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Abstract

Much work has been done in exploring the energy-momentum distribution of different
four-dimensional spacetimes using different prescriptions. In this paper, we intend to
explore the energy and momentum density of six-dimensional geometric model of the
gravitational field. The model was constructed by postulating a six-dimensional spacetime
manifold with a structure of spacetime of absolute parallelism. For this purpose, we
consider the metric representing the geometric model and use five prescriptions, namely,
Einstein, Landau-Lifshitz, Bergmann-Thomson, Papapetrou, and Möller in the framework
of General Relativity. The energy and momentum turn out to be well defined and finite.
The comparison of the results shows that Einstein and Bergmann-Thomson prescriptions
yield same energy-momentum densities but different from the other three prescriptions. It
is mentioning here that the energy vanishes in the case of Möller’s prescription and the
momentum densities become zero in all the cases.

1. Introduction

The theory of General Relativity (GR) is recognized as the best among all theories of gravitation, available in the literature, because many
important features of the universe have been verified experimentally in the framework of this theory. Although, the issue of localization
of energy and momentum is most divisive and longstanding. Huge efforts have been made to resolve this problem by the big names of
Physics and Mathematics. Einstein [1] is an innovator who introduced his energy-momentum complexes for the localization of energy and
momentum. By the passage of time, a number of efficient scientists, including Landau-Lifshitz [2], Møller [3], Bergmann-Thomson [4],
Weinberg [5], Papapetrou [6] and Tolman [7], presented their own energy-momentum complexes. These prescriptions yield feasible results
only if one uses cartesian coordinates except Møller’s prescription, which is independent of coordinate choice in case of energy only.
Misner and Sharp [8] proved that the energy can be localized in the spherical coordinate system. Cooperstock and Sarracino [9] proved
that if the energy can be localized in a spherically symmetric coordinate system then it surely be localized in non-spherical symmetric
coordinate which are static or quasistatic. Virbhadra and his coworkers [10, 11] investigated the energy-momentum distribution of different
spacetimes, such as the Kerr-Newmann, Kerr-Schild classes, Einstein-Rosen, Vaidya, and Bonnor-Vaidya spacetimes. They showed that
different energy-momentum prescriptions could give the same consequences, which are coincident with the results obtained by Tod [12]
using the Penrose [13] formalism in the context of quasi-local mass.
Various scientist [14, 15] described the energy of the gravitational field by presenting the Hamiltonian approach in the structure of Schwinger’s
condition [16]. Using this formalism, energy can be determined by an integral of a scalar density in the form of total divergence which
appears as the Hamiltonian constraints of this theory. Initially, the problem of localization of energy-momentum emerged in electromagnetism
and then it became a serious issue in GR due to the non-tensorial quantities. The localization of energy is discussed in some other theories
such as the f (R) theory and Teleparallel (TP) theory of gravity.
Mikhail et al. [17] defined the superpotential in the Møller’s tetrad theory which has been used to find the energy in the teleparallel theory of
gravity (TTG). Vargas [18] defined the TP version of Bergman, Einstein, and Landau-Lifshitz prescriptions and found that the total energy of
the closed Friedman-Robertson-Walker universe is zero by using the last two prescriptions. This agrees with the results of GR available in
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literature [12, 13]. Later, many authors [19]-[23] used TP version of these prescriptions and showed that energy may be localized in TTG.
Sharif and Jamil [24]-[32] explored the energy of different spcetimes in GR and TTG and obtained interesting results.
Multamäki et al. [33] generalized the Landau-Lifshitz energy-momentum prescription in f (R) theory of gravity. They also found the energy
density for the Schwarzschild de Sitter spacetime. By using generalized Landau-Lifshitz prescriptions, Sharif and Farasat [34] calculated the
energy density of plane-symmetric static metric and cosmic string spacetime. Faraoni and Nadeau [35] have discussed some important f (R)
models along with their stability conditions. Jamil and his collaborators [36, 37] obtained the spatially homogeneous rotating solutions and
locally rotating spacetimes in f (R) gravity and the energy contents are obtained for non-trivial solution for particular f (R) model.
Silva et al. [38] proposed a six-dimensional string-like braneworld built from a warped product between a 3-brane and the Hamilton cigar
soliton space. They discussed the effects of the evolution of the transverse space on the geometric and physical quantities. The gravitational
massless mode remains trapped to the brane and the width of the model depends on the evolution parameter. For the Kaluza-Klein modes,
the asymptotic spectrum of mass is the same as for the thin string-like brane and the analog Schrödinger potential also changes according to
the flow. Linch and Tartaglino-Mazzucchelli [39] introduced a superspace result for N = (1,0) conformal supergravity in six dimensions.
They formulated a locally supersymmetric and super-Weyl invariant action principle in projective superspace.
Popov [40] constructed a six-dimensional pure geometric model by postulating a six-dimensional spacetime manifold with a structure
of spacetime of absolute parallelism. He established a clear relation between the Schwarzschild solution of the gravitational field of a
point mass and the field of point source torsion. In the case of Teleparallel Equivalent of General Relativity (TEGR), it is equivalent to
interpret the gravitation either in terms of curvature or in terms of torsion. Therefore, we try to explore the energy-momentum distribution of
six-dimensional teleparallel solution by using GR prescriptions. Our aim is to explore the energy-momentum distribution of this geometric
model using different complexes in the context of GR.

