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ABSTRACT

In this paper, we deal with a tubular surface in Euclidean 4-space E4. We study this surface with
respect to its Gauss map. We show that there is not any tubular surface having harmonic Gauss
map and we give the complete classification of tubular surface having pointwise 1-type Gauss map
in Euclidean 4-space E4.
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1. Introduction

The term of finite type immersions is presented by Chen, and then the same author writes some papers
related to this topic [11, 12]. If a submanifold M is given in Euclidean m−space Em, and if an isometric
immersion x : M → Em, also known as the position vector field of M , is written as a finite sum of eigenvectors
of the Laplacian ∆ of M for a constant map x0, and non-constant maps x1, x2, ..., xk, i.e.,

x = x0 +

k∑
i=1

xi,

then x is called as a finite type. Here, ∆x = λixi, λi ∈ R, 1 ≤ i ≤ k. If the numbers λis are different from each
other, the submanifold is called as k−type [10].

This term is extended to the Gauss map of M as

∆G = a(G+ C) (1.1)

for a real number a and a constant vector C by Chen and Piccinni in [13]. In this respect, a submanifold
satisfying (1.1) is said to have 1-type Gauss map G. Then many papers have been written about submanifolds
having 1-type Gauss map G [4, 5, 6, 23].

Afterwards, in (1.1), the real number a is replaced with a non-constant function f . That is, the equation (1.1)
becomes

∆G = f(G+ C). (1.2)

A submanifold satisfying (1.2) is said to have pointwise 1-type Gauss map G. If the function f is non-constant,
the pointwise 1-type Gauss map is called as proper. Also, if the vector C is zero, the pointwise 1-type Gauss
map is called as the first kind. Otherwise, second kind [14].

Surfaces satisfying (1.2) have been the subject of many studies such as [1, 15, 16, 17, 21, 22, 26, 27]. In recent
years, authors deal with the meridian surfaces with pointwise 1-type Gauss map in some spaces in [2, 3].

When a space curve γ (u), spine curve, is given, we can define a canal surface as the envelope of a one
parameter family of spheres whose centers are the points of the spine curve γ (u), and whose radii r(u) are
varying. If the radius function r(u) is constant, the canal surface is called a tubular (tube) or a pipe surface.
Actually, the notion of the canal surface is a generalization of an offset of a plane curve. In [18] and [19], some
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features of offset curves are discussed thoroughly. In [8], authors consider canal surfaces in E4. Also in [24, 25],
the authors studied canal surfaces with parallel transport frame in E4.

In the present study, we consider tubular surface with respect to its Gauss map in E4. We find that there is no
tubular surface having harmonic Gauss map and we give the complete classification of tubular surface with
pointwise 1-type Gauss map in Euclidean 4-space E4.

2. Basic Concepts

Given a regular surface M in E4 with the parametrization X(u, v) : (u, v) ∈ D ⊂ E2, at any point
p = X(u, v), the vectors Xu and Xv span the tangent space of M . Then the first fundamental form’s coefficients
are computed as

E = 〈Xu, Xu〉, F = 〈Xu, Xv〉 , G = 〈Xv, Xv.〉 (2.1)

Here, 〈, 〉 is the Euclidean inner product. For the regularity of the surface patch X(u, v), W 2 = EG− F 2 6= 0.
At any point p inM , there is a decomposition TpE4 = TpM ⊕ T⊥

p M , where T⊥
p M is the orthogonal component

of TpM in E4. Let ∇̃ be the Riemannian connection of E4. Then the induced Riemannian connection on M for
any given local vector fields X , Y tangent to M is defined as

∇XY = (∇̃XY )T ,

where T represents the tangential component.
Let χ(M) and χ⊥(M) be the spaces of the smooth vector fields tangent and normal to M , respectively. The

second fundamental map is defined as follows:

h : χ(M)× χ(M)→ χ⊥(M), h(X,Y ) = ∇̃XY −∇XY. (2.2)

This map is well-defined, symmetric and bilinear. The equation (2.2) is known as the Gauss equation.
For each X ∈ χ(M) and ξ ∈ χ⊥(M), the shape operator of M is defined as

A : χ⊥(M)× χ(M)→ χ(M)

AξX = −(∇̃Xξ)T = −∇̃Xξ +∇⊥
Xξ, (2.3)

where Aξ is the shape operator tensor, ∇⊥ is the normal connection belongs to χ⊥(M). For any X,Y ∈ χ(M),

