα to be the g-topology of typeVD? and the g-topology of
typeVα to be a topology?” raised by Thorp in 1962. Finally, we discuss the relations between
λΩ-open sets in generalized metric spaces and various g-topology neighbourhoods defined
in statistical metric spaces. Also, we prove weakly complete metric space is equivalent to a
complete metric space if Ω satisfies the V -property.

1. Introduction

Fréchet introduced the notion of an abstract metric space in the year 1906 [1] from which the concept of “distance” appears. The notion of
distance is defined in terms of functions, points and sets. Indeed, in many situations, it is appropriate to look upon the distance concept as a
statistical rather than a determinate one. More precisely, instead of associating a number to the distance d(p, q) with every pair of points p, q,
one should associate a distribution function Fpq and for any positive number x, interpret Fpq(x) as the probability that the distance from p to
q be less than x.

Using this idea, Menger [3] defined a statistical metric space using the probability function in the year 1942. In 1943, shortly after the
appearance of Menger’s article, Wald [10] published an article in which he criticized Menger’s generalized triangle inequality. In 1951,
Menger [5] continued his study of statistical metric spaces and in [4], he studied the behaviour of probabilistic theory.

In 1960, Schweizer et. al gave some properties of neighbourhoods defined by Thorp [7]. Thorp introduced some g-topologies in a
statistical metric space [9] and he studied the properties of t-function in [8]. Further, Thorp proved some results using g-topologies defined in
a statistical metric space [9]. Finally, he raised some questions about the relationship between various g-topologies defined in [9].

A statistical metric space (SM space) [9] is an ordered pair (S,F) where S is a non-null set and F is a mapping from S×S into the set of
distribution functions (that is, real-valued functions of a real variable which are everywhere defined, non decreasing, left-continuous and
have infimum 0 and supremum 1).

The distribution function F(p,q) associated with a pair of points p and q in S is denoted by Fpq. Moreover, Fpq(x) represents the probability
that the “distance” between p and q is less than x.

The functions Fpq are assumed to satisfy the following:
(SM-I) Fpq(x) = 1 for all x > 0 if and only if p = q.
(SM-II) Fpq(0) = 0.
(SM-III) Fpq = Fqp.
(SM-IV) If Fpq(x) = 1 and Fqr(y) = 1, then Fpr(x+ y) = 1.

We often find it convenient to work with the tails of the distribution functions rather than with these distribution functions themselves.
Then the tail [9] of Fpq, denoted by Gpq, is defined by Gpq(x) = 1−Fpq(x) for all x ∈ R.

Let (S,F) be a statistical metric space. Then the menger inequality is,
(SM-IVm) Fpr(x+ y)≥ T (Fpq(x),Fqr(y)) holds for all points p,q,r ∈ S and for all numbers x,y≥ 0 where T is a 2-place function on the
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unit square satisfying:
(T-I) 0≤ T (a,b)≤ 1 for all a,b,c ∈ [0,1].
(T-II) T (c,d)≥ T (a,b) if c≥ a,d ≥ b (monotonicity) for all a,b,c,d ∈ [0,1].
(T-III) T (a,b) = T (b,a) (commutativity) for all a,b ∈ [0,1].
(T-IV) T (1,1) = 1.
(T-V) T (a,1)> 0 for all a > 0.

2. Preliminaries

In this section, we recall some basic definitions in [9] and give some examples for these definitions in a statistical metric space.
Let (S,F) be a statistical metric space, p∈ S and u,v be positive numbers. Then Np(u,v) = {q∈ S | Fpq(u)> 1−v}= {q∈ S |Gpq(u)< v}

[9] is called the (u,v)-sphere with center p.
The following Example 2.1 shows that the existence of (u,v)-sphere in a statistical metric space.

Example 2.1. Consider the SM space (S,F) where S denotes the possible outcomes of getting a tail when a coin is tossed once. Then
S = {0,1}. Here Fpq(u) is the probability that the “distance” between p and q is less than u where u > 0 and p,q ∈ S. Fix p = 0. Then

Np(u,v) =


S i f 0 < u < 1,v > 1,
S i f u > 1,v > 0,
{0} i f 0 < u < 1,0 < v < 1,
S i f u > 1,v > 1.

.

Fix p = 1. Then

Np(u,v) =


S i f 0 < u < 1,v > 1,
S i f u > 1,v > 0,
{1} i f 0 < u < 1,0 < v < 1,
S i f u > 1,v > 1.

.

For fixed positive numbers u and v, define U(u,v) [9] by U(u,v) = {(p,q) ∈ S×S | Gpq(u)< v}.

Example 2.2. Consider the SM space (S,F) where S denotes the possible outcomes of rolling a dice. Then S = {1,2,3,4,5,6} and
the distribution function Fpq(x) is the probability that the “distance” between p and q is less than u where u > 0 and p,q ∈ S. Then
U(u,v) = {(p,q) ∈ S× S : p = q} for 0 < u < 1,0 < v < 1. For 1 < u < 2,0 < v < 1, U(u,v) = {(p,q) ∈ S× S : d(p,q) ≤ 1}. For
2 < u < 3,0 < v < 1, U(u,v) = {(p,q) ∈ S× S : d(p,q) ≤ 2}. For 3 < u < 4,0 < v < 1, U(u,v) = {(p,q) ∈ S× S : d(p,q) ≤ 3}. For
4 < u < 5,0 < v < 1, U(u,v) = {(p,q) ∈ S×S : d(p,q)≤ 4}. For u > 5,0 < v < 1, U(u,v) = {(p,q) ∈ S×S : d(p,q)≤ 5}= S×S. Now
0 < u < 1,v > 1. Then U(u,v) = S×S. Also, U(u,v) = S×S, for u > 1,v > 1.

