
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY
VOLUME 12 NO. 2 PAGE 229–240 (2019)

Slant Helices that Constructed from
Hyperspherical Curves in the n-dimensional

Euclidean Space
Bülent Altunkaya
(Communicated by Kazım İlarslan)

ABSTRACT

In this work, we study slant helices in the n-dimensional Euclidean space. We give methods to
determine the position vectors of slant helices from arclength parameterized curves that lie on
the unit hypersphere. By means of these methods, first we characterize slant helices and Salkowski
curves which lie on 2n-dimensional hyperboloid. After that, we characterize rectifying slant helices
which are geodesics of 2n-dimensional cone.
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1. Introduction

The notion of slant helix in the Euclidean 3-space has been introduced by Izumiya and Takeuchi in [14]. Slant
helices defined by the property that normal lines of a regular curve make a constant angle with a fixed direction.
They also gave some characterizations of these curves. After that, slant helices in the Euclidean 3-space were
studied by other researchers from different fields [3, 15, 16, 17].

The notion of slant helix in Euclidean 3-space can be generalized to higher dimensions by using the same
definition [1, 22]. In [1], authors gave some necessary and sufficient conditions for a curve to be a slant helix in
Euclidean n-space.

If the position vector of a space curve always lies in its rectifying plane, we call it a rectifying curve. Such
curves are first studied by Chen [7, 8]. Later, he stated that a curve on a cone in Euclidean 3-space is a geodesic
if and only if it is either a rectifying curve or an open portion of a ruling in [10]. Because of the importance of
these curves, a rich literature has been created by different researchers [9, 10, 11, 13, 23]. Afterwards, authors
extended the rectifying curve concept to upper dimensions [6, 18].

About a century ago, E. Salkowski introduced a family of space curves (that would later be called Salkowski
curves [21]) with constant curvature and non-constant torsion. Recently, J. Monterde showed that these curves
are also slant helices [19]. Although, there are many studies about Salkowski curves in the 3-dimensional
Euclidean space, there are no characterizations or examples about these curves in n-dimensional Euclidean
space when n > 3.

Despite the studies on these subjects, the position vectors of slant helices, rectifying slant helices and
Salkowski curves couldn’t be generalized the n-dimensional Euclidean space. In this work, we give methods
to determine the position vectors of such curves by using arclength parameterized curves that lie on the unit
hypersphere for n ≥ 3. In addition, we introduce families of rectifying slant helices that lie on cones which are
also geodesics of these cones. We also introduce slant helix families that lie on hyperboloids.
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2. Preliminaries

Let En denote the n-dimensional Euclidean space with the standart orthonormal basis {e1, e2, . . . , en}, that
is, Rn equipped with the standard inner product

〈x, y〉 =
n∑
i=1

xiyi

for each x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ Rn where the norm of a vector x ∈ Rn is given by ||x||2=
〈x, x〉.

Similar to space curves; for a regular curve α : I ⊂ R→ En, we have the Frenet frame V1, V2, ..., Vn that satisfy
the equations 

V
′

1 (t) = ν(t)k1(t) V2 (t)

V
′

i (t) = ν(t)(−ki−1(t) Vi−1 (t) + ki(t) Vi+1 (t)), i = 2, 3, ..., n− 1

V
′

n(t) = −ν(t)kn−1(t) Vn−1 (t)

(2.1)

where ν(t) = ||dβ(t)/dt||= ||β′(t)|| and ki, i ∈ {1, 2, . . . , n− 1} denote the ith curvature function of the curve
β [12].

From Equation 2.1; if kn−1(t) = 0 for all t ∈ I , then the curve β lies in the orthogonal complement of Vn.
Therefore, we can say β lies in a (n− 1)-dimensional hyperplane which is perpendicular to Vn.