〈AξX,Y 〉 = 〈h(X,Y ), ξ〉 (2.4)

holds. The operator Aξ is self-adjoint and bilinear. The equation (2.3) is known as the Weingarten equation [9].
Thus, the coefficients of the second fundamental forms of M can be defined as follows:

hkij = 〈h(Xi, Xj), Nk〉 , 1 ≤ k ≤ 2, (2.5)

where Xi and Xj are the orthonormal vectors of TpM [9].
The shape operator matrix corresponded to normal vector Nk of M is given

ANk
=

 hk11 hk12

hk12 hk22

 (2.6)

[7]. The Gaussian curvature and the mean curvature vector of M are given as

K = det (AN1
) + det (AN2

) , (2.7)

and
−→
H =

1

2
{iz (AN1)N1 + iz (AN2)N2} , (2.8)

respectively [9].
Now, let us recall some basic concepts of the Gauss map of a submanifold M in Em. The Grassmannian

manifold, G (n,m), consists of all oriented n-planes through the origin of Em and the vector space ∧nEm,
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obtained by the exterior product of n-vectors in Em, can be defined as an Euclidean space EN , where

N =

(
m
n

)
. In the light of this information, we can define the Gauss map. Let {e1, e2, ..., en, en+1, ..., em} be

an adapted orthonormal frame field in Em such that e1, e2, ..., en are tangent and en+1, ..., em are normal to M ,
respectively. The map G : M → G (n,m) ⊂ EN which is defined as G (p) = (e1 ∧ e2 ∧ ... ∧ en) (p) is called the
Gauss map of M . This is a smooth map and assigns a point p into an oriented n-plane in Em by the parallel
translation of the tangent space of M at p in Em.

For any real function f on M , the Laplacian ∆f of f is defined as

∆f = −
∑
i

(
∇̃ei∇̃eif − ∇̃∇ei

eif
)
.

3. Tubular Surfaces Having Pointwise 1-Type Gauss Map in E4

Let γ(u) = (f1(u), f2(u), f3(u), 0) be a curve parametrized by arclength. The corresponding Frenet
formulas have the following form:

γ′(u) = t(u),

t′(u) = κ(u)n(u),

n′(u) = −κ(u)t(u) + τ(u)b1(u), (3.1)
b1

′(u) = −τ(u)n(u),

b2
′(u) = 0,

where {t(u), n(u), b1(u), b2(u)} is the Frenet orthonormal basis of γ. The canal surface in E4 has the following
parametrization (see [20]):

M : X(u, v) = γ(u) + r(u) (b1(u) cos v + b2(u) sin v) . (3.2)

Now, we consider the surface M in (3.2) as a tubular surface. Then its parametrization is given by

M : X (u, v) = γ (u) + r (b1 (u) cos v + b2 (u) sin v) , (3.3)

where r is a real constant. For the vector fields X1, X2 are tangent, and N1, N2 are normal to M , we can choose
an orthonormal frame X1, X2, N1, N2 given as in the following:

X1 =
Xu

‖Xu‖
=
t− (rτ cos v)n√

E
,

X2 =
Xv

‖Xv‖
= − (sin v) b1 + (cos v) b2, (3.4)

N1 = (cos v) b1 + (sin v) b2,

N2 =
(rτ cos v) t+ n√

E
.

Here, E = 1 + r2τ2 cos2 v is the coefficient of the first fundamental form. Moreover, by differentiating (3.4)
covariantly with respect to X1 and X2, we obtain the following derivative formulas

∇̃X1X1 = a1X2 + a2N1 + a3N2,

∇̃X1
X2 = −a1X1 + a4N2,

∇̃X1
N1 = −a2X1 + a5N2,

∇̃X1
N2 = −a3X1 − a4X2 − a5N1, (3.5)

∇̃X2
X1 = a4N2,

∇̃X2
X2 = −1

r
N1,

∇̃X2
N1 =

1

r
X2,

∇̃X2
N2 = −a4X1,
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where

a1 (u, v) =
rτ2 cos v sin v

E
,

a2 (u, v) =
−rτ2 cos2 v

E
,

a3(u, v) =
κE − rτ ′ cos v

E
3
2

, (3.6)

a4 (u, v) =
τ sin v

E
,

a5 (u, v) =
−τ cos v

E

are differentiable functions.
From the equation (2.4), the coefficients of the second fundamental form become

hkij = 〈h (Xi, Xj) , Nk〉 = 〈ANk
Xi, Xj〉 , 1 ≤ i, j ≤ 2, k = 3, 4. (3.7)

By considering the equations (2.2), (3.4), and (3.7), we obtain the coefficients

h111 = a2, h
1
12 = 0, h122 = −1

r
, (3.8)

h211 = a3, h
2
12 = a4, h

2
22 = 0.

