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ABSTRACT

LetWn be the class ofC∞ complete simply connected n−dimensional manifolds without conjugate
points. The hyperbolic space as well as Euclidean space are good examples of such manifolds. Let
W ∈ Wn and let A be a subset of W . This article aims at characterization and building convex and
starshaped sets in this class from inside. For example, it is proven that, for a compact starshaped set,
the convex kernel is the intersection of stars of extreme points only. Also, if a closed unbounded
convex set A does not contain a totally geodesic hypersurface and its boundary has no geodesic
ray, then A is the convex hull of its extreme points. This result is a refinement of the well-known
Karein-Millman theorem.
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1. An Introduction

Let M be a C∞ complete Riemannian manifold. A vector field J along a geodesic α is called a Jacobi vector
field if

D2
TJ + < (α′, J)α′ = 0,

where D is the covariant derivative and < is the curvature tensor. Two points on a geodesic α are said to
be conjugate to each other if there is a non-trivial Jacobi vector field along α that vanishes at both of them.
A geodesic α has no conjugate points if every Jacobi field along α vanishes at most once. A C∞ complete
Riemannian manifold M is called a manifold without conjugate points if every geodesic of M has no conjugate
points. In this case, the exponential map is a covering map at every point of M . Moreover, if M is simply
connected, then expp is a diffeomorphism and M has the property that for every two distinct points p and
q in M , there is a unique geodesic joining them. Let Wn be the class of C∞ complete simply connected
n−dimensional Riemannian manifolds without conjugate points. The hyperbolic spaceHn, the n−dimensional
Euclidean space En and all manifolds with non-positive curvature are good examples of such manifolds. We
refer to [6, 7, 8, 9, 10, 11, 12, 17, 18, 20, 21] and references therein for more details and examples of these
manifolds.

It is very nice to study the boundary of a closed set A inW ∈ Wn and get global properties of A. For instance,
the Krein-Milman theorem [2, 14, 15, 16, 19, 22] in the n−dimensional Euclidean space En asserts that every
compact convex set is the convex hull of its extreme points i.e. given a compact convex set A ⊂ En, one only
needs its extreme points E (A) to recover the set shape.

The aim of this paper is to characterize convex and starshaped sets in manifolds without conjugate points
using their extreme points. Sufficient conditions for a set A in W ∈ Wn to be convex, totally geodesic, and
starshaped are considered. A generalization of Krein-Milman theorem to the setting of closed unbounded
convex sets is given. It is clear that the convex kernel of a starshaped set A ⊂W , W ∈ W2, is the intersection
of stars of all points of A. In this work, it is proven that, for a compact starshaped set, the convex kernel is
the intersection of stars of extreme points only. Moreover, the original starshaped condition is replaced by a
more general condition where the intersection of the stars of certain extreme points is not empty. Thus we get
a characterization of starshaped sets inW2.
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2. Results

Let W ∈ Wn and let A be a non-empty subset of W . The geodesic segment joining two points p and q is
denoted by [pq]. If p is removed we write (pq]. The geodesic ray with vertex at p and passing through q is
denoted by R (pq) while the geodesic passing through p and q is denoted by G (pq). We say that p sees q via A
if [pq] ⊂ A. The set of all points of A that p sees via A is called the star of A at p and is denoted by Ap. A is a
starshaped set if there is a point p ∈ A that sees every point in A i.e. Ap = A. The set of all such points p is called
the kernel of A and is denoted by kerA. A is convex if kerA = A. A point p ∈ A is called an extreme point of A
if p is not a relative interior point of any segment in A. The set of all extreme points of A is called the profile
of A and is denoted by E (A). Note that, the definition of extreme points is introduced here to a non-convex
set so it is somewhat different form the classical one. The convex hull, C (A), of A is the intersection of all
convex subsets of En that contain A. Three concepts of convex sets were introduced to complete Riemannian
manifolds in [1]. The three concepts coincide in complete simply connected Riemannian manifolds without
conjugate points since geodesics of these manifolds are global minimizers.[3, 4, 5, 13, 21].

We begin with the following important lemmas.

Lemma 2.1. Let W ∈ Wn and let A be a closed subset of W . If a and b are points of A and [ab] * A, then there are two
points x, y ∈ ∂A ∩ [ab] such that (xy) ∩A = ϕ.

Lemma 2.2. Let W ∈ Wn and let A be a compact subset of W . Then A has at least one extreme point.

Proof. Let p be in W\A. Define the real-valued continuous function f on A by f (x) = d (p, x) , x ∈ A. Since A is
compact, f attains its maximum value at a point y ∈ A. Thus A is a subset of the closed disc B (p, r) with centre
at p and radius r = d (p, y) defined by

B (p, r) = {x ∈W : d (p, x) ≤ r}

The point y is an extreme point of A since any geodesic segment containing p in its relative interior cuts the
exterior of A.

