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APPROXIMATE TEST FOR TESTING A NULL VARIANCE
RATIO IN THE UNBALANCED ONE-WAY RANDOM MODEL

SEVGI DEMIRCIOĞLU AND BILGEHAN GÜVEN

Abstract. The approximate test for testing the significance of the random
effect is presented in the unbalanced one-way random model in which both
random effects and errors are from nonnormal universes. The test is based
on the asymptotic distribution of the F -ratio. Under the condition that the
number of groups tends to infinity while the average of powers of the group
sizes is bounded, the asymptotic distribution of the F statistic is obtained.
Robustness of the proposed test is given.

1. Introduction

We derive the approximate test for testing the significance of the random effect
in the unbalanced one-way random effects model where both random effects and
errors are from nonnormal universes. To derive the approximate test, we first obtain
the asymptotic distribution of the F -ratio.
In literature there are two different methods to obtain the asymptotic distribu-

tion of the F -ratio. Akritas and Arnold (2000) and Akritas and Papadatos (2004)
obtained asymptotic normality of the F -ratio from the differenceMSτ −MSE and
from the fact that MSE converges in probability to constant. Here, MSτ and
MSE are the mean square for the random effects and errors respectively. Westfall
(1988) first derived the joint asymptotic distribution of MSτ and MSE and then
used the delta method to obtain asymptotic normality of the F -ratio.
To get the asymptotic distribution of the F -ratio, we use the method of Westfall

and establish the following asymptotic condition. The number of groups is large
while the average of powers of the group sizes is bounded. This asymptotic condition
may be viewed as modification of the asymptotic condition established by Wesfall
(1987, 1988). He assumed that the number of groups is large while the group sizes
are from a finite set of positive integers.
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Also it is implicitly shown that the presented approximate test is robust for the
size of the test in the balanced model does not depend on the fourth moment of
the error term for the balanced case. The size of the test in the non normal case is
same as it in the normal case.
This paper differs from the previous studies in three ways. A new asymptotic

condition is established by modifying Westfall’s asymptotic condition. Robustness
of the asymptotic distribution of the F -ratio is analytically shown. Different dis-
tributions having positive, null and negative kurtosis are used in simulations.
This paper is organized as follows: Sec. 2 demonstrates the asymptotic condition

and its consequences. Sec. 3 gives the asymptotic distribution of the F -ratio under
the established asymptotic condition. Sec. 4 proposes the approximate test for
testing significance of the random effects. Sec. 5 shows that the approximate test
is robust. In Sec. 6 some numerical and simulated results are given to examine the
accuracy of the approximate test.
Throughout the paper we shall use the following notations. If dN is a sequence

of N and r is a real number then dN = o(Nr) if N−rdN → 0 as N → ∞ and
dN = O(Nr) if N−rdN has a nonzero finite limit as N →∞.

2. The Model and Asymptotic

The unbalanced one-way random effects model is:

Yij = µ+ τ i + eij i = 1, 2, . . . t j = 1, 2, . . . , ni (1)

where µ is an overall mean, τ i and eij are random variables with zero means
and variances σ2τ and σ2 respectively. The model is appropriate for analyzing
data involving t random treatments. The number of observation is N where N =∑t
i=1 ni.
We shall address the problem of testing H0 : ρ = 0 vs. H1 : ρ > 0 where the

ratio of variances ρ is defined as ρ = σ2τ/σ
2. The statistic for testing H0 is based

on
FN = MSτ/MSE (2)

where MSτ = (t − 1)−1SSτ and MSE = (N − t)−1SSE. SSτ and SSE are the
sum of squares for treatment and for error respectively and they are defined as