Lemma 3.1. Let M be a tubular surface given with the parametrization (3.3) in E4. Then the shape operator matrices are
given as follows:

AN1 =

[
a2 0
0 − 1

r

]
, AN2 =

[
a3 a4
a4 0

]
.

In the following corollary, we obtain the special cases of the results which have been given in [8] with a different calculation
method.

Corollary 3.1. [8] Let M be a tubular surface given with the parametrization (3.3) in E4. The Gaussian curvature, and
the mean curvature vector of M are respectively given by

K =
2τ2 cos2 v + r2τ4 cos4 v − τ2

E2
,

and
−→
H =

1

2

{(
−2r2τ2 cos2 v − 1

Er

)
N1 +

(
κE − rτ ′ cos v

E
3
2

)
N2

}
.

Proof. From the Lemma 3.1, using the equations (2.7), and (2.8), we get

K = det (AN1
) + det (AN2

)

=
τ2 cos2 v

E
− τ2 sin2 v

E2

=
2τ2 cos2 v + r2τ4 cos4 v − τ2

E2
,

and

−→
H =

1

2
{iz(AN1)N1 + iz (AN2)N2}

=
1

2

{(
−rτ2 cos2 v

E
− 1

r

)
N1 +

(
κE − rτ ′ cos v

E
3
2

)
N2

}
=

1

2

{(
−2r2τ2 cos2 v − 1

Er

)
N1 +

(
κE − rτ ′ cos v

E
3
2

)
N2

}
.
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The Gauss map of a given surface M in E4 is defined by G = X1 ∧X2. Using the equations (3.5), and a
straight-forward computation, we get the Laplacian of the Gauss map as follows:

∆G =

(
a22 + a23 + 2a24 +

1

r2

)
X1 ∧X2

+
(
−a1a2 + a4a5 −

a1
r

)
X1 ∧N1

+ (−X1 [a4]− a1a3)X1 ∧N2 (3.9)
+ (X1 [a2]− a3a5)X2 ∧N1

+ (X1 [a3] + a2a5 − 2a1a4 +X2 [a4])X2 ∧N2

+

(
−2a2a4 −

2a4
r

)
N1 ∧N2,

where Xi [aj ] (i = 1, 2; j = 2, 3, 4) is the directional derivative with respect to Xi.

Corollary 3.2. There is no tubular surface having harmonic Gauss map.

Proof. Assume that the surface M has harmonic Gauss map, i.e., ∆G = 0. From (3.9), we have a22 + a23 + 2a24 +
1
r2 = 0, a contradiction. Hence, there is no tubular surface having harmonic Gauss map.

Now, we assume that the tubular surface M given by the parametrization (3.3) has pointwise 1-type Gauss
map. From (1.2), and (3.9), the equations

f + f 〈C,X1 ∧X2〉 = a22 + a23 + 2a24 +
1

r2
,

f 〈C,X1 ∧N1〉 = −a1a2 + a4a5 −
a1
r
,

f 〈C,X1 ∧N2〉 = −X1 [a4]− a1a3,
f 〈C,X2 ∧N1〉 = X1 [a2]− a3a5,
f 〈C,X2 ∧N2〉 = X1 [a3] + a2a5 − 2a1a4 +X2 [a4] ,

f 〈C,N1 ∧N2〉 = −2a2a4 −
2a4
r

hold. Here, f is a non-zero smooth function. Using the equation (1.2), we can write

C = A1X1 ∧X2 +A2X1 ∧N1 +A3X1 ∧N2

+ A4X2 ∧N1 +A5X2 ∧N2 +A6N1 ∧N2, (3.10)

where

A1(u, v) =
a22 + a23 + 2a24 + 1

r2

f
− 1,

A2(u, v) =
−a1a2 + a4a5

f
− a1
fr
,

A3(u, v) =
−X1 [a4]− a1a3

f
, (3.11)

A4(u, v) =
X1 [a2]− a3a5

f
,

A5(u, v) =
X1 [a3] + a2a5 − 2a1a4 +X2 [a4]

f
,

A6(u, v) =
−2a2a4

f
− 2a4

fr

are differentiable functions.
In the following theorems, we give some results about tubular surfaces having pointwise 1-type Gauss

map of the first and the second kinds.
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Theorem 3.1. Let M be a tubular surface given with the parametrization (3.3) in E4. If M has pointwise 1-type Gauss
map of the first kind, then M is one of the following surfaces in E4:

(i) circular cylinder,
(ii) torus with the parametrization,

M : X (u, v) = (cosu, sinu, r cos v, r sin v) . (3.12)

Proof. Let M be a tubular surface given with the parametrization (3.3) in E4. We suppose that M has pointwise
1-type Gauss map of the first kind, i.e. C is zero. From the equations (3.10), and (3.11), we have−2a2a4r − 2a4 =
0, so a4 = 0, which implies τ = 0. Writing τ = 0 in the equations (3.6), we obtain a1 = a2 = a5 = 0, and a3 = κ.
Since the coefficient of X2 ∧N2 is zero, X1 [a3] = κ′ = 0.

Then there are two cases: κ = 0 or κ is constant. If κ = 0, γ is a straight line and M is circular cylinder. If κ is
constant, γ is a circle and M is a torus with the parametrization (3.12).

Corollary 3.3. If M has pointwise 1-type Gauss map of the first kind, then the function f is constant, and expressed as
f = κ2 + 1

r2 . In this case, the Gauss map is not proper.

Proof. Let M has pointwise 1-type Gauss map of the first kind. Since A1 is zero, from the equations (3.11),

a22 + a23 + 2a24 + 1
r2

f
− 1 = 0,

i.e., κ2 + 1
r2 = f . Since κ and r is constant, f is constant and so the Gauss map is not proper.

Theorem 3.2. Let M be a tubular surface given with the parametrization (3.3) in E4. If M has pointwise 1-type Gauss
map of the second kind,

X1 [A1]− a4A3 + a2A4 + a3A5 = 0,

X1 [A2]− a5A3 − a1A4 + a3A6 = 0,

X1 [A3] + a4A1 + a5A2 − a1A5 − a2A6 = 0, (3.13)
X1 [A4]− a2A1 + a1A2 − a5A5 + a4A6 = 0,

X1 [A5]− a3A1 + a1A3 + a5A4 = 0,

X1 [A6]− a3A2 + a2A3 − a4A4 = 0,

and

X2 [A1] + a4A5 +
A2

r
= 0,

X2 [A2] + a4A6 −
A1

r
= 0,

X2 [A3] = 0, (3.14)
X2 [A4] = 0,

X2 [A5]− a4A1 +
A6

r
= 0,

X2 [A6]− a4A2 −
A5

r
= 0

hold, where Xi [Aj ] (i = 1, 2; j = 1, ..., 6) is the directional derivative with respect to Xi.

Proof. Let M has pointwise 1-type Gauss map of the second kind, i.e., C is constant. Using (3.5), and (3.10), we
get

∇̃X1
C = (X1 [A1]− a4A3 + a2A4 + a3A5)X1 ∧X2

+ (X1 [A2]− a5A3 − a1A4 + a3A6)X1 ∧N1

+ (X1 [A3] + a4A1 + a5A2 − a1A5 − a2A6)X1 ∧N2

+ (X1 [A4]− a2A1 + a1A2 − a5A5 + a4A6)X2 ∧N1

+ (X1 [A5]− a3A1 + a1A3 + a5A4)X2 ∧N2

+ (X1 [A6]− a3A2 + a2A3 − a4A4)N1 ∧N2,
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and

∇̃X2C =

(
X2 [A1] + a4A5 +

A2

r

)
X1 ∧X2

+

(
X2 [A2] + a4A6 −

A1

r

)
X1 ∧N1

+X2 [A3]X1 ∧N2

+X2 [A4]X2 ∧N1

+

(
X2 [A5]− a4A1 +

A6

r

)
X2 ∧N2

+

(
X2 [A6]− a4A2 −

A5

r

)
N1 ∧N2.

Since C is constant, then the coefficient of the vectors ∇̃X1
C and ∇̃X2

C must vanish. Thus, we have the
equations (3.13) and (3.14) which completes the proof.
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[25] Kişi, İ. and Öztürk, G., A new approach to canal surface with parallel transport frame. Int. J. Geom. Methods Mod. Phys. 14 (2017), 1750026-

1-1750026-16.
[26] Niang, A., Rotation surfaces with 1-type Gauss map. Bull. Korean Math. Soc. 42 (2005), 23-27.
[27] Yoon, D. W., On the Gauss map of translation surfaces in Minkowski 3-spaces. Taiwanese J. Math. 6 (2002), 389-398.

www.iejgeo.com 208

http://www.iej.geo.com
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