Similar to above, if the position vector of a curve β lies in the orthogonal complement of V2 which is

V ⊥2 (t) =
{
v ∈ Tβ(t)En| 〈v, V2 (t)〉 = 0

}
,

then we call it a rectifying curve [6]. Therefore, we state rectifying curve definition as follows.

Definition 2.1. A curve β : I → En is called rectifying curve if, for all t ∈ I , the orthogonal complement of V2
contains a fixed point [5].

Note that this definition is independent from the coordinates. A necessary and sufficient condition for a unit
speed curve to be a rectifying curve is that

〈β (s) , V1 (s)〉 = s+ c (2.2)

for some constant c ∈ R where s is the arclength parameter of the curve β [5]. We extend the condition in
Equation 2.2 for arbitrary speed curves in Corollary 3.2.

In E3, a curve α with k1(t) 6= 0 is called a slant helix if the principal normal lines of the curve β make a
constant angle with a fixed direction [14]. Therefore, we will use the definition below to show the curve β is a
slant helix.

Definition 2.2. A curve β : I → En is called slant helix if its principal normal V2 makes a constant angle with a
fixed direction [1].

Salkowski curves, a space curve family with constant curvature and non-constant torsion, are defined in [21].
From the paper [19], we know this family of curves are also slant helices. If we combine these two concepts,
we can give the Salkowski curve definition in En as follows.

Definition 2.3. A slant helix β : I → En is called a Salkowski curve if the first curvature function is a constant
function and the other curvature functions are non-constant functions.

In this study, we work with non-degenerate curves which means ki(t) 6= 0 for all t ∈ I and i ∈
{1, 2, . . . , n− 1}.

3. Methods of constructing slant helices in En

In this section, we give methods to develope different type of slant helices. We characterize slant helices
by constructing them starting from an arclength parameterized curve on the unit hypersphere. Our first
characterization is as follows.
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Theorem 3.1. Let γ (u) : I → En be a unit speed spherical curve on Sn−1 with∥∥∥∥d2γ (u)du2

∥∥∥∥ = a

such that
γ (u) = (γ1 (u) , γ2 (u) , . . . , γn−1 (u) , c)

where u (t) : I → R is a differentiable function, a > 1 and c ∈ R/{0}. Then, the curve β defined by

β (t) =

∫
α (u(t)) dt

is a unit speed slant helix in En where

α (u) = sin(u) γ(u) + cos(u)
dγ (u)

du
.

Proof. From the definitions of the curve γ, we have

‖γ (u)‖ = 1,

∥∥∥∥dγ (u)du

∥∥∥∥ = 1,

∥∥∥∥d2γ (u)du2

∥∥∥∥ = a.

With straightforward computations, we have the spherical general helix α (See [4]) with

‖α (u)‖ = 1,

∥∥∥∥dα (u)

du

∥∥∥∥ =
√
a− 1 cos (u).

Therefore, β is a unit speed curve with the first curvature function

kβ1 =
√
a− 1 cos (u) u′ (3.1)

where
√
a− 1 =

∥∥∥d2γ(u)du2 + γ(u)
∥∥∥.

If we compute the first two Frenet vectors of the curve β, we have

V β1 = α (u) ,

V β2 =
1√
a− 1

(
γ (u) +

d2γ (u)

du2

)
=

1√
a− 1

(
γ1 (u) +

d2γ1 (u)

du2
, . . . , γn−1 (u) +

d2γn−1 (u)

du2
, c

)
.

Therefore, β is a unit speed slant helix whose second Frenet vector makes the constant angle θ =

arccos
(

c√
a−1

)
with en.

Now, we give an important result of the Theorem 3.1. In order to reach our goal, we use W-curves, i.e. a
curve which has constant Frenet curvatures [2, 5].

