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Abstract

For the last quarter century a considerable number of research has been carried out on the
study of Herz spaces, variable exponent Lebesgue spaces and Sobolev spaces. This studies
also have played an important role in problems of elasticity, fluid dynamics, calculus of
variations. Our aim in this work is to prove some properties of the integral-type operator on
weighted Herz space with variable exponent Lebesgue space (VELS).

1. Introduction

Herz spaces and variable exponent spaces have played an important role in recent harmonic analysis because they have an interesting norm
including both local and global properties.We refer to the book [1] for the history of Herz spaces. Based on the classical Muckenhoupt theory
[2]-[4] some classes of weighted Herz spaces have been defined and the boundedness of many operators on those spaces have been proved
[4]-[8] . Herz spaces can be generalized using variable exponents and many properties of them have been studied [9]-[11] . The boundedness
or compactness of integral-type operators on weighted Lebesgue spaces has been obtained [12]-[19] . We prove the boundedness of the
fractional maximal operator on the spaces with power weight.

2. Preliminaries, Definitions and Assertions

We use the following definitions and notations:

a) For a point x ∈ Rn and a constant r < 0, we have B(x,r) = {y ∈ Rn : |x− y|< r}
b) The set N0 consist of all non-negative integers. For every k ∈ N0, we write

Bk = B(0,2k) = {x ∈ Rn : |x| ≤ 2k}

c) We define a family {Ck}∞
k=0 by

Ck =

B0 = {x ∈ Rn : |x| ≤ 1},k = 0
Bk\Bk−1 = {x ∈ Rn : 2k−1 < |x| ≤ 2k},k ≥ 1

Moreover χk denote the charecteristic function of Ck, namely χk = χCk .
Definition 2.1 (See [16]) Let ω be a weight function on Rn and let p(.) = Rn −→ [1,∞) a bounded measurable function. For all f measurable
function, weighted norm Lebesgue space Lp(.)

ω (Rn) with

‖ f‖
Lp(.)

ω (Rn)
= in f{λ > 0 :

∫
Rn
(
| f (x)|

λ
)ω(x)dx≤ 1}
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In the case that ω ≡ 1, we simply write Lp(.) = Lp(.)
ω and ‖ f‖Lp(.) = ‖ f‖

Lp(.)
ω

.

Definition 2.2(See [9], [11] ) Given a, 0 < a < n and given an open set Ω⊂ Rn the fractional maximal operator Ma is defined by

Ma f (x) = sup
B3x

1
|B|1−

a
n

∫
B∩Ω

f (y)dy

where the supremum is taken over all balls B which contain x. When a = 0,M0 = M is the Hardy-Littlewood maximal operator.

Definition 2.3 ([9], [16])

1. for measurable function p(.) = Rn −→ (0,∞), we write

p+ = ess sup
x∈Rn

p(x)

p− = {( 1
p(.)

)+}−1

2. The set P(Rn) consist of all measurable functions p(.) defined on Rn satisfying 1 < p− ≤ p+ < ∞.
3. The set LH(Rn) consist of p(.) defined on Rn satisfying the following two inequalities

|p(x)− p(y)|.− 1
log(|x− y|)

, |x− y| ≤ 1
2

|p(x)− p(y)|.− 1
log(e+ |x|)

,x ∈ Rn (1)

for some real constant p∞. In particular a measurable function p(.) is said to be log-Hölder continuous at infinity when p(.) satisfies (1).

3. Main Results

Let’s start with the following definitions for proof of our main theorem.

Definition 3.1. (See [11]) Let 0 < q < ∞, β (.) ∈ L∞, ω be a weight function on Rn and p(.) : Rn −→ [1,∞) a bounded measurable function.

1. The set Lp(.)
loc (ω

1
p(.) ) consist of all measurable function f such that fχK ∈ Lp(.)(ω

1
p(.) ) for any compact set K ∈ Rn.

2.The non-homogeneous Herz space Kβ (.),q
p(.) consist of all measurable functions f ∈ Lp(.)

loc (1) such that

‖ f‖
Kβ (.),q

p(.)
= (

∞

∑
k=0
‖2β (.)k fχK‖q

Lp(.))
1
q
< ∞.

3. The critical weighted Herz space Bp(.)(ω) consist of all measurable functions f ∈ Lp(.)
loc (ω

1
p(.) ) such that

‖ f‖Bp(.)(ω) = sup
k≥0
‖ω(Bk)

− 1
p(.) fχK‖Lp(.)(ω) < ∞. (2)

Proposition 3.2. (see [9, Proposition 3.8]). Let p(.) ∈ P(Rn), q ∈ (0,∞) and β (.) ∈ L∞. If β (.) is log-Hölder continuous at infinity, then we
have

Kβ (.),q
p(.) = Kβ∞,q

p(.)

with norm equivalence.

From now on, we consider a power weight ω(x) = |x|m with a real constant m. It is easy to see that for all k ∈ N0 and R > 0,

ω(Bk)∼ 2(mn+n−1)k,ω(B(0,r))∼ rmn+n−1

where implicit constants are independant of k and r. Proposition 3.2 can be extended to the case Bp(.)(ω) by the same as the proof of [9,
Proposition 3.8]. Herewith, we have following a corollary.