For any set Z of ordered pairs of positive numbers, N (Z) = {Np(u,v) | (u,v) ∈ Z, p ∈ S} and U (Z) = {U(u,v) | (u,v) ∈ Z}.
A non-null collection {Np} of subsets N (Z) in a set S associated with a point p ∈ S is a family of neighbourhoods for p if each Np

contains p. Let the family of neighbourhoods be associated with each point p of a set S. The set S and the collection of neighbourhoods is
called the g-topological space of typeV [9].

Using the following conditions, Thorp [9] introduced new g-topologies in a statistical metric space (S,F).
N0. typeV.
N1. For each point p and each neighbourhood Up of p, there is a neighbourhood Wp of p such that for each point q of Wp, there is a
neighbourhood Uq of q contained in Up.
N2. For each point p and each pair of neighbourhoods Up and Wp of p, there is a neighbourhood of p contained in the intersection of Up and
Wp.

The following are various g-topologies in a statistical metric space (S,F) defined by Thorp [9].
(a) If the conditions N0 and N2 are satisfied, then the collection of neighbourhoods on S is called the g-topology of typeVD.
(b) The collection of neighbourhoods on S is called the g-topology of typeVα if the conditions N0 and N1 are satisfied.
(c) A g-topology is a topology if the conditions N0,N1 and N2 are satisfied.

Let S be a set and P be a partially ordered (<) set with least element 0. A generalized écart [9] (g-écart for short) is a mapping G
from S× S into P. If a g-écart G satisfies G(p, p) = 0 and the set S consists of more than one point, the g-écart g-topology for S is the
g-topology determined from G, and its partially ordered range set P, as follows. For each f > 0 in P and each p ∈ S, the f -sphere for
p is Np( f ) = {q ∈ S | G(p,q) < f}. Then for each p ∈ S, the collection of f -spheres, Np(P) = {Np( f ) | f > 0 in P} is a family of
neighbourhoods for p.

The g-écart associated with a statistical metric space (S,F) is the mapping G defined by G(p,q) = Gpq [9].

Example 2.3. Let S = N and P = N∪{0} be a partially ordered set with the relation < where N denote the set of all natural numbers. Let
A = {1,2,3} be a subset of S. Define

G(p,q) =


1 i f p /∈ A,q ∈ S,
1 i f p ∈ S,q /∈ A,
{0} i f p /∈ A,q /∈ A,

.

and p∈ A,q∈ A define G(p,q) as follows: G(1,1) = 0,G(1,2) = 2,G(1,3) = 3,G(2,1) = 4,G(2,2) = 0,G(2,3) = 6,G(3,1) = 1,G(3,2) =
2,G(3,3) = 0. Case 1: p /∈ A,q ∈ S. Then G(p,q) = 1. Let f = 1. Then Np(1) = /0. For f ≥ 2,Np( f ) = S. Case 2: p ∈ S,q /∈ A. Then
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G(p,q) = 1. Let f = 1. Then Np(1) = /0 and Np( f ) = S−A for f ≥ 2. Case 3: p /∈ A,q /∈ A. Then G(p,q) = 0 and so Np( f ) = S−A for
f > 0. Case 4: p ∈ A,q ∈ A. Then N1(1) = N1(2) = {1};N1(3) = {1,2};N1( f ) = A for f ≥ 4. Now N2(1) = N2(2) = N2(3) = N2(4) =
{2};N2(5) = N2(6) = {1,2};N2( f ) = A for f ≥ 7 and N3(1) = {3};N3(2) = {1,3};N3( f ) = A for f ≥ 3.

Given a statistical metric space (S,F), for each pair of points p and r in S, the r-sphere with center p, Np(r) is defined to be the sphere
Np(Gpr) = {q |Gpq < Gpr}. The R-g-topology [9] for (S,F) is the structure whose family of neighbourhoods at each point p is the collection
Np(r) = {Np(r) | r ∈ S}.

Example 2.4. Consider the SM space (S,F) where S = N and the distribution function

Fpq(x) =

{
x

d(p,q) i f 0 < x < d(p,q),d(p,q) 6= 0

1 i f x≥ d(p,q)
.

Fix p = 1 and r = 2 are in S. Let x = 1
4 . Then Gpr(x) = 0.75. Now N1(0.75) = {1}.

Observation 2.5. In a statistical metric space, Np(Gpr) = /0 if p = r.

Notations 2.6. In a SM space (S,F), we use the following notations:
(a) Let τ denote the g-topology of typeV.
(b) Let τD denote the g-topology of typeVD.
(c) Let τα denote the g-topology of typeVα .
(d) Let τe denote the g-écart g-topology.
(e) Let τR denote the R-g-topology.
(f) Each element in N (X) is called a τ-neighborhood.
(f) Each element in Np(P) is called a τe-neighborhood.
(f) Each element in Np(r) is called a τR-neighborhood.

3. Behaviour of various g-topology

In this section, we give some properties and find the relations between four types of neighborhoods in a SM space. Also, we give the
answer for some of the questions raised by Throp [9].

Theorem 3.1. Let (S,F) be a statistical metric space. Then the following hold.
(a) If u1 ≤ u and v1 ≤ v, then Np(u1,v1)⊂ Np(u,v) where u,v,u1,v1 > 0.
(b) If κ = {N (Z),U (Z),Np(P),Np(r)} and A ∈ κ, then there exist B,C ∈ κ such that B⊂ A⊂C.

Proof.

(a) Let q ∈ Np(u1,v1). Then Fpq(u1) > 1− v1. Since u1 ≤ u and v1 ≤ v, Fpq(u) ≥ Fpq(u1) > 1− v1 ≥ 1− v. Thus, Fpq(u) > 1− v.

Therefore, q ∈ Np(u,v). Hence Np(u1,v1)⊂ Np(u,v).

(b) We give the detailed proof only for κ =N (Z) and κ =Np(r). Suppose that κ =N (Z) and A∈ κ. Then A = Np(u,v) where u,v > 0.