SSτ =

t∑
i=1

ni(Y i. − Y ..)2 and SSE =

t∑
i=1

ni∑
j=1

(Yij − Y i.)2 (3)

with Y i. = n−1i
∑ni
j=1 Yij and Y .. = N−1

∑t
i=1

∑ni
j=1 Yij . Under the normality of

the random effects and the error terms, the test rejects H0 when FN > Ft−1,N−t,α
where Fν1,ν2,α denotes the 1 − α quantile of the F distribution with degrees of
freedom ν1 and ν2.
When the random effects and error terms are from nonnormal universes, the

approximate distribution of FN is used for testing problem presented above. With
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the moment conditions that E|τ i|4+δ < ∞ and E|eij |4+δ < ∞ for some positive δ
we establish the following asymptotic condition.
Asymptotic Condition. Consider a sequence of the model (1). The number of

groups t tends to infinity in such a way that the average of np1, n
p
2, . . ., n

p
t is bounded

where p ≥ 1. So there exists a real number M > 0 such that

t−1
t∑
i=1

npi < M

for all t. It is ensured by finite group sizes.
We are free to put in order the levels of the random effect among the (t + 1)

levels. The group sizes can be ordered in the ascending order,i.e., ni ≤ ni+1. Then∑t+1
i=1 n

p
i

t+ 1
−
∑t
i=1 n

p
i

t
=
tnpt+1 −

∑t
i=1 n

p
i

t(t+ 1)

where tnpt+1 >
∑t
i=1 n

p
i . The sequences t

−1∑t
i=1 n

p
i of t are bounded and monotone

and than they have a finite limit as t → ∞. The positive monotone sequence
t−1

∑t
i=1(1/n

p
i ) are bounded from both left by 0 and right by t−1

∑t
i=1 n

p
i So it

has a finite limit as t→∞.
We have shown that (1/t)

∑t
i=1 ni has a finite limit as t→∞ where (1/t)

∑t
i=1 ni =

N/t. Then t/N = O(1) implying that t and N are of the same order. So t can be
replaced by N .
Thus we are ready to define the following limits appearing in calculation of the

asymptotic covariance matrix. They are:

a = lim
N→∞

(t/N), γp = lim
N→∞

(1/N)

t∑
i=1

npi for p = −1, 2. (4)

where a ∈ (0, 1) since 0 < t < N .

3. Asymptotic Distribution of FN

In this section we derive the asymptotic distribution of FN in Eq. (2) where
a variance ratio ρ is considered to be positive. The derivation of the asymp-
totic distribution of FN is based on obtaining the joint asymptotic distribution
of
√
N(MSτ ,MSE) and then applying the delta method.

Lemma 3.1. Suppose the asymptotic condition established in Sec. 3. holds. Then
the covariance matrix of

√
N(MSτ ,MSE)

′
is:

ACOV = 2σ4
[

(γ2ρ
2 + 2ρ+ a)/a2 0

0 1/(1− a)

]
+ kτσ

4

[
γ2ρ

2/a2 0
0 0

]
+ keσ

4

[
γ−1/a

2 (a− γ−1)/a(1− a)
(a− γ−1)/a(1− a) (1− 2a+ γ−1)/(1− a)2

]
(5)
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as N → ∞ where kτ and ke are the kurtosis of the underlying distributions of τ i
and eij defined as kτ = E|τ i|4/σ4 − 3 and ke = E|eij |4/σ4 − 3, the limits a and γp
for p = −1, 2 are in Eq. (4).

Proof. We first derive the asymptotic covariance matrix of N−1/2(SSτ , SSE)
′
. Let

Y i = (Yi1, Yi2, . . . , Yini)
′
, Y = (Y

′

1,Y
′

2, . . . ,Y
′

t)
′
. We follow Searle’s notation (see

Searle 1987, p 212-213). SSτ and SSE in Eq. (3) can be expressed in a matrix
notation as SSτ = Y

′
Q1Y and SSE = Y

′
Q2Y where symmetric idempotent

matrices Q1 and Q2 are:

Q1 = {d(1/ni)Jni}ti=1 − (1/N)JN and Q2 = IN − {d(1/ni)Jni}ti=1. (6)

Here Im and Jm are matrices of identity and ones of the order m×m respectively.
The model (1) is in a matrix notation as Y = 1Nµ+Uτ + e where 1m denotes

a vector of ones of the order m × 1, τ = (τ1, τ2, . . . τ t)
′
and e is defined similarly

to Y . The matrix U of the order N × t is defined as
U = {d1ni}i=ti=1. (7)

It follows that SSτ and SSE are rewritten as

SSτ = (τ
′
, e

′
)

[
U

′
Q1U U

′
Q1

Q1U Q1

](
τ
e

)
, SSE = (τ

′
, e

′
)

[
0 0
0 Q2

](
τ
e

)
.