2. Energy-Momentum Distribution of Six Dimensional Geometric Model of Gravitational Field

We consider the line element is given in Eq.(14) of [40] representing the geometric model of a gravitational field in six dimensions, given as

ds2 =
−(3y1 +a3)−4/3

1−a/(3y1 +a3)1/3
dy2

1−
(3y1 +a3)2/3

1− y2
2

dy2
2− (3y1 +a3)2/3(1− y2)

2dy2
3

+(1− a
(3y1 +a3)1/3

)dy2
4 +

1
2y5 + γ

dy2
5 +(2y5 + γ)dy2

6. (1)

Here, y1 stands for time component and rest are the space components.
The Einstein energy-momentum prescription is defined as [1]

Θ
b
a =

1
16π

Hbc
a,c, (2)

where Hbc
a depends on metric tensor and its first order derivative, found by Freud [42] given as

Hbc
a =

gad√
−g

[−g(gbdgce−gcdgbe)],e . (3)

Here, the term Θ0
0 stands for energy density, Θ0

i (i = 1, ...,5) are the components of momentum density and the current density components
are denoted by Θi

0. Using Eq.(1) in Eq.(3), the non-vanishing components of Hbc
a turn out to be
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Making use of these values in Eq.(2), the energy and momentum densities of Einstein’s prescription turn out to be

Θ
00 =

−3y1 +a
(

a2 +a
(
a3 +3y1

)1/3
+
(
a3 +3y1

)2/3
)

24πy1
(
a3 +3y1

)2/3
,

Θ
0i = 0, (i = 1,2, ...,5).

The Landau-Lifshitz’s prescription, in GR, is given as [2]

Lab =
1

16π
lacbd ,cd , (4)
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where labcd is a 4 rank tensor, given as

labcd = (−g)(gabgcd −gadgcb). (5)

The term L00 yields the energy density component of the whole system and Li0 (i = 1, ...,5) represents the momentum density components.
In view of Eq.(1), the Eq.(5) gives the following non-vanishing components of the tensor labcd

l1001 = l0110 =−l1010 =−l0101 =
(
a3 +3y1

)4/3
,
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2
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,
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When we use these values of labcd in Eq.(4), the energy and momentum density components of Landau-Lifshitz’s prescription are obtained
as

L00 =
2a−

(
a3 +3y1

)1/3

8a3π +24πy1−8aπ
(
a3 +3y1

)2/3
.

L0i = 0, (i = 1, ...,5).

In case of Bergmann-Thomson prescription, the energy-momentum density components are defined as [4]

Bab =
1

16π
Mabc,c , (6)

where

Mabc = gadV bc
d , (7)

and

V bc
d =

gde√
−g

[−g(gbegc f −gcegb f )], f . (8)

Here, B00 represents the energy density of the entire system and B0i (i = 1, ...,5) stands for the momentum density components. Using
Eq.(1) in Eq.(8), we get the following non-vanishing components of V ab
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Substituting these values in Eq.(7) and then in Eq.(6), the energy and momentum components of Bergmann-Thomson’s prescription turn
out to be
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B00 =
−3y1 +a
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a2 +a

(
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)1/3
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)2/3
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24πy1
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.

B0i = 0, (i = 1, ...,5).

Now, the energy-momentum prescription of Papapetrou [6] is given as

Ω
ab =

1
16π

Nabcd ,cd ,

where
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√
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η
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η
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η
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η
ac).