Take 0 < u1 ≤ u,0 < v1 ≤ v and B = Np(u1,v1). By (a), B⊂ A. If u2 ≥ u,v2 ≥ v, then u2 > 0,v2 > 0. Define C = Np(u2,v2). By (a),

A⊂C. Thus, there exist B,C ∈N (Z) such that B⊂ A⊂C.

Suppose that κ = Np(r). Let A ∈ κ. Then A = {q ∈ S | Gpq < Gpr} and so A = {q ∈ S | Gpq(u) < Gpr(u)} where u > 0. Take

u1 ≥ u. Define B = {q ∈ S | Gpq(u) < Gpr(u1)}. Then B ∈Np(r). Let s ∈ B. Then Gps(u) < Gpr(u1) and so Gps(u) < Gpr(u),

since Gpr(u1)≤ Gpr(u). Therefore, s ∈ A. Hence B⊂ A. Define C = {q ∈ S | Gpq(u1)< Gpr(u)}. Then C ∈Np(r). Let s ∈ A. Then

Gps(u)< Gpr(u) and so Gps(u1)< Gpr(u), since Gps(u1)≤ Gps(u). Therefore, s ∈C. Hence A⊂C.

From the definition of g-topology of typeVD, it is observed that every g-topological space of typeVD is a g-topological space of typeV.
The following Theorem 3.2 discusses the converse of the question that “What are the necessary and sufficient conditions that the g-topology
of typeV to be of typeVD?” which is raised by Thorp [9].

Theorem 3.2. Let (S,F) be a statistical metric space. Then the following hold.
(a) τ satisfies N2.
(b) The g-topology of typeV is a g-topology of typeVD.

Proof. (a) Let Up and Wp be two neighbourhoods of p. Then Up = {q ∈ S | Gpq(u) < v} and Wp = {q ∈ S | Gpq(u1) < v1}. Define

Vp = {q ∈ S | Gpq(min(u,u1))< min(v,v1)}. Then p ∈Vp and so Vp is a neighbourhood of p. Since min(u,u1)≤ u, min(v,v1)≤ v,
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we have Vp ⊂Up, by Theorem 3.1(a). Also, min(u,u1) ≤ u1 and min(v,v1) ≤ v1. Therefore, Vp ⊂Wp, by Theorem 3.1(a). Hence

Vp ⊂Up∩Wp. Therefore, τ satisfies N2.

(b) By (a) and the definition of g-topology of typeVD, it follows that every g-topology of typeV is a g-topology of typeVD.

The following two questions are raised by Thorp [9].
(I) “What are the necessary and sufficient conditions that the g-topology of typeVα to be the g-topology of typeVD?”.
(II) “What conditions are both necessary and sufficient for the g-topology of typeVα to be a topology?”.

The following Corollary 3.3 (a) gives a necessary condition for the given space to be a g-topological space of typeVD which also gives a
partial answer to the question (I) and Corollary 3.3 (b) gives the answer to the question (II).

Corollary 3.3. Let (S,F) be a statistical metric space. Then the following hold.
(a) The g-topology of typeVα is a g-topology of typeVD.
(b) The g-topology of typeVα is a topology and conversely.

Proof. (a) By the definition of g-topology of typeVα , g-topology of typeVα is a g-topology of typeV. Therefore, g-topology of typeVα is

a g-topology of typeVD, by Theorem 3.2(b).

(b) By the definition of g-topology of typeVα , g-topology of typeVα is a g-topology of typeV and satisfies the condition N1. By (a),

g-topology of typeVα satisfies the condition N2, by the definition g-topology of typeVD. Hence a g-topology of typeVα is a topology.

Converse follows from the definition of topology in a statistical metric space.

Theorem 3.4. Let (S,F) be a statistical metric space. If U ∈U (Z), then there exists V ⊂ S such that V ∈N (Z).

Proof. Let U ∈U (Z). Define V = {q ∈ S | (p,q) ∈U}. Since U ∈U (Z),V = {q ∈ S |Gpq(u)< v}. Hence V = Np(u,v), by the definition
of Np(u,v). Therefore, V ∈N (Z).

Theorem 3.5. Let (S,F) be a statistical metric space. Then the following hold.
(a) τe ⊂ τ.
(b) τe satisfies N2.

Proof. (a) Let p ∈ S and U be a τe-neighbourhood of a point p. Then U = {q ∈ S | G(p,q) < f}. Since in a statistical metric space

G(p,q) = Gpq,U = {q ∈ S | Gpq < f}. Here 0 < f ∈ P where P is a partially ordered set. Then there is an element g ∈ P such that

g < f . Take g(u) = v for all u > 0. Then v > 0. Define V = {q ∈ S | Gpq(u)< v}. Then V is a τ-neighbourhood such that p ∈V ⊂U.

Hence τe ⊂ τ.

(b) Suppose that Up and Wp are two neighbourhoods of p. Then Up = {q ∈ S | G(p,q)< f1} and Wp = {q ∈ S | G(p,q)< f2}. Consider

Vp = {q ∈ S |G(p,q)< min( f1, f2)}. Then p ∈Vp and so Vp is a neighbourhood of p. Also, Vp ⊂Up∩Wp. Therefore, τe satisfies N2.

The following Corollary 3.6 gives a necessary condition for the given space to be a g-topological space of typeVD which also gives a
partial answer to the question that “What are the necessary and sufficient conditions for τe to be of typeVD?” raised by Thorp [9].

Corollary 3.6. Let (S,F) be a statistical metric space. Then τe ⊂ τD.

Proof. Follows from Theorem 3.5 and the definition of typeVD.

Theorem 3.7. Let (S,F) be a statistical metric space. Then the following hold.
(a) τR satisfies N2.
(b) τR ⊂ τ.

Proof. (a) Let Up and Wp be τR-neighbourhoods of p. Then Up = {q ∈ S |Gpq < Gpr1} and Wp = {q ∈ S |Gpq < Gpr2} where r1,r2 ∈ S.

