Convex and Starshaped Sets in Manifolds Without Conjugate Points

Sameh Shenawy*

(Communicated by Yusuf Yayl)

Abstract

Let \mathcal{W}^{n} be the class of C^{∞} complete simply connected n-dimensional manifolds without conjugate points. The hyperbolic space as well as Euclidean space are good examples of such manifolds. Let $W \in \mathcal{W}^{n}$ and let A be a subset of W. This article aims at characterization and building convex and starshaped sets in this class from inside. For example, it is proven that, for a compact starshaped set, the convex kernel is the intersection of stars of extreme points only. Also, if a closed unbounded convex set A does not contain a totally geodesic hypersurface and its boundary has no geodesic ray, then A is the convex hull of its extreme points. This result is a refinement of the well-known Karein-Millman theorem.

Keywords: Manifolds without conjugate points; hyperbolic space; convex sets; stars; starshaped sets; extreme points; kernel.
AMS Subject Classification (2010): Primary: 52A10; 52A30; Secondary: 53B20.

1. An Introduction

Let M be a C^{∞} complete Riemannian manifold. A vector field J along a geodesic α is called a Jacobi vector field if

$$
D_{T}^{2} J+\Re\left(\alpha^{\prime}, J\right) \alpha^{\prime}=0
$$

where D is the covariant derivative and \Re is the curvature tensor. Two points on a geodesic α are said to be conjugate to each other if there is a non-trivial Jacobi vector field along α that vanishes at both of them. A geodesic α has no conjugate points if every Jacobi field along α vanishes at most once. A C^{∞} complete Riemannian manifold M is called a manifold without conjugate points if every geodesic of M has no conjugate points. In this case, the exponential map is a covering map at every point of M. Moreover, if M is simply connected, then $\exp _{p}$ is a diffeomorphism and M has the property that for every two distinct points p and q in M, there is a unique geodesic joining them. Let \mathcal{W}^{n} be the class of C^{∞} complete simply connected n-dimensional Riemannian manifolds without conjugate points. The hyperbolic space H^{n}, the n-dimensional Euclidean space E^{n} and all manifolds with non-positive curvature are good examples of such manifolds. We refer to $[6,7,8,9,10,11,12,17,18,20,21]$ and references therein for more details and examples of these manifolds.

It is very nice to study the boundary of a closed set A in $W \in \mathcal{W}^{n}$ and get global properties of A. For instance, the Krein-Milman theorem $[2,14,15,16,19,22]$ in the n-dimensional Euclidean space E^{n} asserts that every compact convex set is the convex hull of its extreme points i.e. given a compact convex set $A \subset E^{n}$, one only needs its extreme points $E(A)$ to recover the set shape.

The aim of this paper is to characterize convex and starshaped sets in manifolds without conjugate points using their extreme points. Sufficient conditions for a set A in $W \in \mathcal{W}^{n}$ to be convex, totally geodesic, and starshaped are considered. A generalization of Krein-Milman theorem to the setting of closed unbounded convex sets is given. It is clear that the convex kernel of a starshaped set $A \subset W, W \in \mathcal{W}^{2}$, is the intersection of stars of all points of A. In this work, it is proven that, for a compact starshaped set, the convex kernel is the intersection of stars of extreme points only. Moreover, the original starshaped condition is replaced by a more general condition where the intersection of the stars of certain extreme points is not empty. Thus we get a characterization of starshaped sets in \mathcal{W}^{2}.

[^0]
2. Results

Let $W \in \mathcal{W}^{n}$ and let A be a non-empty subset of W. The geodesic segment joining two points p and q is denoted by $[p q]$. If p is removed we write $(p q]$. The geodesic ray with vertex at p and passing through q is denoted by $R(p q)$ while the geodesic passing through p and q is denoted by $G(p q)$. We say that p sees q via A if $[p q] \subset A$. The set of all points of A that p sees via A is called the star of A at p and is denoted by $A_{p} . A$ is a starshaped set if there is a point $p \in A$ that sees every point in A i.e. $A_{p}=A$. The set of all such points p is called the kernel of A and is denoted by ker $A . A$ is convex if ker $A=A$. A point $p \in A$ is called an extreme point of A if p is not a relative interior point of any segment in A. The set of all extreme points of A is called the profile of A and is denoted by $E(A)$. Note that, the definition of extreme points is introduced here to a non-convex set so it is somewhat different form the classical one. The convex hull, $C(A)$, of A is the intersection of all convex subsets of E^{n} that contain A. Three concepts of convex sets were introduced to complete Riemannian manifolds in [1]. The three concepts coincide in complete simply connected Riemannian manifolds without conjugate points since geodesics of these manifolds are global minimizers.[3, 4, 5, 13, 21].