Theorem 2.1. Let W ∈ W2 and let A be a compact starshaped subset of W . Then

kerA =
⋂

x∈E(A)

Ax

Proof. Let B =
⋂

x∈E(A)

Ax. By the definition of the kernel of a starshaped set we have

kerA =
⋂
x∈A

Ax ⊂
⋂

x∈E(A)

Ax = B

So, we need only to show that B ⊂ A. Let x ∈ B\ kerA. Then there is a point y ∈ A such that [xy] * A. By
Lemma 2.1, we find two points x, y in ∂A ∩ [xy] such that (x y) ∩A = φ. Let z ∈ kerA, then z sees y via A
and hence R (zy) ∩A is a closed geodesic segment. Let q ∈ ∂A such that R (zy) ∩A = [zq]. Suppose that q 6= y.
Since x ∈ E (A), q sees x via A. Then z sees the geodesic segment [xq] via A and consequently z sees [xy] via
A which is a contradiction and q is not an extreme point i.e. there is a geodesic segment [ab] ⊂ A such that
p ∈ (ab). It is clear from the choice of q that (ab) * R (zy). Since z ∈ kerA, z sees (ab) via A. Thus we get two
points a = [za] ∩ [xy] and b = [zb] ∩ [xy] such that y ∈

[
ab
]

which contradicts the choice of y. So, q = y. y is not
an extreme point otherwise y sees x. Therefore, we get a geodesic segment [rs] such that y ∈ (rs) ⊂ A. The
geodesic G (rs) separates the points x and z otherwise, as we do above, z sees (rs) via A and we get a point
r = [zr] ∩ [xy] ∈ A that contradicts the choice of y. Let H1 be the closed half space generated by G (xy) that does
not contain z and let H2 be the half space generated by G (zy) that does not contain x. Let D = A ∩H1 ∩H2. D
has a non-empty intersection with the geodesic segment (rs) i.e. D has points close to y. Since D is compact,
D has an extreme point p ∈ ∂D by Lemma 2.2. The boundary points of D are either boundary points of A or
points of G (xy). Thus p is an extreme point of A i.e. p sees x via A. Since z ∈ kerA, z sees the geodesic segment
[px] via A and consequently [xy] ⊂ A which is a contradiction and the point x does not exist.

Theorem 2.2. Let W ∈ W2 and let A be a compact subset of W . Suppose that B =
⋂

x∈E(A)

Ax 6= ϕ. Then kerA = B if

and only if for every x /∈ A, there is a geodesic ray with vertex at x having a non-empty intersection with A.
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Proof. Suppose that kerA 6= B i.e. B * kerA. Let y ∈ B\ kerA. Thus there is a point z ∈ A such that [yz] * A.
Then by Lemma 2.1, there are two pints y and z in ∂A ∩ [yz] such that (yz) ∩A = φ. Let p ∈ (yz), then we get
a point p /∈ A such that the geodesic ray R (pp) has a non-empty intersection with A. Rotate the ray R (pp) to
touch ∂A such that p is fixed and the angle between [pp] and [pz] decreases. The intersection of the new geodesic
ray and A has an extreme point x of A. Thus y sees x via A and [xy] cuts the geodesic ray R (pp) in a point a
which is a contradiction otherwise a ∈ [yx] which is also a contradiction. Thus kerA = B.

To prove the second implication, let p /∈ A and q ∈ kerA. Consider the geodesic ray R (qp) passing through p.
The geodesic ray R (qp) \ [qp) has a non-empty intersection with A otherwise q /∈ kerA.

Corollary 2.1. Let W ∈ W2 and let A be a compact subset of W . Then A is starshaped if and only if
⋂

x∈E(A)

Ax 6= φ

and for every x /∈ A, there is a geodesic ray with vertex at x having a non-empty intersection with A. Moreover,
kerA =

⋂
x∈E(A)

Ax.

Theorem 2.3. Let W ∈ Wn and let A be a non-empty closed subset of W . If ∂A is convex, then A is a convex set.
Moreover, if A has a non-empty interior, then A is unbounded, ∂A is totally geodesic and Ac is also convex.

Proof. Suppose thatA is not convex i.e. we get two points p and q inA such that (pq) is not contained inA. Since
A is closed, we find two points r, s in ∂A such that (rs) ∩A = φ which is a contradiction and so A is convex.

To show that A is unbounded, let p ∈ int (A). Suppose that A is bounded and so we find a real number ε such
that A is contained in the closed ballB (p, ε) of radius ε and center at p. Let [ab] be any chord ofB (p, ε) that runs
through p. Since A and [ab] are both closed and convex sets, we find a′ and b′ in ∂A such that A ∩ [ab] = [a′b′]
which is a contradiction since [a′b′] cuts the interior of A. Therefore A is unbounded.