Define Vp = {q ∈ S | Gpq < in f (Gpr1 ,Gpr2)}. It follows that Vp is a neighbourhood of p and p ∈Vp. Also, Vp ⊂Up∩Wp. Therefore,

τR satisfies N2.
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(b) If t ∈ S and B is a τR-neighbourhood of t, then B= {q |Gpq <Gpr} and so B= {q |Gpq(u)<Gpr(u)}where u> 0. Choose an element

v such that u < v. Take v1 = Gpr(v). Since B 6= /0 we have p 6= r and so Gpr(v) 6= 0 so that v1 > 0. Define B1 = {q | Gpq(u)< v1}.

Then t ∈ B1 and B1 is a τ-neighbourhood contained in B. Hence τR ⊂ τ.

The following Corollary 3.8 gives a necessary condition for the given space to be a g-topological space of typeVD which also gives a
partial answer to the question that “What are the necessary and sufficient conditions for the R-g-topology to be g-topology of typeVD?”
raised by Thorp in [9].

Corollary 3.8. Let (S,F) be a statistical metric space. Then τR ⊂ τD.

Proof. Follows from Theorem 3.7 and the definition of typeVD.

Lemma 3.9. A function T : I× I→ I is defined by T (x,y) = max(x,y) where I = [0,1]. Then T satisfies the conditions (T-II) and (T-IV).

Proof. (a) Suppose that c≥ a,d ≥ b where a,b,c,d ∈ [0,1]. Now T (c,d) = max(c,d) and T (a,b) = max(a,b). Case-1: If T (c,d) = c
and T (a,b) = a, then T (c,d)≥ T (a,b). Case-2: Suppose T (c,d) = c and T (a,b) = b. Since b≤ d ≤ c, T (c,d)≥ T (a,b). Case-3: If
T (c,d) = d and T (a,b) = b, then T (c,d)≥ T (a,b). Case-4: Suppose T (c,d) = d and T (a,b) = a. Since a≤ c≤ d, T (c,d)≥ T (a,b).
Therefore, T satisfies the condition (T-II).

(b) Now T (1,1) = max(1,1) = 1. Hence T satisfies the condition (T-IV).

The following Theorem 3.10 gives the answer to the question that “What are the necessary and sufficient conditions for the g-topology of
typeV to be a topology?” raised by Thorp in [9].

Theorem 3.10. Let (S,F) be a statistical metric space with the g-topology of typeV. If SM-IVm satisfies under T : I× I→ I defined by
T (x,y) = max(x,y), then the g-topology on S is a topology and conversely.

Proof. Given that (S,F) is a statistical metric space with a g-topology of typeV. Then by Theorem 3.2, N0 and N2 are satisfied. Let p ∈ S
and Up be a neighbourhood for p. Then Up = {r ∈ S | Fpr(u)> 1− v}. Choose u1 =

u
2 and v1 < v with 0≤ v1 ≤ 1. Taking Wp = {s ∈ S |

Fps(u1)> 1−v1}, we get that Wp is a neighbourhood of p. For q ∈Wp, define Vq = {t ∈ S | Fqt(u1)> 1−v1} so that Vq is a neighbourhood
of q. Since q ∈Wp, Fpq(u1)> 1− v1 and so Fqp(u1)> 1− v1, by the condition (SM-III). Hence p ∈Vq. If a ∈Vq, then Fqa(u1)> 1− v1.
Since p∈Vq,Fqp(u1)> 1−v1. By Lemma 3.9, T satisfies the condition (T-II). Thus, T (Fpq(u1),Fqa(u1))≥ T (1−v1,1−v1). By (SM-IVm),
Fpa(u)≥ T (Fpq(u1),Fqa(u1)), since u1 =

u
2 which implies that Fpa(u)≥ T (1− v1,1− v1) which in turn implies that Fpa(u)≥ 1− v1, by

hypothesis. Hence Fpa(u) > 1− v and so a ∈Up. Therefore, Vq ⊂Up and consequently N1 is satisfied. Thus, g-topology of typeV is a
topology. Converse part follows from the definition of topology in a statistical metric space.

The following Corollary 3.11 gives the answer to the question “What are the necessary and sufficient conditions for the g-topology of
typeVD to be a topology?” raised by Thorp [9].

Corollary 3.11. Let (S,F) be a statistical metric space with the g-topology of typeVD. If SM-IVm satisfies under a function T : I× I→ I
defined by T (x,y) = max(x,y), then the g-topology of typeVD is a topology and conversely.

Proof. By the definition of typeVD, it follows that it is of typeV. By hypothesis and Theorem 3.10, g-topology of typeVD is a topology.
Converse follows from the definition of topology in a statistical metric space.

The following Corollary 3.12 gives a sufficient condition for g-topology of typeVD to be a g-topology of typeVα which also gives a partial
answer to the question “What conditions are both necessary and sufficient for the g-topology of typeVα to be of typeVD?” raised by Thorp in
[9].

Corollary 3.12. Let (S,F) be a statistical metric space with the g-topology of typeVD. If SM-IVm satisfies under a function T : I× I→ I
defined by T (x,y) = max(x,y), then g-topology of typeVD is a g-topology of typeVα .

Proof. By the definition of typeVD, g-topology of typeVD is of typeV. As in the proof of Theorem 3.10, typeV satisfies the condition N1.
Therefore, g-topology of typeVD is a g-topology of typeVα .

The following Theorem 3.13 gives a necessary condition for the g-écart-g-topology to be a topology which also gives a partial answer to
the questions “What are the necessary and sufficient conditions for the g-écart-g-topology to be a topology?” raised by Thorp [9].

Theorem 3.13. Let (S,F) be a statistical metric space with g-écart-g-topology. If SM-IVm holds under a function T satisfying T-IV, T-II and
supx<1T (x,x) = 1, then the g-écart g-topology is a topology on S.