We begin with the following important lemmas.
Lemma 2.1. Let $W \in \mathcal{W}^{n}$ and let A be a closed subset of W. If a and b are points of A and $[a b] \nsubseteq A$, then there are two points $x, y \in \partial A \cap[a b]$ such that $(x y) \cap A=\varphi$.

Lemma 2.2. Let $W \in \mathcal{W}^{n}$ and let A be a compact subset of W. Then A has at least one extreme point.
Proof. Let p be in $W \backslash A$. Define the real-valued continuous function f on A by $f(x)=d(p, x), x \in A$. Since A is compact, f attains its maximum value at a point $y \in A$. Thus A is a subset of the closed disc $\bar{B}(p, r)$ with centre at p and radius $r=d(p, y)$ defined by

$$
\bar{B}(p, r)=\{x \in W: d(p, x) \leq r\}
$$

The point y is an extreme point of A since any geodesic segment containing p in its relative interior cuts the exterior of A.

Theorem 2.1. Let $W \in \mathcal{W}^{2}$ and let A be a compact starshaped subset of W. Then

$$
\operatorname{ker} A=\bigcap_{x \in E(A)} A_{x}
$$

Proof. Let $B=\bigcap_{x \in E(A)} A_{x}$. By the definition of the kernel of a starshaped set we have

$$
\operatorname{ker} A=\bigcap_{x \in A} A_{x} \subset \bigcap_{x \in E(A)} A_{x}=B
$$

So, we need only to show that $B \subset A$. Let $x \in B \backslash \operatorname{ker} A$. Then there is a point $y \in A$ such that $[x y] \nsubseteq A$. By Lemma 2.1, we find two points \bar{x}, \bar{y} in $\partial A \cap[x y]$ such that $(\bar{x} \bar{y}) \cap A=\phi$. Let $z \in \operatorname{ker} A$, then z sees \bar{y} via A and hence $R(z \bar{y}) \cap A$ is a closed geodesic segment. Let $q \in \partial A$ such that $R(z \bar{y}) \cap A=[z q]$. Suppose that $q \neq \bar{y}$. Since $x \in E(A), q$ sees x via A. Then z sees the geodesic segment $[x q]$ via A and consequently z sees $[x \bar{y}]$ via A which is a contradiction and q is not an extreme point i.e. there is a geodesic segment $[a b] \subset A$ such that $p \in(a b)$. It is clear from the choice of q that $(a b) \nsubseteq R(z \bar{y})$. Since $z \in \operatorname{ker} A, z$ sees $(a b)$ via A. Thus we get two points $\bar{a}=[z a] \cap[x y]$ and $\bar{b}=[z b] \cap[x y]$ such that $\bar{y} \in[\bar{a} \bar{b}]$ which contradicts the choice of \bar{y}. So, $q=\bar{y}$. \bar{y} is not an extreme point otherwise \bar{y} sees x. Therefore, we get a geodesic segment $[r s]$ such that $\bar{y} \in(r s) \subset A$. The geodesic $G(r s)$ separates the points x and z otherwise, as we do above, z sees $(r s)$ via A and we get a point $\bar{r}=[z r] \cap[x y] \in A$ that contradicts the choice of \bar{y}. Let H_{1} be the closed half space generated by $G(x \bar{y})$ that does not contain z and let H_{2} be the half space generated by $G(z \bar{y})$ that does not contain x. Let $D=A \cap H_{1} \cap H_{2}$. D has a non-empty intersection with the geodesic segment $(r s)$ i.e. D has points close to \bar{y}. Since D is compact, D has an extreme point $p \in \partial D$ by Lemma 2.2. The boundary points of D are either boundary points of A or points of $G(x \bar{y})$. Thus p is an extreme point of A i.e. p sees x via A. Since $z \in$ ker A, z sees the geodesic segment [$p x]$ via A and consequently $[x \bar{y}] \subset A$ which is a contradiction and the point x does not exist.

Theorem 2.2. Let $W \in \mathcal{W}^{2}$ and let A be a compact subset of W. Suppose that $B=\bigcap_{x \in E(A)} A_{x} \neq \varphi$. Then ker $A=B$ if and only if for every $x \notin A$, there is a geodesic ray with vertex at x having a non-empty intersection with A.