Corollary 3.3. (See [11]) Let ω(x) = |x|m with a real constant m, p(.) ∈ P(Rn)∩LH(Rn) and β (.) ∈ L∞. If ω ∈ℵp(.), we have that for all
measurable function f ∈ Bp(.)(ω),

‖ f‖Bp(.)(ω) = sup
k≥0
‖2−

k(mn+n−1)
p(.) fχCk‖Lp(.)(ω) ∼ sup

k≥0
‖2−

k(mn+n−1)
p∞ fχBk‖Lp(.)(ω)
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Proposition 3.4. (See [17, Proposition 1.2]). Let ω(x) = |x|m with a real constant m, p(.) ∈ P(Rn) and f ∈ Lp(.)
loc (ω

1
p(.) ). Then f ∈ Bp(.)(ω)

holds if and only if

sup
r≥1
‖
| f |χB(0,r)

ω(B(0,r))
1

p(.)

‖Lp(.)(ω) (3)

is finite. If this is the case, then the quantity (3) is equivalent to the Bp(.)(ω) norm (2).

Our result is the boundedness of the weighted fractional maximal operator Ma,ω on the space Bp(.)(ω).

Theorem 3.5. Let m ∈ R and ω(x) = |x|m. Suppose that p(.) ∈ P(Rn)∩LH(Rn) and ω ∈ℵp(.). Then Ma,ω is bounded on Bp(.)(ω).

Proof. Let f ∈ Bp(.)(ω). Then Corollary 3.3 we have

‖Ma,ω f‖Bp(.)(ω) ∼ sup
k≥0
‖2−

k(mn+n−1)
p∞ (Ma,ω f )χBk‖Lp(.)(ω)

Thus we have only to estimate ‖2−
k(mn+n−1)

p∞ (Ma,ω f )χBk‖Lp(.)(ω) for each k ∈ N0. Let constant k ∈ N0 then we have

Ma,ω f (x)≤ sup
x∈B⊂Bk+1

1
|B|1−

a
n ω(B)

∫
B
| f (y)|ω(y)dy+ sup

x∈B\Bk+1 6=0

1
|B|1−

a
n ω(B)

∫
B
| f (y)|ω(y)dy

= Ma,ω,1,k f (x)+Ma,ω,2,k f (x)

(a) Note that Ma,ω,1,k f (x) = Ma,ω,1,k f (x)( f χBk+1)χBk+1(x).
By [10, Theorem 2.10] we have

‖2−
k(mn+n−1)

p∞ (Ma,ω,1,k f )χBk‖Lp(.)(ω) = ‖2
− k(mn+n−1)

p∞ Ma,ω,1,k( f χBk+1)χB(0,2k+1)‖Lp(.)(ω)

. ‖2−
k(mn+n−1)

p∞ f χBk+1‖Lp(.)(ω)

(b) Next we estimate the function Ma,ω,2,k f (x). Let |x|< 2k. The smallest ball centered at 0 and containing B is called B
′
. Then, there exist a

constant C which is depended only on the dimension n such that |B| ≥ |B
′ |

C by a geometric consideration.

Ma,ω,2,k f (x)≤CMa,ω f (0).

We note that ‖ω(B
′
)
− 1

p′ (.) χB′ ‖Lp′ (.)(ω)
= 1 because

∫
Rn
(ω(B

′
)
− 1

p′ (.) χB′ )
p
′
(x)

ω(x)dx =
1

ω(B′)

∫
B′

χB′ (x)ω(x)dx = 1

If we use Hölder inequality and Proposition 3.4 we have

1
|B|1−

a
n ω(B′)

∫
B′
| f (y)|ω(y)dy

=
1

|B|1−
a
n

∫
B′
| f (y)χB′ (y)|ω(y)

1
p(y)

ω(B′)
1

p(y)

.
χB′ (y)ω(y)

1
p′ (y)

ω(B′)
1

p′ (y)

dy ≤C‖ f‖Bp(.)(ω)‖ω(B
′
)
− 1

p′ (.) χB′ ‖Lp′ (.)(ω)
≤C‖ f‖Bp(.)(ω)

Hence, we can see that Ma,ω,2,k f (x). ‖ f‖Bp(.)(ω) holds.

Combining (a) and (b) we see that

‖Ma,ω f‖Bp(.)(ω) ∼ sup
k≥0
‖2−

k(mn+n−1)
p∞ (Ma,ω f )χk‖Lp(.)(ω)

≤ sup
k≥0

(‖2−
k(mn+n−1)

p∞ (Ma,ω,1,k f )χk‖Lp(.)(ω)+‖2
− k(mn+n−1)

p∞ (Ma,ω,2,k f )χk‖Lp(.)(ω))

≤ sup
k≥0

(‖2−
k(mn+n−1)

p∞ f χB(0,2k+1)‖Lp(.)(ω)+‖ f‖Bp(.)(ω)‖2
− k(mn+n−1)

p∞ χk‖Lp(.)(ω))
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. sup
k≥0
‖2−

k(mn+n−1)
p∞ f χB(0,2k+1)‖Lp(.)(ω)+‖ f‖Bp(.)(ω)sup

k≥0
‖2−

k(mn+n−1)
p∞ χk‖Lp(.)(ω)

. 2
(mn+n−1)

p∞ ‖ f‖Bp(.)(ω)+‖ f‖Bp(.)(ω) . ‖ f‖Bp(.)(ω).

Theorem 3.5 is proved.

Conclusion. We investigated and saw that is bounded the fractional maximal operator Ma,ω on the spaces with power weight in view of the
given conditions. This method can be applied to different operators.
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