Proof. By Corollary 3.6, g-écart g-topology is a g-topology of typeVD and hence the conditions N0 and N2 are satisfied. Let p ∈ S and
Up be a neighbourhood of p. Then Up = {r ∈ S | Gpr < f}. Let f1 be a tail with L < f1 < f . If Wp = {s ∈ S | Gps < f1}, then Wp is a
neighbourhood of p. Choose q ∈Wp and take Vq = {t ∈ S | Gqt < f1}. Then Vq is a neighbourhood of q. Since q ∈Wp, Gpq < f1 and so
Gqp < f1 which implies that p ∈ Vq which in turn implies that Gqp < f1 and hence Fqp(x) > 1− f1(x). Let m ∈ Vq. Then Gqm < f1 and
so Fqm(x) > 1− f1(x). By T-II, T (Fpq(x),Fqm(x)) ≥ T (1− f1(x),1− f1(x)). Also, Fpm(2x) ≥ T (Fpq(x),Fqm(x)), by SM-IVm. Hence it
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suffices to find a f1 such that T (1− f1(x),1− f1(x))≥ 1− f1(2x) for some x. Since f > L, there exists a > 0 such that 1− f (2a)< 1. By
hypothesis, there is a number b < 1 such that T (b,b)> 1− f (2a). Now we define f1(x) using a and b by

f1(x) =
{

0 if x > a,
1−b if 0 < x≤ a.

If x > a, then T (1− f1(x),1− f1(x)) = T (1,1). Again, using T-IV, T (1− f1(x),1− f1(x)) = 1. Therefore, T (1− f1(x),1− f1(x)) ≥
1− f (2x). If 0 < x ≤ a, then T (1− f1(x),1− f1(x)) = T (b,b) > 1− f (2a) ≥ 1− f (2x), since f is a left continuous function. Thus,
T (1− f1(x),1− f1(x))> 1− f (2x) for 0 < x≤ a. Hence Fpm(2x)> 1− f (2x) for 0 < x≤ a. Thus, m ∈Up so that Vq ⊂Up. Therefore, N1
is satisfied and hence g-écart g-topology is a topology.

Theorem 3.14 below gives a necessary condition for an R-g-topology to be a topology which also gives a partial answer to the question
“What are the necessary and sufficient conditions for the R-g-topology to be a topology?” raised by Thorp in [9].

Theorem 3.14. Let (S,F) be a statistical metric space with R-g-topology. If SM-IVm satisfies under a function T : I× I→ I defined by
T (x,y) = max(x,y), then the R-g-topology is a topology.

Proof. By hypothesis and Corollary 3.8, R-g-topology is a g-topology of typeVD and hence the conditions N0 and N2 are satisfied. Let p ∈ S
and Up be a neighbourhood for p. Then Up = {s ∈ S | Gps < Gpr}. Take 0 < c ≤ 1 and define Wp = {t ∈ S | Gpt < cGpr}. Then Wp is a
neighbourhood of p. If q∈Wp, then Gpq < cGpr and so Gqp < cGpr. Hence p∈ {u∈ S |Gqu < cGpr}. Take Vq = {u∈ S |Gqu < cGpr}. Then
p ∈Vq and Vq is a neighbourhood of q. If n ∈Vq, then Gqn < cGpr and so Gqn < Gpr so That Fqn > Fpr. Since p ∈Vq, Gqp < cGpr < Gpr
and hence Fqp > Fpr. By SM-IVm, Fpn(x)≥ T (Fpq(0),Fqn(x)) = Max(0,Fqn(x)) = Fqn(x), by hypothesis and SM-II. Thus, Fpn(x)≥ Fqn(x)
so that Fpn(x)> Fpr(x) and hence Gpn < Gpr. Therefore, n ∈Up and so Vq ⊂Up. Thus, N1 is satisfied. Therefore, the R-g-topology is a
topology.

In [6], Min introduced stack as in the following way: A collection C of subsets of S is called a stack [6] if A ∈ C whenever B ∈ C
and B⊂ A. Also, he analyzes whether a neighbourhood collections are stack or not in generalized topological spaces. Here we prove that
different types of the neighbourhood collections become stack in statistical metric spaces.

Theorem 3.15. Let (S,F) be a statistical metric space. Then N (Z) is a stack.

Proof. Let A ∈N (Z) and A⊆ B. Then A = {q ∈ S | Gpq(u)< v}. Take u1 > u and

v1 =


v if s ∈ A,

Gps(u) if s ∈ B−A,
Gps(u1) if s ∈ S−B.

Then u1 > 0 and v1 > 0. If U = {q ∈ S | Gpq(u1) < v1}, then U ∈N (Z). Choose t ∈ B. Then t ∈ A or t ∈ B−A. Suppose t ∈ A. Then
Gpt(u) < v. Since u1 > u, Gpt(u1) < Gpt(u) which implies that Gpt(u1) < v = v1 and hence t ∈U. If t ∈ B−A, then Gpt(u) > v. Since
u1 > u, Gpt(u1)< Gpt(u) = v1 and so t ∈U. Hence B⊂U. Let s ∈U. Then Gps(u1)< v1. By the definition of v1, s ∈ A or s ∈ B−A. This
implies that s ∈ B which implies that U ⊂ B. Therefore, B =U. Since U ∈N (Z),B ∈N (Z). Hence N (Z) is a stack.

Theorem 3.16. Let (S,F) be a statistical metric space. Then U (Z) is a stack.

Proof. Let A ∈U (Z) and A⊆ B. Then A = {(p,q) ∈ S×S | Gpq(u)< v}. Take u1 > u and

v1 =


v if (p,q) ∈ A,

Gpq(u) if (p,q) ∈ B−A,
Gpq(u1) if (p,q) ∈ S−B.