Proof. Suppose that ker $A \neq B$ i.e. $B \nsubseteq \operatorname{ker} A$. Let $y \in B \backslash \operatorname{ker} A$. Thus there is a point $z \in A$ such that $[y z] \nsubseteq A$. Then by Lemma 2.1, there are two pints \bar{y} and \bar{z} in $\partial A \cap[y z]$ such that $(\overline{y z}) \cap A=\phi$. Let $p \in(\overline{y z})$, then we get a point $\bar{p} \notin A$ such that the geodesic ray $R(p \bar{p})$ has a non-empty intersection with A. Rotate the ray $R(p \bar{p})$ to touch ∂A such that p is fixed and the angle between $[p \bar{p}]$ and $[p z]$ decreases. The intersection of the new geodesic ray and A has an extreme point x of A. Thus y sees x via A and $[x y]$ cuts the geodesic ray $R(p \bar{p})$ in a point a which is a contradiction otherwise $a \in[y x]$ which is also a contradiction. Thus ker $A=B$.

To prove the second implication, let $p \notin A$ and $q \in \operatorname{ker} A$. Consider the geodesic ray $R(q p)$ passing through p. The geodesic ray $R(q p) \backslash[q p)$ has a non-empty intersection with A otherwise $q \notin \operatorname{ker} A$.

Corollary 2.1. Let $W \in \mathcal{W}^{2}$ and let A be a compact subset of W. Then A is starshaped if and only if $\bigcap_{x \in E} A_{x} \neq \phi$ $x \in E(A)$ and for every $x \notin A$, there is a geodesic ray with vertex at x having a non-empty intersection with A. Moreover, $\operatorname{ker} A=\bigcap_{x \in E(A)} A_{x}$.

Theorem 2.3. Let $W \in \mathcal{W}^{n}$ and let A be a non-empty closed subset of W. If ∂A is convex, then A is a convex set. Moreover, if A has a non-empty interior, then A is unbounded, ∂A is totally geodesic and A^{c} is also convex.

Proof. Suppose that A is not convex i.e. we get two points p and q in A such that $(p q)$ is not contained in A. Since A is closed, we find two points r, s in ∂A such that $(r s) \cap A=\phi$ which is a contradiction and so A is convex.

To show that A is unbounded, let $p \in \operatorname{int}(A)$. Suppose that A is bounded and so we find a real number ε such that A is contained in the closed ball $\bar{B}(p, \varepsilon)$ of radius ε and center at p. Let $[a b]$ be any chord of $\bar{B}(p, \varepsilon)$ that runs through p. Since A and $[a b]$ are both closed and convex sets, we find a^{\prime} and b^{\prime} in ∂A such that $A \cap[a b]=\left[a^{\prime} b^{\prime}\right]$ which is a contradiction since $\left[a^{\prime} b^{\prime}\right]$ cuts the interior of A. Therefore A is unbounded.

Assume that ∂A is not totally geodesic i.e. there are two points a and b in ∂A such that the line $G(a b)$ passing through a and b is not contained in ∂A. Since ∂A and $G(a b)$ are closed convex sets, there are a^{\prime} and b^{\prime} in ∂A such that

$$
[a b] \subset \partial A \cap G(a b)=\left[a^{\prime} b^{\prime}\right]
$$

Let $p \in G(a b) \backslash\left[a^{\prime} b^{\prime}\right]$ (i.e. $p \in \operatorname{int}(A) \cap G(a b)$ or $p \in A^{c} \cap G(a b)$) and assume that $p \in R\left(b^{\prime} a^{\prime}\right)$. If $p \in \operatorname{int}(A) \cap$ $G(a b)$, then the geodesic convex cone $C(b, \bar{B}(p, \varepsilon))$ with vertex b and base $\bar{B}(p, \varepsilon)$ for a sufficiently small ε shows that a is an interior point which is a contradiction see Figure 1.