(8)
From Eqs. (6) and (7), the matrix U

′
Q1U of the order t× t is of the form

U
′
Q1U =

{
ni − (1/N)n2i , if i = j
−(1/N)ninj if i 6= j

(9)

and the matrix U
′
Q1 of the order t×N is equal to {Bij}i=t,j=ti=1,j=1 where the matrix

Bij of the order 1× nj is of the form

Bij =

{
(1− 1

N ni)1
′

ni if i = j

− 1
N ni1

′

nj if i 6= j
(10)

Using Lemma 1 of Westfall (1987) that simplifies calculation of covariance between
quadratic forms in a vector of mean zero random variables, we get

V ar(SSτ ) = σ4[2ρ2tr(U
′
Q1U)2 + 4ρtr(U

′
Q1U) + 2tr(Q1)

2

+ ρ2kτ tr(U
′
Q1Udiag(U

′
Q1U)) + ketr(Q1diag(Q1))], (11)

V ar(SSE) = σ4[2tr(Q2)
2 + ketr(Q2diag(Q2))], (12)

and
Cov(SSτ , SSE) = σ4ketr(Q1diag(Q2)). (13)

Using Eqs. (6) and (9), we get the following traces

tr(U
′
Q1U)2 =

t∑
i=1

n2i + bN , tr(U
′
Q1U) = N + cN , (14)



UNBALANCED ONE-WAY RANDOM MODEL 27

tr(U
′
Q1Udiag(U

′
Q1U)) =

t∑
i=1

n2i +dN , tr(Q1)
2 = t− 1, tr(Q2)

2 = N − t, (15)

tr(Q1diag(Q1)) =

t∑
i=1

(1/ni) + eN , tr(Q2diag(Q2)) = N − 2t+

t∑
i=1

(1/ni), (16)

tr(Q1diag(Q2)) = t−
t∑
i=1

(1/ni) + fN (17)

where

bN = −(2/N)

t∑
i=1

n3i + (1/N2)

t∑
i=1

n4i + (1/N2)

t∑
i=1

t∑
j=1

n2in
2
j ,

cN = −(1/N)

t∑
i=1

n2i , dN = −(2/N)

t∑
i=1

n3i ,

eN = (−2t+ 1)/N, fN = −(1/N)

t∑
i=1

ni + (t/N).

Then the sequences bN , cN , dN , eN and fN are all o(N).
From the asymptotic condition given in Sec.2. and Eqs. (14)-(17), we get

lim
N→∞

(1/N)V ar(SSτ ) = σ4[2ρ2γ2 + 4ρ+ 2a+ kτρ
2γ2 + keγ−1], (18)

lim
N→∞

(1/N)V ar(SSE) = σ4[2(1− a) + ke(1− 2a+ γ−1)] (19)

and

lim
N→∞

(1/N)Cov(SSτ , SSE) = σ4(a− γ−1) (20)

where V ar(SSτ ), V ar(SSE) and Cov(SSτ , SSE) are given in Eqs. (11), (12) and
(13) respectively and the limits a and γp for lp− 1, 2 are defined by Eq. (4). From
these, the covariance matrix of N−1/2(SSτ , SSE)

′
is:

∆ = σ4
[

2ρ2γ2 + 4ρ+ 2a 0
0 2(1− a)

]
+ kτσ

4

[
ρ2γ2 0

0 0

]

+ keσ
4

[
γ−1 a− γ−1

a− γ−1 1− 2a+ γ−1

]
(21)

as N → ∞. We have the equality
√
N(MSτ ,MSE)