Assume that ∂A is not totally geodesic i.e. there are two points a and b in ∂A such that the line G (ab) passing
through a and b is not contained in ∂A. Since ∂A and G (ab) are closed convex sets, there are a′ and b′ in ∂A
such that

[ab] ⊂ ∂A ∩G (ab) = [a′b′]

Let p ∈ G (ab) \ [a′b′] (i.e. p ∈ int (A) ∩G (ab) or p ∈ Ac ∩G (ab)) and assume that p ∈ R (b′a′). If p ∈ int(A) ∩
G (ab), then the geodesic convex cone C

(
b,B (p, ε)

)
with vertex b and base B (p, ε) for a sufficiently small ε

shows that a is an interior point which is a contradiction see Figure 1.

p

a'a b 'b

p

b

a 'a

'b

Figure 1. Two cases for the point p

Now we take p ∈ Ac ∩G (ab). Let q be a point of int (A). The sets [pq] andA are closed convex sets and so there
is a point q′ ∈ ∂A such that [pq] ∩A = [q′q]. This implies that the intersectionB = ∂A ∩ C

(
p,B (q, ε)

)
, for a small

ε, is a non-empty closed convex set since ∂A is convex. Therefore, B is a convex cross section of C
(
p,B (q, ε)

)
that determines a hypersurface H whose intersection with C

(
p,B (q, ε)

)
is B. At least one of the points a and

b(say a) does not lie in H otherwise the line G (ab) lies in H which contradicts the fact that p is the vertex of
the convex cone C

(
p,B (q, ε)

)
. Now, the convex cone C (a,B) has dimension n i.e. C (a,B) has interior points

which is a contradiction since both a and B are in ∂A see Figure 1. This contradiction completes the proof.

Corollary 2.2. Let W ∈ Wn and let A be a non-empty open subset of W and int(A) = A. If ∂A is convex, then A is
unbounded convex set and ∂A is totally geodesic.
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Proof. It is clear that A satisfies the hypothesis of Theorem 2.3. Therefore ∂A = ∂A is affine and A is convex and
unbounded. Note that if A is bounded, then A is also bounded and equivalently, A is unbounded implies that
A is unbounded. Since the interior of a closed convex set is also convex, the convexity of A implies that A is
convex.

Theorem 2.4. Let W ∈ Wn and let A be a non-empty closed subset of W. If (pq) ⊂ int (A) for every pair of boundary
points p, q of A, then A is strictly convex.

Proof. It is enough to prove that A is convex since the strict convexity of A is direct. Now, we assume that A is
not convex i.e. there are p, q in A such that [pq] is not contained in A. Since A is closed, there are p′, q′ in ∂A such
that (p′q′) ∩A = φ which is a contradiction and A is convex.

Corollary 2.3. Let W ∈ Wn and let A be a non-empty closed subset of W . A is convex if and only if (pq) ⊂ ∂A or
(pq) ⊂ int (A) for each pair of boundary points p, q.

Since the interior of a closed convex set is again convex, this result is still true for open sets such that
int
(
A
)
= A. The following example shows that the closeness is important. LetA be a subset ofE2 ∈ W2 defined

by A = {(x, y) : 0 ≺ x ≺ 1, 0 ≺ y ≺ 1} ∪ {(0, 0) , (1, 1) , (1, 0) , (0, 1)} . A is neither closed nor open and (pq) ⊂ ∂A
or (pq) ⊂ int (A) for each pair of boundary points p, q but A is not convex.

Proposition 2.1. Let W ∈ Wn and let A be a non-empty closed subset of W . If there is a point p ∈ A that sees ∂A via
A, then A is starshaped.

Proof. We claim that p ∈ kerA. Suppose that p is not in kerA i.e. there is a point q ∈ A such that [pq] is not
contained in A. Since A is closed, there are two points p′ and q′ in ∂A ∩ [pq] such that (p′q′) ∩A = φ. Thus p does
not see neither p′ nor q′. This contradicts the fact that p sees ∂A via A and the proof is complete.

It is clear that the converse of this result is also true. Thus we can say that this proposition is a characterization
of the kernel of the closed starshaped sets. This means that the kernel of a closed starshaped set A is only the
points of A that see ∂A. The following corollary is direct.

Corollary 2.4. Let W ∈ Wn and let A be a non-empty closed convex subset of W . If ∂A is starshaped, then ker (∂A) ⊂
kerA.

In the light of the above results, one can test the convexity and starshapedness of a closed set A using its
boundary points. In the next part a minimal subset of these boundary points will build A up from inside.

Theorem 2.5. Let W ∈ Wn and let A be a non-empty closed convex subset of W . If A has no hyperplane, then
A = C (∂A).

Proof. Since A is convex, A is connected. We will prove that C (∂A) is open and closed in the relative topology
on A and hence A = C (∂A).