Figure 1. Two cases for the point p
Now we take $p \in A^{c} \cap G(a b)$. Let q be a point of $\operatorname{int}(A)$. The sets $[p q]$ and A are closed convex sets and so there is a point $q^{\prime} \in \partial A$ such that $[p q] \cap A=\left[q^{\prime} q\right]$. This implies that the intersection $B=\partial A \cap C(p, \bar{B}(q, \epsilon))$, for a small ϵ, is a non-empty closed convex set since ∂A is convex. Therefore, B is a convex cross section of $C(p, \bar{B}(q, \epsilon))$ that determines a hypersurface H whose intersection with $C(p, \bar{B}(q, \epsilon))$ is B. At least one of the points a and b (say a) does not lie in H otherwise the line $G(a b)$ lies in H which contradicts the fact that p is the vertex of the convex cone $C(p, \bar{B}(q, \epsilon))$. Now, the convex cone $C(a, B)$ has dimension n i.e. $C(a, B)$ has interior points which is a contradiction since both a and B are in ∂A see Figure 1. This contradiction completes the proof.

Corollary 2.2. Let $W \in \mathcal{W}^{n}$ and let A be a non-empty open subset of W and $\operatorname{int}(\bar{A})=A$. If ∂A is convex, then A is unbounded convex set and ∂A is totally geodesic.

Proof. It is clear that \bar{A} satisfies the hypothesis of Theorem 2.3. Therefore $\partial \bar{A}=\partial A$ is affine and \bar{A} is convex and unbounded. Note that if A is bounded, then \bar{A} is also bounded and equivalently, \bar{A} is unbounded implies that A is unbounded. Since the interior of a closed convex set is also convex, the convexity of \bar{A} implies that A is convex.

Theorem 2.4. Let $W \in \mathcal{W}^{n}$ and let A be a non-empty closed subset of W. If $(p q) \subset \operatorname{int}(A)$ for every pair of boundary points p, q of A, then A is strictly convex.

Proof. It is enough to prove that A is convex since the strict convexity of A is direct. Now, we assume that A is not convex i.e. there are p, q in A such that $[p q]$ is not contained in A. Since A is closed, there are p^{\prime}, q^{\prime} in ∂A such that $\left(p^{\prime} q^{\prime}\right) \cap A=\phi$ which is a contradiction and A is convex.

Corollary 2.3. Let $W \in \mathcal{W}^{n}$ and let A be a non-empty closed subset of $W . A$ is convex if and only if $(p q) \subset \partial A$ or $(p q) \subset \operatorname{int}(A)$ for each pair of boundary points p, q.

Since the interior of a closed convex set is again convex, this result is still true for open sets such that $\operatorname{int}(\bar{A})=A$. The following example shows that the closeness is important. Let A be a subset of $E^{2} \in \mathcal{W}^{2}$ defined by $A=\{(x, y): 0 \prec x \prec 1,0 \prec y \prec 1\} \cup\{(0,0),(1,1),(1,0),(0,1)\} . A$ is neither closed nor open and $(p q) \subset \partial A$ or $(p q) \subset \operatorname{int}(A)$ for each pair of boundary points p, q but A is not convex.

Proposition 2.1. Let $W \in \mathcal{W}^{n}$ and let A be a non-empty closed subset of W. If there is a point $p \in A$ that sees ∂A via A, then A is starshaped.

Proof. We claim that $p \in \operatorname{ker} A$. Suppose that p is not in $\operatorname{ker} A$ i.e. there is a point $q \in A$ such that $[p q]$ is not contained in A. Since A is closed, there are two points p^{\prime} and q^{\prime} in $\partial A \cap[p q]$ such that $\left(p^{\prime} q^{\prime}\right) \cap A=\phi$. Thus p does not see neither p^{\prime} nor q^{\prime}. This contradicts the fact that p sees ∂A via A and the proof is complete.

It is clear that the converse of this result is also true. Thus we can say that this proposition is a characterization of the kernel of the closed starshaped sets. This means that the kernel of a closed starshaped set A is only the points of A that see ∂A. The following corollary is direct.

Corollary 2.4. Let $W \in \mathcal{W}^{n}$ and let A be a non-empty closed convex subset of W. If ∂A is starshaped, then $\operatorname{ker}(\partial A) \subset$ $\operatorname{ker} A$.

In the light of the above results, one can test the convexity and starshapedness of a closed set A using its boundary points. In the next part a minimal subset of these boundary points will build A up from inside.

Theorem 2.5. Let $W \in \mathcal{W}^{n}$ and let A be a non-empty closed convex subset of W. If A has no hyperplane, then $A=C(\partial A)$.

Proof. Since A is convex, A is connected. We will prove that $C(\partial A)$ is open and closed in the relative topology on A and hence $A=C(\partial A)$.