Then u1 and v1 > 0. Define U = {(p,q) ∈ S×S |Gpq(u1)< v1} so that U ∈U (Z). If (s, t) ∈ B, then (s, t) ∈ A or (s, t) ∈ B−A. If (s, t) ∈ A,
then Gst(u) < v. Since u1 > u,Gst(u1) < Gst(u) which implies that Gst(u1) < v = v1 and hence (s, t) ∈U. Suppose that (s, t) ∈ B−A.
Then Gst(u) > v. Since u1 > u,Gst(u1) < Gst(u) = v1 and so (s, t) ∈U. Hence B ⊂U. Let (l,m) ∈U. Then Glm(u1) < v1. By definition
of v1,(l,m) ∈ A or (l,m) ∈ B−A. This implies that (l,m) ∈ B which implies that U ⊂ B. Therefore, B =U. Since U ∈U (Z),B ∈U (Z).
Hence U (Z) is a stack.

Theorem 3.17. Let (S,F) be a statistical metric space. Then Np(P) is a stack.

Proof. Let A∈Np(P) and A⊆ B. Then A = {q∈ S |G(p,q)< f}. In a statistical metric space, Gpq = G(p,q) so that A = {q∈ S |Gpq(u)<
f (u)} where u > 0. Take u1 > u and

f1(u1) =


f (u) if s ∈ A,

Gps(u) if s ∈ B−A,
Gps(u1) if s ∈ S−B.

Define U = {q ∈ S | G(p,q) < f1}. Then U ∈ Np(P). Since (S,F) is a statistical metric space, U = {q ∈ S | Gpq(u1) < f1(u1)}. Let
t ∈ B. Then t ∈ A or t ∈ B−A. If t ∈ A, then Gpt(u)< f (u). Since u1 > u, Gpt(u1)< Gpt(u) which implies that Gpt(u1)< f (u) = f1(u1)
and hence t ∈U. If t ∈ B−A, then Gpt(u) > v. Since u1 > u, Gpt(u1) < Gpt(u) = f1(u1) and so t ∈U. Hence B ⊂U. Let s ∈U. Then
Gps(u1) < f1(u1). By definition of v1,s ∈ A or s ∈ B−A. This implies that s ∈ B which implies that U ⊂ B. Therefore, B = U and so
B ∈Np(P), since U ∈Np(P). Hence Np(P) is a stack.

The following Theorem 3.18 shows that a neighbourhood collection N (Z) is closed under finite intersection in a statistical metric space.
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Theorem 3.18. Let (S,F) be a statistical metric space and κ = {N (Z),Np(P)}. If W1,W2, . . . .,Wn ∈Q with W1∩W2∩ . . . .∩Wn 6= /0, then
W1∩W2∩ . . . .∩Wn ∈ Q where Q ∈ κ.

Proof. We will give a detailed proof only for Q = N (Z) where Q ∈ κ. Suppose that V1,V2, . . . .,Vn ∈ Q with V1 ∩V2 ∩ . . . .∩Vn 6= /0. Let
x ∈ V1 ∩V2 ∩ . . . .∩Vn. Then x ∈ Vi for i = 1 to n. Since V1 and V2 are τ-neighbourhoods containing x, there exists τ-neighbourhood W1
containing x such that W1 ⊂V1∩V2, by Theorem 3.2(a). Again, W1 and V3 are τ-neighbourhoods containing x implies that there exists a τ-
neighbourhood W2 containing x such that W2⊂W1∩V3⊂V1∩V2∩V3. Proceeding like this, we get a τ-neighbourhood Wn−1 containing x such
that Wn−1 ⊂Wn−2∩Vn ⊂V1∩V2∩V3∩ . . . .∩Vn. Since Wn−1 ∈Q and Wn−1 ⊂V1∩V2∩V3∩ . . . .∩Vn we have V1∩V2∩V3∩ . . . .∩Vn ∈Q,
by Theorem 3.15.

4. Relation between GMS and SM space

In this section, we find the relations between λΩ-open sets in generalized metric spaces and various g-topology neighbourhoods defined in
statistical metric spaces. Also, we give some properties of λΩ-open sets, kernel and perfect kernel in generalized metric spaces.

The notion of a generalized metric space was introduced by Korczak-Kubiak et al. in [2]. Let X 6= /0. The symbol Ω to denote the family
consisting of metrics defined on subsets of X , that is, if ρ ∈Ω, then there exists a non-null set Aρ ⊂ X such that ρ is a metric on Aρ where
Aρ is a domain of ρ and it will be denoted by dom(ρ). The space (X ,Ω) is called a generalized metric space (GMS) [2]. We will write ΩX
if we want to point out that all the metrics ρ ∈ΩX defined on X [2].

Denote λΩ is the family of Ω-open sets in (X ,Ω), more precisely, V ∈ λΩ if and only if for each x ∈V, there exist ρ ∈Ω and ε > 0 such
that Bρ (x,ε)⊂V where Bρ (x,ε) = {y ∈ dom(ρ) : ρ(x,y)< ε} [2].

Let (X ,Ω) be a GMS. A kernel [2] of the space (X ,Ω) is a finite family Ω0 ⊂Ω with the following property: for any set V ∈ λ̃Ω, there
exists ρ ∈Ω0 such that iρV 6= /0. A finite family Ω0 ⊂Ω is called a perfect kernel [2] of the space (X ,Ω) if for any V1,V2, ...,Vm ∈ µΩ such
that V1∩V2∩ ...∩Vm 6= /0, there exists ρ ∈Ω0 such that iρ (V1∩V2∩ ...∩Vm) 6= /0 [2]. Every perfect kernel is a kernel [2].

A GMS (X ,Ω) is said to be a weakly complete space [2] if there exists a kernel Ω0 ⊂Ω consisting of complete metrics. A GMS (X ,Ω) is
said to be a complete space [2] if there exists a perfect kernel Ω0 ⊂Ω consisting of complete metrics. Every complete space is a weakly
complete space [2].

