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Abstract
This paper investigates problems in the characterization of the proximity of digital discs. Based on the l1-
metric structure for the 2D digital plane and using a Jaccard-like metric, we determine numerical characters for
intersecting digital discs.
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1. Introduction
In pure and applied mathematics, one of the important questions is connected to the discovery of proximal objects [1]. The
objects often can be represented as sets of points and this stipulates that set-theoretic and topological methods are very useful
tools in the study of proximity relations. Digital geometry is the study of geometric properties of shapes in digital pictures.

Figure 1.1. Structure of the Digital Discs
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Many different computer screen images can be obtained via pixel lighting. A pixel is the smallest element on the digital
plane and they are usually identified as points. In other words, we can describe images on the computer screen by their pixels
that have digital valued coordinates, i.e., a mathematical model of the computer screen is the digital plane Z2.

The importance of the notions of the circle and disc in Euclidean geometry is well known. In digital geometry, digital
circles and digital discs have various important properties that are different from the Euclidean ones (see, e.g., [2–4]). One of
the reasonable realizations of metric structure on the digital plane Z2 can be determined via the so-called l1 metric. This metric
has the following view:

d(p1,p2)= ∣a1−a2∣+∣b1−b2∣,where p1 and p2 are some matched points,
with coordinates (a1,b1) and (a2,b2). respectively,

i.e., p1 and p2 are pixels for our future considerations. Since we can represent pixel coordinates as digital pairs, then it is
obvious that d(p1,p2)∈Z (the integers).

Based on the l1 metric, we define a digital circle with radius r and center x (denoted by Cd(x,r)) as follows:

Cd(x,r)={z∈Z2 ∶d(x,z)=r}.

Moreover, we denote by c(Cd(x,r)) the circumference of the circle Cd(x,r) where r∈N∪{0}.
It is well-known that if r is a natural number, we have πl1 =

c(Cd(x,r))
diam(Cd(x,r))

= 8r
2r =4, where diam(Cd(x,r)) is the diameter of

the circle Cd(x,r). Using this fact, we easily obtain the following result.

Lemma 1.1. Let Cd(x,r) be a digital circle with center at point x and radius r relative to the l1 metric. Then, for the number of
pixels of Cd(x,r), we have the formula

card(Cd(x,r))= 2c(Cd(x,r))
πl1

=4r.

Fig. 1.1 demonstrates the structural property of the digital disc, namely,

Dd (x,R)={z∈Z2 ∣d(x,z)≤R}, particularly:

Dd (x,R)={x}∪(
R
⋃
r=1

Cd(x,r)), where R∈N.

Lemma 1.2. If Dd (x,R) is a digital disc relative to the l1 metric d, then the number of pixels forming the disc Dd (x,R) can be
computed by the formula card(Dd (x,R))=2R2+2R+1.

Proof. Since Dd (x,R)={x}∪(
R
⋃

r=1
Cd(x,r)), we can write

card(Dd (x,R))=1+card(Cd(x,1))+card(Cd(x,2))+⋯+card(Cd(x,R)).

Now, applying Lemma 1.1, we get

card(Dd (x,R))=1+4+8+⋯+4R=

=1+4(1+R
2

R)=

=2R2+2R+1.

2. How near are digital discs?
To solve a wide class of the problems of computational proximity, the Hausdorff metric is appropriate. The Hausdroff metric
(denoted by dH(A,B)) measures the distance between the sets A,B in the given metric space (X ,d) and is defined by

dH(A,B)=max{sup
x∈A

inf
y∈B

d(x,y),sup
y∈B

inf
x∈A

d(x,y)}.
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If the sets A,B are finite, we obtain the simplication of the Hausdorff metric by maxima and minima, i.e.,

dH(A,B)=max{max
x∈A

min
y∈B

d(x,y),max
y∈B

min
x∈A

d(x,y)}.

It is clear that even in the case of finite sets, computation of the Hausdorff distances are quite capacitive. These difficulties
can be bypassed in some special cases of analytical sets. Below, we are interested in characterization of intersecting digital
discs.