First, we prove that $C(\partial A)$ is open in A. Let $p \in C(\partial A) \subset A$. We have the following cases:

1. $p \in C(\partial A) \cap \operatorname{int}(A)$: Let $B_{\delta}=B(p, \delta) \cap A$. In this case there exists a real number δ such that $B(p, \delta) \subset A$ and so $B_{\delta}=B(p, \delta)$. Suppose that p is not an interior point of $C(\partial A)$ i.e. for any δ, B_{δ} is not contained in $C(\partial A)$ and so p is a boundary point of $C(\partial A)$. Therefore, there is a supporting hyperplane H_{1} of $\overline{C(\partial A)}$ (the closure of $C(\partial A)$ is a closed convex subset of A) at p and $\overline{C(\partial A)}$ is contained in a closed halfspace with boundary H_{1}. Let x be any point of $B(p, \delta)$ that lies on the other side of H_{1} and let H_{2} be a parallel hyperplane to H_{1} at x. Since A does not contain a hyperplane, we find a point $y \in H_{2} \backslash A$. The line segment $[x y]$ cuts ∂A at a point $z \in H_{2}$ which contradicts the fact that H_{1} supports $\overline{C(\partial A)}$. This contradiction implies that p is an interior point of $C(\partial A)$ in the relative topology of A.
2. $p \in C(\partial A) \cap \partial A$: in this case, $B(p, \delta)$ has a non-empty intersection with A for any real number δ. Let $B_{\delta}=B(p, \delta) \cap A$. Suppose that p is not an interior point of $C(\partial A)$. Then, for any δ, the set B_{δ} has a point x which is not in $C(\partial A)$. But $\overline{C(\partial A)}$ is closed convex set and $x \notin \overline{C(\partial A)}$, and so we get a hyperplane H passing through x that separates x and $\overline{C(\partial A)}$. Since A does not have a hyperplane, there is a point y in $H \backslash A$ where $[x y]$ cuts ∂A. Thus H cuts ∂A and so H cuts $C(\partial A)$ which is a contradiction and so p is an interior point of $C(\partial A)$ in the relative topology on A.

This discussion above implies that $C(\partial A)$ is an open set in A. Now, we want to prove that $C(\partial A)$ is closed in A. Let p be a boundary point of $C(\partial A)$. If $p \in \partial A$, then $p \in C(\partial A)$. Let $p \in \operatorname{int} A$, then there is a small positive real number δ such that $B(p, \delta) \subset A$. Since p is a boundary point of $C(\partial A), B(p, \delta) \neq B(p, \delta) \cap C(\partial A) \neq \phi$. Therefore, we find a point x in $B(p, \delta)$ which is not in $C(\partial A)$. Since $\overline{C(\partial A)}$ is a closed convex set, we get a hyperplane H passing through x and does not intersect $C(\partial A)$. But A does not have a hyperplane and so H cuts ∂A which is a contradiction and $p \in C(\partial A)$ i.e. $C(\partial A)$ is closed in the relative topology on A and the proof is complete.

In general, sets need not have extreme points. The following proposition gives a sufficient condition for the existence of extreme points.

Proposition 2.2. Let $W \in \mathcal{W}^{n}$ and let A be a non-empty closed convex subset of W. A contains at least one extreme point if and only if A has no geodesic.

Proof. Let us assume that A has a geodesic l. Suppose that A has an extreme point p. It is clear that $p \notin l$. Let B be the closed convex hull of p and $l . B$ is a subset of A since A is a closed convex set containing both p and l. It is clear that B contains a line passing through p and parallel to l i.e. either p is not an extreme point or the line l does not exist.

Lemma 2.3. Let $W \in \mathcal{W}^{n}$ and let A be a non-empty closed convex subset of W. If H is a supporting totally geodesic hypersurface of A, then $E(H \cap A) \subset E(A)$

Proof. Let p be an extreme point of $H \cap A$. Suppose that $p \notin E(A)$ i.e. there are x, y in ∂A such that $p \in(x y)$. The hypersurface H supports A at p and so $[x y] \subset H$. This implies that $p \in[x y] \subset H \cap A$ which contradicts the fact that p is an extreme point of $H \cap A$. This contradiction completes the proof.

The minimal subset of a compact convex set A which generates A is is its extreme points. Our next main theorem shows that this property is more general.

Theorem 2.6. Let $W \in \mathcal{W}^{n}$ and let A be a non-empty closed convex subset of W. If A has no hyperplane and its boundary has no ray, then $A=C(E(A))$.