Here, ηab is the metric tensor of Minkowski spacetime. The Ω00 and Ω0i represent the energy and momentum density components
respectively. The non-vanishing components of Nabcd are evaluated as
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After some calculations, we obtain the energy and momentum density components of Papapetrou prescription as



Universal Journal of Mathematics and Applications 145

Ω
00 =

1

8π
(
a3 +3y1

)5/3

(a3 +3y1

)
−

a2−2a
((

a3 +3y1
)1/3−a

)
((

a3 +3y1
)1/3−a

)3

 .
Ω

0i = 0, i = 1, ...,5.

The Møller [3] energy-momentum pseudo-tensor Mb
a is given as

Mb
a =

1
8π

Kbc
a,c,

where

Kbc
a =
√
−g(gad,e−gae,d)g

begcd . (9)

Here, M0
0 stands for the energy density and M0

i (i = 1, ...5) for the momentum density components. The momentum four-vector is given by

pa =
∫ ∫

V

∫
M0

a dx1dx2dx3, (10)

where p0 gives the energy and pa (a = 1, ...5) give the momentum. Using Gauss’s theorem, the total energy-momentum components may be
given in the form of surface integral as

pa =
1

8π

∫
S

∫
K0c

a nc.dS,

where nc is the outward unit normal vector over an infinitesimal surface element dS. When we use Eq.(1) in Eq.(10) the non-vanishing
components of Kbc

a, come out as

K01
0 =−K10

0 = a,

K12
2 = K13

3 =−K21
2 =−K31

3 = 2a−2
(

a3 +3y1

)1/3
,

K23
3 =−K32

3 =
2y2(

a3 +3y1
)2/3

,

K45
5 =−K54

5 = 2.

Making use of these values in Eq.(9), we get the energy-momentum density components of Møller’s prescription, which turn out to be zero,
i.e.,

M00 = 0,

M0i = 0, i = 1, ...,5.

3. Discussion

The most important issue in GR is an acceptable definition of energy-momentum localization. Although, the problem of localization of
energy is unresolved and controversial but numerous scientists attempted to resolve it in the context of different frames of work. For this
purpose, a huge number of examples have been explored in different frames of work so that these may help us, at some stage, to make a
conjecture about this problem.
It is well-known that geometry and physics are very much related to each other for any physical problem. The motivation behind this work to
see what comes out by exploring the energy-momentum distribution of this six-dimensional geometric model of the gravitational field. In
other words, to see how is the physics associated with this model. For this purpose, we use Einstein, Landau-Lifshitz, Bergmann-Thomson,
Papapetrou and Møller prescriptions. The results obtained are given in this table.

Table 1. Energy Density (ED) Components for all Prescriptions

ED Expressions

Θ00 −3y1+a
(

a2+a(a3+3y1)
1/3

+(a3+3y1)
2/3
)

24πy1(a3+3y1)
2/3

B00 −3y1+a
(

a2+a(a3+3y1)
1/3

+(a3+3y1)
2/3
)

24πy1(a3+3y1)
2/3

L00 2a−(a3+3y1)
1/3

8a3π+24πy1−8aπ(a3+3y1)
2/3

Ω00 1
8π(a3+3y1)

5/3

[(
a3 +3y1

)
− a2(

(a3+3y1)
1/3−a

)3 − 2a(
a−(a3+3y1)

1/3
)2

]
M00 0
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This table shows that the energy density components turn out to be well defined and finite for Einstein, Bergmann-Thomson and Papapetrou
prescriptions everywhere in its domain except at y1 = 0 and y1 =− a3

3 while Papapetrou prescription becomes infinite at y1 =− a3

3 only.
Further, it shows that the results for Einstein and Bergmann-Thomson prescriptions turned out to be same but different from the other
prescriptions. It is mentioning here that the energy density becomes zero in case of Møller’s prescription. Further, the momentum densities
of the six-dimensional geometric model of the gravitational field are zero for all prescriptions. This adds an example of the six-dimensional
model towards the solution of the problem of localization of energy and momentum in GR and helpful, at some stage, for making a conjecture
about this issue. The graphical representations of the energy density are given as under
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Figure 1: Einstein and Bergmann Thomson Energy density graph vs y1
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Figure 2: Landau-Lifshitz Energy density graph vs y1
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Figure 3: Papapetrou Energy density graph vs y1

.

It is mentioned here that the results of energy-momentum distribution for different spacetimes are not astonishing. On the basis of these
results, we can conclude that the energy-momentum complexes, which are treated as pseudo-tensors are not covariant. This is in coherence
with the equivalence principle [41] which implies that the gravitational field cannot be detected at a point. The energy-momentum complexes
for a huge number of spacetimes have been discussed but no consensus has been built yet to decide which one is the best.
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