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Abstract

In this study, we generalize the well-known formulae of De-Moivre and Euler of complex
numbers to dual-complex numbers. Furthermore, we investigate the roots and powers of a
dual-complex number by using these formulae. Consequently, we give some examples to
illustrate the main results in this paper.

1. Introduction

The complex numbers have emerged from the need to solve cubic equations. First studies on complex numbers were produced by G. Cardan
(1501-1576) and B. Bombelli (1526-1572). Later, Euler used the formula

x+ iy = r (cosθ + isinθ)

and he studied the root of the equation zn = 1. Also, he proved that a complex number can be written in the form of

eiθ = cosθ + isinθ

[1]. Abraham de Moivre found the formula

(cosθ + isinθ)n = cos(nθ)+ isin(nθ)

and gave his own name to this formula. The developments in the number theory present us new number systems including the dual numbers
which are expressed by the real and dual parts like complex numbers. This idea was first introduced by W. K. Clifford to solve some algebraic
problems, [2]. Afterwards, E. Study presented different theorems with his studies on kinematics and line geometry, [3]. A dual number is a
pair of real numbers which consists of the real unit +1 and dual unit ε satisfying ε2 = 0 for ε 6= 0 . Therefore, dual numbers are elements of
two-dimensional real algebra D=

{
z = x+ εy|x,y ∈ R,ε2 = 0,ε 6= 0

}
which is generated by 1 and ε . Similar to the complex numbers, the

module of a dual number z is defined by |z|= |x+ εy|= |x|= r, its argument is θ = y
x and represented by arg(z). The set of all points which

satisfy the equation |z|= |x|= r > 0 and which are on the dual plane are x =±r lines, [4].

This circle is called Galilean circle on a dual plane. Let S be a circle centered with O and M be a point on S. If d is OM line, and α is the
angle δOd , a Galilean circle is represented by

Email addresses and ORCID numbers: agungor@sakarya.edu.tr, https://orcid.org/0000-0003-1863-3183 (M. A. Güngör), omertetik54@gmail.com, https://orcid.org/0000-
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Figure 1.1: Galilean unit circle

So, one can easily see that

cosgα =
|OP|
|OM|

= 1 , singα =
|MP|
|OM|

=
δOd

1
= α.

On the other hand, exponential representation of a dual number z = x+ εy is in the form of z = xeεθ where y
x is dual angle and it is shown as

arg(z) = y
x = θ , [5]. In addition, from the definitions of Galilean cosine and sine, we realize

cosg(θ) = 1 and sing(θ) = y
x = θ .

By considering the exponential rules, we write

cosg(x+ y) = cosg(x)cosg(y)− ε
2 sing(x)sing(y)

sing(x+ y) = sing(x)cosg(y)+ cosg(x)sing(y)

cosg2 (x)+ ε
2 sing2 (x) = 1.

[6].
E. Cho proved that De-Moivre formula for the complex numbers is admissible for quaternions, [7]. Yaylı and Kabadayı gave De-Moivre
formula for dual quaternions, [8]. This formula is also investigated for the case of hyperbolic quaternions in [9]. In this study, we first
introduce dual-complex numbers and algebraic expressions on dual complex numbers. We also generalize De-Moivre and Euler formulae
which are given for complex and dual numbers to dual-complex numbers. Then we have found the roots and forces of the dual-complex
numbers. Finally, the obtained results are supported by examples.

2. Dual-Complex Numbers

A dual-complex number w can be written in the form of complex pair (z, t) such that +1 is the real unit and ε is the dual unit. Thus, we denote
dual-complex numbers set by DC=

{
w = z+ εt|z, t ∈ C,ε2 = 0,ε 6= 0

}
. If we consider complex numbers z = x1 + ix2 and t = x3 + ix4,

we represent a dual-complex number w = x1 + x2i+ x3ε + x4εi . Here i,ε and εi are unit vectors in three-dimensional vectors space such
that i is a complex unit, ε is a dual unit, and εi is a dual-complex unit, [10]. So, the multiplication table of dual–complex numbers’ base
elements is given below.

x 1 i ε iε
1 1 i ε iε
i i 1 iε ε

ε ε iε 0 0
iε iε ε 0 0

Table 1: Multiplication Table of Dual-Complex Numbers

We define addition and multiplication on dual-complex numbers as follows

w1 +w2 = (z1± εz2)+(z3± εz4) = (z1± z3)+ ε (z2± z4)

w1×w2 = (z1 + εz2)× (z3 + εz4) = z1z3 + ε (z1z4 + z2z3)

where w1 and w2 are dual-complex numbers and z1,z2,z3,z4 ∈ C. On the other hand, the division of two dual-complex numbers is
w1
w2