Figure 2.1. Intersecting Digital Discs with Intersecting Boundaries

Classification of images in computer science frequently need the application of Jaccard-like metrics [5], [6], [7] . We
will use a simplified version to analyze proximity of intersecting digital discs. It must be especially noticed that the problem
connected with the intersection of plane discs was considered from a computer science perspective in [8].

For the Jaccard-like metric m, we understand the distance function defined via the cardinality of the symmetric difference
of two arbitrary nonempty finite sets A and B, i.e.,

m(A,B)=card(A△B)
=card(A∖B)+card(B∖A)
=card(A)+card(B)−2card(A∩B).

It is obvious that if card(A)≠card(B) and both sets are finite while A∩B≠∅, we get m(A,B)≠0. This raises the question of
the computation of the proximity of intersecting digital discs such as the ones in Fig. 2.1.

Theorem 2.1. Let Dd(x,R1) and Dd(y,R2) be digital discs such that Cd(x,R1)∩Cd(y,R2)≠∅. Then

m(Dd(x,R1),Dd(y,R2))=2(R2
1+R2

2+R1+R2−2kn+k+n),

where k and n denote the number of pixels forming the width and height of the greatest rectangle subset of an intersection set.

Proof. Applying Lemma 1.2, we obtain the following cardinal equalities:

m(Dd(x,R1),Dd(y,R2))=card(Dd(x,R1))+card(Dd(y,R2))−2card(Dd(x,R1)∩Dd(y,R2))
=2(R2

1+R2
2+R1+R2+1))−2card(Dd(x,R1)∩Dd(y,R2))

=2(R2
1+R2

2+R1+R2+1)−2[kn+(k−1)(n−1)]
=2(R2

1+R2
2+R1+R2−2kn+k+n)

Notice that there is a situation in which two digital discs are intersecting but their boundaries are not intersecting (see,
e.g., Fig.2.2). Observe that in that case, we have Cd (x,R1−1)∩Cd (y,R2)≠∅, or, equivalently, Cd (x,R1)∩Cd (y,R2−1)≠∅.

Theorem 2.2. Let Dd (x,R1) and Dd (y,R2) be digital discs such that Cd (x,R1)∩Cd (y,R2)=∅, but Cd (x,R1−1)∩Cd (y,R2)≠∅.
Then we have m(Dd (x,R1),Dd (y,R2))=2(R2

1+R2
2+R1+R2+1−2kn), where k and n denote the number of pixels forming the

width and height of the greatest rectangle subset of an intersection set.

Proof. In this case, we can easily note that card(Dd (x,R1)∩Dd (y,R2))=2kn. Hence, we have m(Dd (x,R1),Dd (y,R2))=
2(R2

1+R2
2+R1+R2+1−2kn).
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Figure 2.2. Intersecting Discs with Non-Intersecting Boundaries

Next, we need to represent the centers x and y of discs Dd (x,R1) and Dd (y,R2) by a couple of digital coordinates as follows:
x=(α,β) and y=(γ,δ). If one of the following equalities hold d(x,y)= ∣α−γ ∣ or d(x,y)= ∣β −δ ∣, i.e., the centers of the discs lie
on horizontal or vertical axes (similar to the situations shown in Fig. 2.3.1 and Fig. 2.3.2), then we can measure the proximity
of the discs via computation of the pixel cardinality of the intersections sets.

2.3.1: Intersecting Discs with Intersecting
Boundaries

2.3.2: Intersecting Discs with Non-
Intersecting Boundaries

Figure 2.3. Intersecting Discs on the Digital Plane

Theorem 2.3. Let Dd (x,R1) and Dd (y,R2) be digital discs such that x=(α,0) and y=(γ,0) with α <γ and γ−α ≤R1+R2. If
Cd (x,R1)∩Cd (y,R2)≠∅, then

m(Dd (x,R1),Dd (y,R2))=(R1−R2)2+2(R1+R2+1)(γ−α)−(γ−α)2
.