′
= ΛNN

−1/2(SSτ , SSE)
′

where ΛN = diag(N/(t−1), N/(N − t)). ΛN converges to Γ as N →∞ where Γ =

diag(1/a, 1/(1−a)). Thus, the asymptotic covariance matrix of
√
N(MSτ ,MSE)

′

denoted by ACOV is equal to Γ∆ Γ and its explicit form is given in Eq. (5). �
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Theorem 3.2. The sequences in random vector
√
N(MSτ − [1 + ρa−1]σ2,MSE − σ2)

′

converges in distribution to the bivariate normal distribution with zero-mean vector
and the covariance matrix ACOV given in Eq. (5).

Proof. Define QN as QN = SSτ +SSE. Then QN is written as Y
′
PY where from

Eqs. (6) and (8), the matrix P can be written as

P =

[
U

′
Q1U U

′
Q1

Q1U IN − (1/N)JN

]
Let P = {P ij}i=t,j=ti=1,j=1. Then with the aid of Eqs. (9) and (10), the (ni+1)×(nj+1)
symmetric submatrix P ij of P is written as

P ii =

[
ni − (1/N)n2i (1− (1/N))1

′

ni
(1− (1/N))1ni Ini − (1/N)Jni

]
if i = j

and

P ij = −(1/N)

[
ninj 1

′

ni
1ni Jni×nj

]
if i 6= j.

Define εi as ε
′

i = (τ i, ei1, ei2, . . . , eini). Using the projection method for quadratic
forms (see Akritas and Papadatos (2004), van der Vaart (1998) ch. 11), QN is
decomposed as QN = UN − VN where

UN =

t∑
i=1

ε
′

iP iiεi and VN =

t∑
i=1

t∑
j 6=i,j=1

ε
′

iP ijεj

It should be noted that UN is the sum of independent but not identical random
variables and UN and VN are uncorrelated.
Observe that

E|ε
′

iP iiεi − E[ε
′

iP iiεi]| = tr(P iiE|εiε
′

i − E[εiε
′

i]|)
≤ tr(P iiP ii)

1/2(E|εiε
′

i − E[εiε
′

i]|E|εiε
′

i − E[εiε
′

i]|)1/2

where the inequality is acquired by using Cauchy-Schwartz inequality. The moment
conditions E|τ i|4+δ < ∞ and E|eij |4+δ < ∞ for some positive δ ensure that there
exists a finite and positive M such that (E|εiε

′

i − E[εiε
′

i]|E|εiε
′

i − E[εiε
′

i]|)1/2 ≤
M1/2. On the other hand, tr(P iiP ii) = (1 − (ni/N))2(1 + ni)

2 +n
i −1 ≤ 6n4i . It

follows from these that
t∑
i=1

[E|ε
′

iP iiεi − E[ε
′

iP iiεi]|2+δ ≤M1+δ/261+δ/2
t∑
i=1

n4+2δi ,

where
∑t
i=1 n

4+2δ
i = O(N). Therefore

t∑
i=1

[E|ε
′

iP iiεi − E[ε
′

iP iiεi]|2+δ = o(N b) (22)
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for b > 1 when either the small or large ni assumption holds. Let c2N = V ar(UN )

where cN =
∑t
i=1 V ar(ε

′

iP iiεi). By using Lemma 1 of Westfall (1987), c2N is
calculated and it is equal to

c2N = σ4[2ρ2
t∑
i=1

(ni − (1/N)n2i )
2 + 4ρ

t∑
i=1

ni(1− (ni/N))2 + 2

t∑
i=1

ni(1− (1/N))2

+kτρ
2

t∑
i=1

(ni − (1/N)n2i )
2 + ke

t∑
i=1

ni(1− (ni/N))2].