= z1+εz2
z3+εz4

= z1
z3
+ ε

z2z3−z1z4
z3

2 where Re(w2) 6= 0. Thus, dual-complex numbers yield a commutative ring whose characteristic is 0. If we
consider both algebraic and geometric properties of dual-complex numbers, we define five possible conjugations of dual-complex numbers.
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These are

w†1 = z+ εt (complex conjugation)

w†2 = z− εt (dual conjugation)

w†3 = z− εt (coupled conjugation)

w†4 = z
(

1− ε
t
z

)
(dual-complex conjugation)

w†5 = t− ε z (anti-dual conjugation)

such that w = z+ εt ∈ DC is a dual-complex number, [11]. In regards to these definitions, we give the following proposition for modules of
dual-complex numbers.

Proposition 2.1. Let be a dual-complex number. Then we write

|w|2†1
= w×w†1 = (z+ tε)(z+ tε) = zz+ ztε + ztε = zz+(zt + zt)ε = |z|2 +2εRe(zt) ∈ D

|w|2†2
= w×w†2 = (z+ tε)(z− tε) = zz− ztε + ztε = z2 ∈ C

|w|2†3 = w×w†3 = (z+ tε)(z− tε) = zz− ztε + ztε = |z|2− (zt− zt)ε = |z|2−2iε Im(zt) ∈ D

|w|4†4
= w×w†4 = (z+ tε)

(
z
(

1− t
z

ε

))
= zz− zz

t
z

ε + ztε = zz− ztε + ztε = zz = |z|2 ∈ DC (Re(w) 6= 0)

|w|2†5
= w×w†5 = (z+ tε)(t− zε) = zt + t2

ε− z2
ε = zt + ε

(
t2− z2

)
∈ DC

[11].

3. De-Moivre and Euler Formulae for Dual-Complex Number

Definition 3.1. Exponential representation of a dual-complex number is ew = ze
t
z ε where w = z+ tε ∈ DC is a dual-complex number and

(z 6= 0), [11].

Definition 3.2. Let w = z+ tε be a dual-complex number with the exponential representation ew = ze
t
z ε . The dual-complex angle t

z is called
argument of dual-complex number and it is denoted by argw = t

z = ϕ , [11].

Definition 3.3. Let w = z+ tε be a dual-complex number and ϕ be its principal argument. Every dual-complex number can be written in
the form of w = z(cosg(ϕ)+ ε sing(ϕ)) such that cosg(ϕ) = 1 and sing(ϕ) = ϕ , [11].

Theorem 3.4. (Euler Formula) Let w= z+tε be a dual-complex number and ϕ be the principal argument of w. Then
w = zeεϕ = z(cosg(ϕ)+ ε sing(ϕ)) .

Proof. As it is aforementioned in Definition 3.2, the exponential representation of a dual-complex number w = z+ tε ∈ DC is ew = ze
t
z ε ,

where dual-complex number t
z is the principal argument ϕ . Thus, if we write w in the form of w = zeεϕ = z

(
1+ εϕ +

(εϕ)2

2! +
(εϕ)3

3! + ...
)

,

from properties of the dual unit, we see that w = zeεϕ = z(1+ εϕ) = z(cosg(ϕ)+ ε sing(ϕ)) .

Theorem 3.5. Let w = z+ tε be a dual-complex number and ϕ = t
z . Then 1

eεϕ = eε(−ϕ) .

Proof. If we use Euler formula for 1
eεϕ , we have

1
eεϕ

=
1(

1+ εϕ +
(εϕ)2

2! +
(εϕ)3

3! + ....
) =

1
cosg(ϕ)+ ε sing(ϕ)

.

If we multiplicate both the numerator and the denominator with cosg(ϕ)− ε sing(ϕ) in the last expression, we get

1
eεϕ

=
1

cosg(ϕ)+ ε sing(ϕ)
(cosg(ϕ)− ε sing(ϕ))
(cosg(ϕ)− ε sing(ϕ))

=
cosg(ϕ)− ε sing(ϕ)

cosg2(ϕ)
.

If we consider the equality cosg2(ϕ)= 1, we have 1
eεϕ = cosg(ϕ)−ε sing(ϕ). Considering the last equation, we write

1
eεϕ = cosg(ϕ)− ε sing(ϕ) = cosg(−ϕ)+ ε sing(−ϕ). As a consequence, we get 1

eεϕ = eε(−ϕ).