First, we prove that C (∂A) is open in A. Let p ∈ C (∂A) ⊂ A. We have the following cases:

1. p ∈ C (∂A) ∩ int (A): Let Bδ = B (p, δ) ∩A. In this case there exists a real number δ such that B (p, δ) ⊂ A
and so Bδ = B (p, δ). Suppose that p is not an interior point of C(∂A) i.e. for any δ, Bδ is not contained
in C (∂A) and so p is a boundary point of C(∂A). Therefore, there is a supporting hyperplane H1 of
C(∂A)(the closure of C(∂A) is a closed convex subset of A) at p and C(∂A) is contained in a closed half-
space with boundary H1. Let x be any point of B (p, δ) that lies on the other side of H1 and let H2 be
a parallel hyperplane to H1 at x. Since A does not contain a hyperplane, we find a point y ∈ H2 \A.
The line segment [xy] cuts ∂A at a point z ∈ H2 which contradicts the fact that H1 supports C (∂A). This
contradiction implies that p is an interior point of C (∂A) in the relative topology of A.

2. p ∈ C (∂A) ∩ ∂A: in this case, B (p, δ) has a non-empty intersection with A for any real number δ. Let
Bδ = B (p, δ) ∩A. Suppose that p is not an interior point of C (∂A). Then, for any δ, the set Bδ has a point
x which is not in C (∂A). But C (∂A) is closed convex set and x /∈ C (∂A), and so we get a hyperplane H
passing through x that separates x and C (∂A). Since A does not have a hyperplane, there is a point y in
H \A where [xy] cuts ∂A. Thus H cuts ∂A and so H cuts C (∂A) which is a contradiction and so p is an
interior point of C (∂A) in the relative topology on A.
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This discussion above implies that C (∂A) is an open set in A. Now, we want to prove that C (∂A) is closed in
A. Let p be a boundary point of C (∂A). If p ∈ ∂A, then p ∈ C (∂A) . Let p ∈ intA, then there is a small positive
real number δ such that B (p, δ) ⊂ A. Since p is a boundary point of C (∂A), B (p, δ) 6= B (p, δ) ∩ C (∂A) 6= φ.
Therefore, we find a point x in B (p, δ) which is not in C (∂A). Since C (∂A) is a closed convex set, we get a
hyperplane H passing through x and does not intersect C (∂A). But A does not have a hyperplane and so H
cuts ∂A which is a contradiction and p ∈ C (∂A) i.e. C (∂A) is closed in the relative topology on A and the proof
is complete.

In general, sets need not have extreme points. The following proposition gives a sufficient condition for the
existence of extreme points.

Proposition 2.2. Let W ∈ Wn and let A be a non-empty closed convex subset of W . A contains at least one extreme
point if and only if A has no geodesic.

Proof. Let us assume that A has a geodesic l. Suppose that A has an extreme point p. It is clear that p /∈ l. Let B
be the closed convex hull of p and l. B is a subset of A since A is a closed convex set containing both p and l. It
is clear that B contains a line passing through p and parallel to l i.e. either p is not an extreme point or the line
l does not exist.

Lemma 2.3. Let W ∈ Wn and let A be a non-empty closed convex subset of W . If H is a supporting totally geodesic
hypersurface of A, then E (H ∩A) ⊂ E (A)

Proof. Let p be an extreme point of H ∩A. Suppose that p /∈ E (A) i.e. there are x, y in ∂A such that p ∈ (xy) .
The hypersurface H supports A at p and so [xy] ⊂ H . This implies that p ∈ [xy] ⊂ H ∩A which contradicts the
fact that p is an extreme point of H ∩A. This contradiction completes the proof.

The minimal subset of a compact convex set A which generates A is is its extreme points. Our next main
theorem shows that this property is more general.

Theorem 2.6. LetW ∈ Wn and letA be a non-empty closed convex subset ofW . IfA has no hyperplane and its boundary
has no ray, then A = C (E (A)).

Proof. To prove that A = C (E (A)), it suffices to prove that ∂A ⊂ C (E (A)) and by Theorem 2.5, we get that
A = C (∂A) ⊂ C (E (A)) ⊂ A and hence A = C (E (A)). Let p ∈ ∂A. If p is an extreme point, then p ∈ E (A) ⊂
C (E (A)). Now suppose that p is not an extreme point i.e. there are x, y in ∂A such that p ∈ (xy). Since A is a
closed convex set, there is a supporting totally geodesic hypersurface H of A at p. It is clear that the set H ∩A is
a non-empty closed convex subset of ∂A. Since ∂A has no ray, the set H ∩A is bounded i.e. H ∩A is a compact
convex set. Therefore,H ∩A = C (E (H ∩A)). ButE (H ∩A) ⊂ E (A) and so p ∈ C (E (H ∩A)) ⊂ C (E (A)) and
the proof is complete.
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