Then, using the asymptotic condition in Sec. 2, the following limit is obtained

lim
N→∞

(1/N)c2N = (1/N)V ar(UN ) = σ4[2ρ2γ2 + 4ρ+ 2 + kτρ
2γ2 + ke]. (23)

and consequently c2N = O(N). The facts that Eq. (22) and c2+δN = O(N1+δ/2)

together imply that the Liapounov, condition as applied to ε
′

1P 11ε1, ε
′

2P 22ε2,
. . ., ε

′

tP ttεt, holds. Thus V ar(UN )−1/2(UN − E[UN ]) converges in distribution to
N(0, 1).
The expression limN→∞(1/N)V ar(QN ) can be obtained by Eqs. (18)-(20) since

QN = SSτ +SSE and it is equal to Eq. (23). From the facts that QN = UN + VN
and Cov(UN , VN ) = 0, we get limN→∞(1/N)V ar(VN ) = limN→∞(1/N)[V ar(QN )−
V ar(UN )] = 0. Consequently UN converges in probability to 0. Thus V ar(QN )−1/2

(QN − E[QN ]) converges in distribution to N(0, 1) if V ar(UN )−1/2 (UN − E[UN ])

converges in distribution toN(0, 1). Let SS = (SSτ , SSE)
′
andMS = (MSτ ,MSE)

′

. Then if V ar(QN )−1/2(QN −E[QN ]) converges in distribution to N(0, 1) where ∆

is in Eq. (21).
√
N(MS −E[MS])

′
converges in distribution to N2(0,ACOV ) if

N−1/2(SS−E[SS])
′
converges in distribution to N2(0,∆) where ACOV is in Eq.

(5). It should be noted that E[MS] = (σ2[1 + ρ(N − 1/N
∑t
i=1 n

2
i )/(t − 1)], σ2)

′

and E[MS] converges to E[Γ] = (σ2[1 + ρa−1], σ2)
′
as N → ∞. This completes

the proof of Theorem 3.2 �

Theorem 3.3. Suppose the asymptotic condition established in Sec. 2 holds. Then
√
N(FN − [1 + ρa−1])

converges in distribution to normal distribution with 0-mean and variance σ2F as
N →∞ where FN is as in Eq. (2), σ2F is:

σ2F =
2(ρ2γ2 + 2ρ+ a)

a2
+

2(1 + ρa−1)

(1− a)
+ kτ

ρ2γ2
a2

+ ke(
γ−1
a2
−

2(a− γ−1)(1 + ρa−1)

a(1− a)
+

(1− 2a+ γ−1)(1 + ρa−1)2

(1− a)2
), (24)

and the limits a and γp for p = −1, 2 are in Eq. (4).
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Proof. Let 5FN denote the vector of the partial derivatives of FN with respect
to MSτ and MSE at their expectations. Then 5FN = (1/σ2,−[1 + ρa−1]/σ2)

′
.

From the delta method,
√
N(FN − [1 + ρa−1]) converges in distribution to normal

distribution with zero mean and the variance σ2F = 5
′
FNACOV5FN where

ACOV is in (5). The explicit form of σ2F is given in Eq. (24). �

4. The Proposed Test

The α sized approximate test rejects H0 : ρ = 0 when FN > uα where FN is in
Eq. (2) and uα is the upper 1 − α quantile of the asymptotic null distribution of
FN . Then, we have

P (FN > uα|ρ = 0) = α

The asymptotic null distribution of
√
N(FN − 1) determined from Theorem 3.3 is

the normal distribution with zero mean and variance σ20 where it is written as

σ20 =
2

a(1− a)
+ ke

γ−1 − a2

a2(1− a)2
(25)

after some algebraic operation on Eq. (24). One finds uα and it is given by

uα =
σ0√
N
zα + 1 (26)

where zα is the upper 1− α quantile of the standard normal distribution.
Finally the approximate power of the proposed test for a finite sample size is:

P (FN > uα|ρ > 0) = 1− Φ(

√
N(uα − [1 + ρa−1])

σF
) (27)

where Φ denotes the cumulative standard normal distribution, σ2F and uα are in
Eqs. (24) and (26) respectively.

5. Robustness of the Test

The robustness of the asymptotic distribution of the FN statistic is valid only for
the balanced models and it is defined as follows. The asymptotic null distribution
of FN does not depend on the fourth moment of error.