Definition 4.1. Let (X ,Ω) be a generalized metric space. Then Ω is said to satisfy V -property if σ1,σ2 ∈Ω and x,y ∈ X , then σ(x,y) =
max{σ1(x,y),σ2(x,y)} is a metric and hence σ ∈Ω.

Theorem 4.2. Let (X ,Ω) be a generalized metric space. Then λΩ satisfies the condition N1.

Proof. Let p∈X and Up be a neighbourhood of p. Then Up ∈ λ̃Ω. Since p∈Up, there is a metric σ1 ∈Ω and ε1 > 0 such that Bσ1(p,ε1)⊂Up.

Since Bσ1(p,ε1) ∈ λ̃Ω, for every q ∈ Bσ1(p,ε1), there exist σ ∈ Ω and ε > 0 such that Bσ (q,ε) ⊂ Bσ1(p,ε1) ⊂Up. Therefore, every λΩ

satisfies the condition N1.

Theorem 4.3. Let (X ,Ω) be a generalized metric space and Ω satisfies the V -property. Then the following hold.
(a) λΩ satisfies N2.
(b) If W1,W2, . . . .,Wn ∈ λΩ with W1∩W2∩ . . . .∩Wn 6= /0, then W1∩W2∩ . . . .∩Wn ∈ λΩ.

Proof. (a) Let p ∈ X and Up,Wp ∈ λΩ. Then there exist σ1,σ2 ∈Ω and ε1,ε2 > 0 such that Bσ1(p,ε1)⊂Up, Bσ2(p,ε2)⊂Wp. For y ∈ X ,
define σ3(x,y) = max{σ1(x,y),σ2(x,y)}. Then σ3 ∈ Ω and σ3(x,y) ≥ σ1(x,y),σ3(x,y) ≥ σ2(x,y). This implies that Bσ3(p,ε1) ⊂
Bσ1(p,ε1) and Bσ3(p,ε2)⊂ Bσ2(p,ε2) which implies that Bσ3(p,ε1)∩Bσ3(p,ε2)⊂ Bσ1(p,ε1)∩Bσ2(p,ε2). Choose ε = min{ε1,ε2}
so that ε > 0. Then Bσ3(p,ε)⊂ Bσ3(p,ε1)∩Bσ3(p,ε2) and so Bσ3(p,ε)⊂ Bσ1(p,ε1)∩Bσ2(p,ε2). Therefore, Bσ3(p,ε)⊂Up∩Wp.
Take Vp = Bσ3(p,ε). Then Vp is a λΩ-neighbourhood of p such that Vp ⊂Up∩Wp. Hence λΩ satisfies N2.

(b) The proof is similar to that of (a).

Theorem 4.4. Let (X ,Ω) be a generalized metric space and Ω satisfy the V -property. Then every kernel in (X ,Ω) is a perfect kernel.

Proof. Suppose that Ω0 ⊂Ω is a kernel in (X ,Ω). Let W1,W2,W3, . . . .,Wn ∈ λΩ with W1∩W2∩ . . . .∩Wn 6= /0. By Theorem 4.3, W1∩W2∩
. . . .∩Wn ∈ λ̃Ω. Since Ω0 is a kernel, there exists a metric σ1 ∈Ω0 such that iσ1(∩n

i=1Wi) 6= /0. Therefore, Ω0 is a perfect kernel in (X ,Ω).

Theorem 4.5. Let (X ,Ω) be a generalized metric space and Ω satisfy the V -property. Then (X ,Ω) is a weakly complete metric space if and
only if (X ,Ω) is a complete metric space.

Proof. Suppose (X ,Ω) is a weakly complete metric space. Then there exists a kernel Ω0 ⊂Ω consisting of all complete metrics on X . By
Theorem 4.4, Ω0 is a perfect kernel on X . Thus, there exists a perfect kernel Ω0 ⊂Ω consisting of all complete metrics on X . Therefore,
(X ,Ω) is a complete space. Since every complete metric space is a weakly complete metric space, the converse follows.

The following Theorem 4.6 gives the relations between λΩ-open sets and neighbourhoods defined in a statistical metric space.

Theorem 4.6. Let (S,F) be a statistical metric space. If the distribution function Fpq(xi) = 1−σi(p,q) for xi > 0,σi ∈ΩS and i ∈N where
ΩS is the collection of all metrics defined on S, then the following hold.
(a) Every τ-neighbourhood on S is a λΩS -open set.
(b) Every τe-neighbourhood on S is a λΩS -open set.
(c) Every τR-neighbourhood on S is a λΩS -open set.

Proof. (a) Let U be an arbitrary τ-neighbourhood on S. Then U = {q ∈ S | Fpq(u1)> 1−v1} where u1,v1 > 0. By hypothesis, U = {q ∈
S | 1−σ1(p,q)> 1−v1}= {q ∈ S | σ1(p,q)< v1}= {q ∈ S | q ∈ Bσ1(p,v1)}. Hence U = Bσ1(p,v1) and so for each x ∈U, there is
a metric σ ∈ΩS and ε > 0 such that Bσ (x,ε)⊂U. Therefore, U ∈ λΩS . Hence every τ-neighbourhood is a λΩS -open set.
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(b) By Theorem 3.5, every τe-neighbourhood on S is a τ-neighbourhood on S. Therefore, by (a), every τe-neighbourhood on S is a
λΩS -open set on S.

(c) Every τR-neighbourhood on S is a τ-neighbourhood on S, by Theorem 3.7. By (a), every τR-neighbourhood on S is a λΩS -open set on
S.

Theorem 4.7. Let (S,F) be a statistical metric space. If the distribution function Fpq(xi) = 1−σi(p,q) for xi > 0,σi ∈ΩS and i ∈ N, then
the following hold.
(a) Every λΩS -open set contains a τ-neighbourhood on S.
(b) Every λΩS -open set contains a τe-neighbourhood on S.