Proof. To prove that $A=C(E(A))$, it suffices to prove that $\partial A \subset C(E(A))$ and by Theorem 2.5 , we get that $A=C(\partial A) \subset C(E(A)) \subset A$ and hence $A=C(E(A))$. Let $p \in \partial A$. If p is an extreme point, then $p \in E(A) \subset$ $C(E(A))$. Now suppose that p is not an extreme point i.e. there are x, y in ∂A such that $p \in(x y)$. Since A is a closed convex set, there is a supporting totally geodesic hypersurface H of A at p. It is clear that the set $H \cap A$ is a non-empty closed convex subset of ∂A. Since ∂A has no ray, the set $H \cap A$ is bounded i.e. $H \cap A$ is a compact convex set. Therefore, $H \cap A=C(E(H \cap A))$. But $E(H \cap A) \subset E(A)$ and so $p \in C(E(H \cap A)) \subset C(E(A))$ and the proof is complete.

References

[1] Alexander, S., Local and global convexity in complete Riemannian manifolds. Pacific Journal of Mathematics 76(1978), no. 2 , 283-289.
[2] Balashov, M. V., An Analog of the Krein-Mil'man Theorem for Strongly Convex Hulls in Hilbert Space. Mathematical Notes 71(2002), no. 1-2,34-38.
[3] Beltagy, M., Sufficient conditions for convexity in manifolds without focal points. Comment. Math. Univ. Carolinae 34 (1993), 443-449.
[4] Beltagy, M., Local and global exposed points. Acta Mathematica Scientia 15(1995), no. 3, 335-341.
[5] Beltagy, M., On starshaped sets. Bull. Malays. Math. Soc., II. Ser. 11(1988), no. 2, 49-57.
[6] Burns, K., The flat strip theorem fails for surfaces with no conjugate points. Proceedings of the American Mathematical Society 115(1992), no. 1, 199-206.
[7] Eberlein, P., Geodesic flow in certain manifolds without conjugate points. Transactions of the American Mathematical Society 167 (1972), 151-170.
[8] Emmerich, P., Rigidity of complete Riemannian manifolds without conjugate points. Shaker Verlag Gmbh, Germa, 2013.
[9] Green, L. W., Surfaces without conjugate points. Transactions of the American Mathematical Society 76(1954), no. 3, 529-546.
[10] Goto, M. S., Manifolds without focal points. Journal of Differential Geometry 13(1978), no. 3, 341-359.
[11] Gulliver, R., On the variety of manifolds without conjugate points. Transactions of the American Mathematical Society 210 (1975), 185-201.
[12] Ivanov, S. and Vitali K. Manifolds without conjugate points and their fundamental groups. Journal of Differential Geometry 96(2014), no. 2 , 223-240.
[13] Jaume, D. A. and Rubén, P., Conjugacy for closed convex sets. Contributions to Algebra and Geometry 46 (2005), no. 1, 131-149.
[14] Lay, S.R., Convex sets and their applications. Courier Corporation, 2007.
[15] Li, S. and Yicheng G., On the relations of a convex set and its profile. In Integral Geometry and Convexity pp. 199-211. 2006.
[16] Martinez-Maurica, J. and Garcia, P. C. , A new approach to the Krein-Milman theorem. Pacific Journal of Mathematics 120(1985), no. 2, 417-422.
[17] Morse, M. and Gustav A. H., Manifolds without conjugate points. Transactions of the American Mathematical Society 51 (1942), 362-386.
[18] O'Sullivan, J.J., Manifolds without conjugate points. Mathematische Annalen 210(1974), no. 4, 295-311.
[19] Oates, D. K., A non-compact Krein-Milman theorem. Pacific Journal of Mathematics 36(1971), no. 3, 781-785.
[20] Ruggiero, R.O., A note on the divergence of geodesic rays in manifolds without conjugate points. Geometriae Dedicata 134(2008), no. 1 , 131-138.
[21] Shenawy, S., Tietze-type theorem in 2-dimensional Riemannian manifolds without conjugate points. Balkan Journal of Geometry and Its Applications 16(2011), no. 2, 133-137.
[22] Valentine, Frederick A., Convex sets. McGraw-Hill, Inc., New York 1964.

Affiliations

SAMEH SHENAWY
Address: Basic Science Department, Modern Academy for Engineering and Technology, Maadi, Egypt. E-MAIL: drssshenawy@eng.modern-academy.edu.eg, drshenawy@mail.com
ORCID ID: 0000-0003-3548-4239

[^0]: Received: 23-October-2018, Accepted :12-June-2019

 * Corresponding author