Corollary 5.1. The asymptotic null distribution of FN does not depend on the
fourth moment of error in the balanced models.

Proof. To show this, it is enough to show that the asymptotic null variance σ20 in
Eq. (25) is free of the kurtosis ke of error. When ni = n for all i, where n is fixed,
we have N = tn and then

γ−1 − a2 = lim
N→∞

{(1/N)

t∑
i=1

1/ni − t2/N2} = 1/n2 − 1/n2 = 0.
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where γ−1 and a are in Eq. (4). The coeffi cient of ke appearing in the asymptotic
null variance σ20 is equal to 0. So σ20 does not include ke. �

As indicated by (Akritas and Arnold 2000, p.221), (Scheffe 1959, p.344), and
Güven (2014) the asymptotic null distribution of FN is asymptotically robust with
respect to departure from normality of error. So, for the balanced case, the size of
the test is asymptotically robust to nonnormal error.

6. Numerical and Simulation Study

The power values of the approximate test are compared with the simulated power
values for some selected distributions to τ i and eij in order to check accuracy of
the power of the approximate test.
A power value of the approximate test is obtained from Eq. (27) for a given

positive variance ratio ρ after calculation of the upper percentile point uα in Eq.
(26) for a given α and of variance σ2F in (24). The limit values a, γ−1 and γ2
appearing in σ2F are replaced with their sample encounter values.
The simulated power value is the ratio of the number of generated FN value in

(2) exceeding uα to the number of simulation runs. Generation of the FN value is
as follow
1)Set µ equal to any constant.
2)Generate τ i for i = 1, 2, . . . , t from one of three different distributions:

√
ρN(0, 1),

√
ρ(exp(1)−1) and

√
ρU(−

√
3,
√

3) for a given ρ where ρ = 0.0, 0.5, 0.7, 1.0, 1.5, 1.7.
3) Generate eij for i = 1, 2, . . . , t and j = 1, 2, . . . , ni from one of three different
distributions: N(0, 1), exp(1) − 1 and U(−

√
3,
√

3). The generation of eij’s is
separated from the generation of τ i’s.
It should be noted that the distributions N(0, 1), exp(1)− 1 and U(−

√
3,
√

3) have
zero mean and unit variance. Also note that the distributions N(0, 1), exp(1) −
1 and U(−

√
3,
√

3) have the null (0), positive (6) and negative (−6/5) kurtosis
respectively.
4) Generated Yij , values i = 1, 2, . . . t and j = 1, 2, . . . ni are obtained where Yij =
µ+ τ i + eij and then the ratio FN is obtained.
Two different design are considered. One is a small ni design for which t = 20,

n1 = . . . = n5 = 2, n6 = . . . = n10 = 3, n11 = . . . = n15 = 4 and n16 = . . . =
n20 = 5. The other one is a large ni design for which t = 4, n1 = n2 = 20 and
n3 = n4 = 25.
Simulation is based on 1000 runs. In each run, FN is calculated from generating

data. The number of FN exceeding uα is divided by 1000 to get a power value of
the approximate test. The simulated level of significance of the test is obtained
in getting simulated power value of the approximate test when ρ = 0. Simply
we skip the step 2 in generation of FN It is equivalently to simulate the level of
significance of the test for testing hypothesis of no fixed treatment effects in the
one-way ANOVA model.
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In Table 1. through 6, sizes and power values of the approximate test are very
closer to simulated sizes and power values of the test for small values of ρ. How-
ever,the differences between them values slightly increase as the value of ρ increases.
It is also observed that both approximated and simulated power values of the test
are higher for a large ni design than for a small ni design. So according to the
simulation results, the test is more appropriate for a small variance ratio and large
group sizes.
Table 1 and 4 are for the null kurtosis case while the rest of the tables are for

either the positive or negative kurtosis case. It is not detected any significant rise or
decline of power values of the approximate test in departing from the null kurtosis
case. In comparison Tables 2 and 5 with Table 3 and 6, the power values of the
test are higher for the negative kurtosis case than for the positive kurtosis case.