Theorem 3.6. (De-Moivre Formula) Let w = z+ tε be a dual-complex number and w = zeεϕ = z(cosg(ϕ)+ ε sing(ϕ)) be its polar
representation. Then, the equation wn = (zeεϕ )n = (z(cosg(ϕ)+ ε sing(ϕ))n = zn (cosg(nϕ)+ ε sing(nϕ)) yields for all non-negative
integers.
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Proof. Considering Galelian trigonometric identities for dual-complex number w= z+tε , we will prove that
wn = (zeεϕ )n = (z(cosg(ϕ)+ ε sing(ϕ))n = zn (cosg(nϕ)+ ε sing(nϕ)) is admissible by the help of induction. For n = 2, we have(

zeεϕ
)2

= z(cosg(ϕ)+ ε sing(ϕ))z(cosg(ϕ)+ ε sing(ϕ))

= z2
(

cos2g(ϕ)+ ε (cosg(ϕ)sing(ϕ)+ sing(ϕ)cosg(ϕ))
)

= z2 (cosg(2ϕ)+ ε sing(2ϕ))

For n = k non-negative integer, let (z(cosg(ϕ)+ ε sing(ϕ))k = zk (cosg(kϕ)+ ε sing(kϕ)) be true. For n = k+1, we get

(z(cosg(ϕ)+ ε sing(ϕ))k+1 = z(cosg(ϕ)+ ε sing(ϕ))k (z(cosg(ϕ)+ ε sing(ϕ))

= zk (cosg(kϕ)+ ε sing(kϕ))z(cosg(kϕ)+ ε sing(kϕ))

= zk (cosg(kϕ)cosg(ϕ)+ ε (cosg(kϕ)sing(ϕ)+ sing(kϕ)cosg(ϕ)))

= zk+1 (cosg((k+1)ϕ)+ ε sing((k+1)ϕ))

So, the desired equality holds for n = k+1. This completes the proof.

Theorem 3.7. For the dual-complex number w = z+ tε ∈ DC, the following equality yields for any integer n.

Proof. We give the proof for non-negative integers in Theorem 3.6. Let −n be a negative integer considering Theorem 3.5., we get

(w)−1 = z−1 (cosg(ϕ)− ε sing(ϕ))

w−n = z−n (cosg(nϕ)− ε sing(nϕ))

= z−n (cosg(−nϕ)+ ε sing(−nϕ))

Thus, we see that for any integer wn = (zeεϕ )n = (z(cosg(ϕ)+ ε sing(ϕ))n = zn (cosg(nϕ)+ ε sing(nϕ)).

Example 3.8. Let w = 1+ i+ ε + εi be a dual-complex number, we investigate
(
w4), 4th- degree power of w where w is written in the

form of w = z+ tε and z = 1+ i , t = 1+ i are complex numbers. Seeing that argument of w is t
z = ϕ , polar representation of w is given

by w = z(cosg(ϕ)+ ε sing(ϕ)). From Theorem 3.7, we have w4 = z4 (cosg(4ϕ)+ ε sing(4ϕ)) We gave equivalence for these Galilean
trigonometric functions. So we find,

w4 = (1+ i)4 (1+ ε4) =−4(1+ ε4) =−4−16ε

Example 3.9. We find values of w2 and w10 for the dual-complex number w = 1− i+ ε +3εi ∈ DC. If we write w in the form of w = z+ tε ,
then its argument is t

z =
1−i
1+3i = ϕ where z, t ∈C and z = 1− i, t = 1+3i. Thus, the polar representation of w is w = z(cosg(ϕ)+ ε sing(ϕ)).

So, we find

w2 = z2 (cosg(2ϕ)+ ε sing(2ϕ)) = (1− i)2
(

1+ ε
2(1+3i)
(1− i)

)
=−2i+8ε +4εi

and

w10 = z10 (cosg(10ϕ)+ ε sing(10ϕ)) = (1− i)10
(

1+ ε10
(1+3i)
(1− i)

)
=−32i+640ε +320i

Theorem 3.10. n-th degree root of w is n
√

w = n
√

z
(
cosg

(
ϕ

n
)
+ ε sing

(
ϕ

n
))

where w = z+ tε ∈ DC is a dual-complex number.

Proof. Polar representation of w= z+tε ∈DC is w= z(cosg(ϕ)+ ε sing(ϕ)). From Theorem 3.7, we know that
wn = (z.(cosg(ϕ)+ ε sing(ϕ))n = zn (cosg(nϕ)+ ε sing(nϕ)). So, we get

n
√

w = w
1
n = z

1
n

(
cosg

(
1
n

ϕ

)
+ ε sing

(
1
n

ϕ

))
= n
√

z
(

cosg
(

ϕ

n

)
+ ε sing

(
ϕ

n

))
This completes the proof.
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