Proof. We will present the detailed proof only for (b). Let A ∈ λ̃ΩS and x ∈ A. Then there is a metric σ1 ∈ ΩS and ε > 0 such that
Bσ1(x,ε) ⊂ A. Let y ∈ Bσ1(x,ε). Then σ1(x,y) < ε implies that 1−Fxy(u1) < ε where u1 > 0, by hypothesis. Take f (u1) = ε. Then
Fxy(u1)> 1− f (u1) and so y ∈ {z ∈ S | Fxz(u1)> 1− f (u1)}. Take U = {z ∈ S | Fxz(u1)> 1− f (u1)}. Then U = {z ∈ S |Gxz(u1)< f (u1)}
and Bσ1(x,ε)⊆U. Since in a statistical metric space G(p,q) = Gpq, U = {z ∈ S | G(x,z)< f}. Therefore, U is a τe-neighbourhood on S.
Let t ∈U. Then Fxt(u1)> 1− f (u1) and so 1−σ1(x, t)> 1− f (u1), by hypothesis. This implies that σ1(x, t)< f (u1) which implies that
σ1(x, t)< ε, since f (u1) = ε. Therefore, t ∈ Bσ1(x,ε). Hence U = Bσ1(x,ε). Thus, U ⊂ A. Hence A contains a τe-neighbourhood on S.

The following Theorem 4.8 shows that a collection of all λΩ-open sets is a stack in statistical metric spaces.

Theorem 4.8. Let (S,F) be a statistical metric space with a g-topology ν . If the distribution function Fpq(xi) = 1−σi(p,q) for xi > 0,σi ∈
ΩS, i ∈ N where ν ∈ {τ,τe}, then the following hold.
(a) The collection λΩS is a stack.
(b) If W1,W2, . . . .,Wn ∈ λΩS with W1∩W2∩ . . . .∩Wn 6= /0, then W1∩W2∩ . . . .∩Wn ∈ λΩS .

Proof. We will give a detailed proof only for ν = τ.

(a) Let A ∈ λΩS and A ⊂ B. By hypothesis and Theorem 4.7, A contains a τ-neighbourhood W on S. This implies that W ⊂ B which

implies that B ∈N (Z), since N (Z) is stack (Theorem 3.15). Therefore, B ∈ λΩS , by hypothesis and Theorem 4.6. Hence λΩS is a

stack.

(b) Let V1,V2, . . . .,Vn ∈ λΩS with V1 ∩V2 ∩ . . . .∩Vn 6= /0. Choose x ∈ V1 ∩V2 ∩ . . . .∩Vn. Then there exist σi ∈ ΩS,εi > 0 such that

Bσi(x,εi)⊂Vi for i = 1 to n and so ∩n
i=1Bσi(x,εi)⊂∩n

i=1Vi. As in the proof of Theorem 4.7, we get that Bi =Wi where Bi = Bσi(x,εi)

and Wi is a τ-neighbourhood on S for i = 1 to n. Therefore, ∩n
i=1Wi ⊂ ∩n

i=1Vi. By Theorem 3.18, ∩n
i=1Wi is a τ-neighbourhood on S.

Thus, ∩n
i=1Wi is a λΩS -open set, by Theorem 4.6 and hence ∩n

i=1Vi ∈ λΩS , by (a).

Theorem 4.9. Let (S,F) be a statistical metric space with a g-topology τ or τe. If the distribution function Fpq(xi) = 1−σi(p,q) for
xi > 0,σi ∈ΩS, i ∈ N and if Ω0 ⊂ΩS is a kernel in (S,ΩS), then it is a perfect kernel in (S,ΩS).

Proof. Let (S,F) be a statistical metric space with τ. Suppose Ω0 ⊂ΩS is a kernel in (S,ΩS). Let V1,V2,V3, . . . .,Vn ∈ λΩS with V1∩V2∩
. . . .∩Vn 6= /0. By hypothesis and Theorem 4.8, V1 ∩V2 ∩ . . . .∩Vn ∈ λ̃ΩS . Since Ω0 is a kernel, there exists a metric σ1 ∈ Ω0 such that
iσ1(∩n

i=1Vi) 6= /0. Therefore, Ω0 is a perfect kernel in (S,ΩS).
Let (S,F) be a statistical metric space with τe. By the same argument as in above and Theorem 4.8, we can prove that Ω0 is a perfect kernel
in (S,ΩS).

Theorem 4.10. Let (S,F) be a statistical metric space with a g-topology τ or τe. If the distribution function Fpq(xi) = 1−σi(p,q) for
xi > 0,σi ∈ΩS, i ∈ N and if (S,ΩS) is a weakly complete metric space, then (S,ΩS) is a complete metric space.

Proof. Let (S,F) be a statistical metric space with τ. Suppose (S,ΩS) is a weakly complete space. Then there exists a kernel Ω0 ⊂ ΩS
consisting of all complete metrics on S. By hypothesis and Theorem 4.9, Ω0 is a perfect kernel on S. Thus, there exists a perfect kernel
Ω0 ⊂ΩS consisting of all complete metrics on S. Therefore, (S,ΩS) is a complete metric space.
Suppose that (S,F) is a statistical metric space with τe. By the same argument as in above and Theorem 4.9, we can prove that (S,ΩS) is a
complete metric space.

5. Conclusion

This article provide the basis for carrying out analysis in statistical metric spaces, in particular for the development of various g-topologies,
neighbourhoods defined in a statistical metric space and also the improvement of λΩ-open sets in a generalized metric space. We have given
more examples of the neighbourhoods defined in a statistical metric space and the special kind of relationship between various g-topologies
defined by Thorp in a SM space. Also, new properties for λΩ-open sets in a generalized metric space have presented. We have given partial
answer to the following questions raised by Thorp in statistical metric spaces:
What are the necessary and sufficient conditions that the g-topology of typeV to be of typeVD?
What are the necessary and sufficient conditions that the g-topology of typeVα to be the g-topology of typeVD?
What conditions are both necessary and sufficient for the g-topology of typeVα to be a topology?
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