7. Conclusion

In the present paper we establish the approximate test for the hypothesis of zero
variance ratio in the unbalanced one way random effects model from non normal
universes. As shown in Sec. 4. calculation of both the upper percentile point and
a power value of the test can easily be accomplished. The test is robust for the
balanced one way random effects model. In the balanced case the null distribution
of the test statistics FN ratio does not depend on the fourth moment of the error
term.
The differences between the calculated and generated sizes and power values are

closer to a small design and lower variance ratios than a large design and higher
variance ratios. It follows that the approximate test is more accurate for a small
design and lower variance ratios. It is not detected any significant rise or descend
of the power from null to non null kurtosis. Thus, departing from null kurtosis does
not have an impact to the power of the approximate test.

Table 1. Approximation to power values of the α sized test for a small ni design and
the null kurtosis case where the numbers in parentheses are simulated values.

kτ ke α ρ = 0.5 0.7 1.0 1.5 1.7
0 0 0.01 0.63 0.76 0.85 0.92 0.93

(0.03) (0.61) (0.77) (0.89) (0.97) (0.99)
0.05 0.73 0.83 0.89 0.94 0.95
(0.08) (0.74) (0.86) (0.94) (0.99) (0.99)
0.10 0.78 0.86 0.91 0.95 0.95
(0.13) (0.80) (0.90) (0.96) (0.99) (0.99)
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Table 2. Approximation to power values of the α sized test for a small ni design and
the positive kurtosis case where the numbers in parentheses are simulated values.

kτ ke α ρ = 0.5 0.7 1.0 1.5 1.7
6 0 0.01 0.60 0.70 0.77 0.82 0.84

(0.03) (0.54) (0.69) (0.82) (0.91) (0.93)
0.05 0.69 0.76 0.81 0.85 0.85
(0.08) (0.68) (0.79) (0.88) (0.94) (0.96)
0.10 0.73 0.78 0.83 0.86 0.86
(0.13) (0.74) (0.84) (0.91) (0.97) (0.97)

0 6 0.01 0.52 0.65 0.76 0.84 0.86
(0.06) (0.50) (0.68) (0.84) (0.93) (0.95)
0.05 0.64 0.74 0.82 0.87 0.89
(0.17) (0.66) (0.80) (0.91) (0.97) (0.98)
0.10 0.70 0.78 0.83 0.86 0.86
(0.25) (0.74) (0.86) (0.93) (0.98) (0.99)

6 6 0.01 0.51 0.62 0.71 0.77 0.79
(0.05) (0.45) (0.58) (0.71) (0.85) (0.89)
0.05 0.62 0.70 0.76 0.80 0.82
(0.08) (0.58) (0.69) (0.81) (0.91) (0.93)
0.10 0.67 0.73 0.78 0.82 0.83
(0.12) (0.65) (0.76) (0.86) (0.93) (0.95)

Table 3. Approximation to power values of the α sized test for a small ni design and
the negative kurtosis case where the numbers in parentheses are simulated values

kτ ke α ρ = 0.5 0.7 1.0 1.5 1.7
-6/5 0 0.01 0.63 0.78 0.88 0.95 0.96

(0.03) (0.62) (0.80) (0.92) (0.99) (0.99)
0.05 0.75 0.85 0.92 0.96 0.97
(0.08) (0.76) (0.89) (0.96) (0.99) (0.99)
0.10 0.80 0.88 0.93 0.97 0.97
(0.13) (0.83) (0.98) (0.91) (0.99) (0.99)

0 -6/5 0.01 0.66 0.78 0.88 0.93 0.95
(0.03) (0.63) (0.80) (0.92) (0.98) (0.98)
0.05 0.76 0.85 0.91 0.95 0.96
(0.07) (0.77) (0.89) (0.96) (0.99) (0.99)
0.10 0.80 0.88 0.93 0.96 0.96
(0.13) (0.83) (0.92) (0.97) (0.98) (0.99)