Proof. Since x=(α,0), y=(γ,0) and Cd (x,R1)∩Cd (y,R2)≠∅, we claim that

Cd (x,R1)∩Cd (y,R2)=Cd(k,r), where,

k=(α+R1+γ−R2
2 ,0) and

r=R1−(k−α)= R1+R2+(γ−α)

2 ∈N∪{0}. Consequently, simplification of

m(Dd (x,R1),Dd (y,R2))=2(R2
1+R2

2+R1+R2+1−2r2−2r−1)

gives the needed expression

m(Dd (x,R1),Dd (y,R2))=(R1−R2)2+2(R1+R2+1)(γ−α)−(γ−α)2
.



Computable Proximity of `1-Discs on the Digital Plane — 217/218

Observe that Theorem 2.3 can be applied in similar cases when the intersection set of the digital discs itself is a disc.
This leads us to consider two intersecting digital discs with non-intersecting boundaries (see, e.g., Fig. 2.3.2) so that both

centers lie on the horizontal or vertical axes. In such cases, we obtain the following result.

Corollary 2.4. Let Dd (x,R1) and Dd (y,R2) be intersecting digital discs that satisfy the conditions of Theorem 2.3, but
Cd (x,R1)∩Cd (y,R2)=∅. Then we have

m(Dd (x,R1),Dd (y,R2))=2(R2
1+R2

2+R1+R2−2r2
0−4r0+1),where,

r0=
R1−1+R2+(γ−α)

2
.

Recall that a boundary point x0 of a convex set C is called a support point [9, p. 27].

Lemma 2.5. [Bishop-Phelps [9]] Suppose M is a closed subspace of finite co-dimension in a topological vector space X, and
that C is a convex subset of X. Suppose x0 is a support point of C∪M in the subspace M. Then x0 is a support point of C.

Let A,B be nonempty sets and let bdyA denote the set of boundary points of a nonempty set A. Also, let A
⩕

δ B denote that A
and B are overlapping sets. From Lemma 2.5, we obtain

Theorem 2.6. Let A,B be nonempty sets of digital discs. If A,B are convex sets in a subspace M of the Euclidean plane
intersect, then
1o A∩B is a convex set.
2o A

⩕

δ B (A and B are strongly near).
3o x0 ∈bdy(A∩B) is a support point of A∩B.

Proof.

1o Immediate, since the intersection of any two convex sets is a convex set.
2o Let intA,intB be the interior of A,B, respectively. From Theorem 2.6.1, A∩B≠∅ implies intA∩intB≠∅. Hence, from [10,

§2.3], A
⩕

δ B.
3o Immediate from Lemma 2.5.

Example 2.7. The blue and red pixels on the boundary of the intersecting discs in Fig. 2.3.1 are support points. �

Figure 2.4. Intersecting sets of boundary points skA,skB

In what follows, we give an application of Theorem 2.6.2, namely, digital discs A,B are convex sets in a subspace M of the
Euclidean plane intersect, provided

A
⩕

δ B (A and B are strongly near).
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Figure 2.5. Boundary with support point ⟨a⟩

3. Application: Classifying triangulated digital images
Recall that an Alexandroff nerve on a triangulated 2D surface is a set of triangles with a common vertex (called the nucleus of
the nerve), introduced by P. Alexandroff [Aleksandrov] [11, §31, p. 39], [12] and elaborated in [13, Vol. 3, p. 67], [14, §2.11,
pp. 160-161]. Such a nerve with nucleus p is maximal, provided the number of triangles attached to p is highest [15]. It is
possible for more than one Alexandroff nerve to be maximal on the same triangulated image (see, for example, Fig. 2.4). This
observation leads to an application of Theorem 2.6.2 in classifying triangulated digital images.

Let skA,skB be sets of boundary points on polygons whose vertexes are barycenters on an Alexandroff nerve in a triangulaged
digital image img (see, for example, the set of boundary points that includes a support point ⟨a⟩ in Fig. 2.5). Also let I be a
collection of triangulated digital images.

We can then derive a collection C(I) of classified triangulated digital images containing intersecting support points on
boundary sets on barycentric polygons on maximal Alexandroff nerves defined by

C(I)=

Images containing overlapping boundary sets
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
{img∈I ∶skA,skB∈ img & A

⩕

δ B}. �
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