-6/5 -6/5 0.01 0.67 0.81 0.91 0.96 0.97
(0.03) (0.64) (0.85) (0.94) (0.99) (0.99)
0.05 0.77 0.87 0.94 0.97 0.98
(0.07) (0.80) (0.91) (0.97) (0.99) (0.99)
0.10 0.82 0.90 0.95 0.98 0.98
(0.13) (0.86) (0.94) (0.98) (0.99) (0.99)
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Table 4. Approximations to power values of the α sized test for a large ni design and
the null kurtosis case where the numbers in parentheses are simulated values.

kτ ke α ρ = 0.5 0.7 1.0 1.5 1.7
0 0 0.01 0.86 0.88 0.89 0.90 0.90

(0.05) (0.89) (0.93) (0.96) (0.98) (0.98)
0.05 0.87 0.88 0.89 0.90 0.90
(0.10) (0.93) (0.96) (0.97) (0.99) (0.99)
0.10 0.88 0.86 0.91 0.95 0.95
(0.14) (0.93) (0.96) (0.97) (0.99) (0.99)

Table 5. Approximation to power values of the α sized test for a large ni design and the
positive kurtosis case where the numbers in parentheses are simulated values.

kτ ke α ρ = 0.5 0.7 1.0 1.5 1.7
6 0 0.01 0.72 0.73 0.74 0.75 0.75

(0.03) (0.75) (0.81) (0.85) (0.90) (0.91)
0.05 0.73 0.74 0.74 0.75 0.75
(0.10) (0.80) (0.84) (0.88) (0.92) (0.93)
0.10 0.73 0.74 0.75 0.75 0.75
(0.14) (0.82) (0.86) (0.89) (0.92) (0.93)

0 6 0.01 0.85 0.86 0.88 0.88 0.89
(0.06) (0.87) (0.91) (0.94) (0.97) (0.98)
0.05 0.86 0.87 0.88 0.89 0.89
(0.10) (0.90) (0.93) (0.96) (0.98) (0.99)
0.10 0.86 0.88 0.88 0.89 0.89
(0.14) (0.91) (0.94) (0.97) (0.99) (0.99)

6 6 0.01 0.72 0.73 0.74 0.74 0.74
(0.06) (0.76) (0.82) (0.87) (0.90) (0.92)
0.05 0.73 0.73 0.74 0.74 0.75
(0.10) (0.81) (0.85) (0.89) (0.93) (0.94)
0.10 0.73 0.74 0.74 0.75 0.75
(0.14) (0.83) (0.87) (0.91) (0.94) (0.95)
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Table 6. Approximations to power values of the α sized test for a large ni design and
the negative kurtosis case where the numbers in parentheses are simulated values.

kτ ke α ρ = 0.5 0.7 1.0 1.5 1.7
-6/5 0 0.01 0.93 0.95 0.96 0.97 0.97

(0.05) (0.92) (0.95) (0.97) (0.99) (0.99)
0.05 0.94 0.96 0.96 0.97 0.97
(0.10) (0.94) (0.97) (0.98) (0.99) (0.99)
0.10 0.95 0.96 0.97 0.97 0.97
(0.14) (0.96) (0.97) (0.91) (0.99) (0.99)

0 -6/5 0.01 0.86 0.88 0.89 0.90 0.90
(0.05) (0.89) (0.93) (0.96) (0.97) (0.98)
0.05 0.87 0.89 0.90 0.90 0.91
(0.10) (0.92) (0.95) (0.96) (0.98) (0.99)
0.10 0.88 0.89 0.90 0.91 0.91
(0.15) (0.94) (0.96) (0.97) (0.99) (0.99)

-6/5 -6/5 0.01 0.94 0.95 0.97 0.97 0.97
(0.05) (0.92) (0.95) (0.98) (0.99) (0.99)
0.05 0.95 0.96 0.97 0.97 0.98
(0.10) (0.95) (0.96) (0.98) (0.99) (0.99)
0.10 0.95 0.96 0.97 0.98 0.98
(0.15) (0.95) (0.97) (0.99) (0.99) (0.99)
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