Lemma 3.1. Consider the W-curve γ (u) : I → S2n−1 (P,R) ⊂ S2n ⊂ E2n+1 such that

γ(u) =
R
√
n

(
n∑
j=1

cos (cju) e2j−1 +

n∑
j=1

sin (cju) e2j

)
+
√

1−R2 e2n+1

where u : I → R is a differentiable function, P =
(
0, 0, . . . , 0,

√
1−R2

)
∈ E2n+1, 0 < R =

(
n∑n

j=1 cj
2

)1/2
< 1 and

ci, cj ∈ R/{−1, 0, 1} , ci 6= cj , 1 ≤ i < j ≤ n. Then, the curve β defined by

β (t) =

∫
α (u(t)) dt
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is a slant helix in E2n+1 where

α (u) = sin(u) γ(u) + cos(u)
dγ (u)

du
(3.2)

is a spherical general helix.

Proof. With straightforward calculations, we have

‖γ (u)‖ = 1,

∥∥∥∥dγ (u)du

∥∥∥∥ = 1,

∥∥∥∥d2γ (u)du2

∥∥∥∥ =

(∑n
i=1 ci

4∑n
i=1 ci

2

)1/2

.

Hence; γ satisfies the conditions in Theorem 3.1. Therefore, β is a unit speed slant helix in E2n+1.

The Corollary below is a compile of interesting results of Lemma 3.1.

Corollary 3.1. If we take u(t) = t in Lemma 3.1, then we have the following results;
(i) The slant helix β lies on the hyperboloid

H2n =

{
(x1, x2, . . . , x2n+1) ∈ E2n+1 |

(∑n
i=1 c

2
i

)
4n

 n∑
j=1

(
c2j − 1

c2j

)2 (
x22j−1 + x22j

)
−

∑n
i=1

(
c2j−1
c2j

)2
−n+

∑n
i=1 c

2
i

x2n+1

 = 1

}
.

(ii) For n ≥ 2, if cj = ck, 1 ≤ j, k ≤ n, j 6= k. The slant helix β is included in the (2n-1)-dimensional hyperplane
of E2n+1, so we can consider it to be a slant helix in E2n−1. Also, the slant helix β lies on the hyperboloid

H2n−2 =
{
(x1, x2, . . . , x2n+1) ∈ H2n | x2j−1 = x2k−1, x2j = x2k

}
.

(iii) For n ≥ 2 and j ∈ {1, 2, · · · , n}. If |cj | = 1, then (2j − 1)th term of the curve β vanishes and the (2j)th
term of the curve β becomes a linear function of the parameter t. Therefore, it is included in the 2n-dimensional
hyperplane of E2n+1 and its first Frenet vector makes a constant angle with e2j−1. So, we can consider it to be a
general helix in E2n.

Example 3.1. Let us take
n = 2, c1 = 1, c2 = 4, u(t) = t

in Lemma 3.1. Then, we have the W-curve

γ (u (t)) =

(
cos(t)√

5
,
sin(t)√

5
,
cos(2t)√

5
,
sin(2t)√

5
,

√
3

5

)

With straightforward calculations, we find

β (t) =

(
0,

t√
17
,
25 cos(3t) + 9 cos(5t)

30
√
17

,
25 sin(3t) + 9 sin(5t)

30
√
17

,−
√

15

17
cos(t)

)
.

We can consider the curve β as

β (t) =

(
t√
17
,
25 cos(3t) + 9 cos(5t)

30
√
17

,
25 sin(3t) + 9 sin(5t)

30
√
17

,−
√

15

17
cos(t)

)
.

If we compute the Frenet vectors and curvature functions of the curve β, we have

V β1 (t) =

(
1√
17
,−5 sin(3t) + 3 sin(5t)

2
√
17

,
4 cos3(t)(3 cos(2t)− 2)√

17
,

√
15

17
sin(t)

)
,
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V β2 (t) =

(
0,−
√
15

4
cos(4t),−

√
15

4
sin(4t),

1

4

)
,

V β3 (t) =

(
4 cos(t)

√
17
√

9− 8 cos(2t)
,
−5 sin(2t) + 9 sin(4t)− 3 sin(6t)

√
17
√

9− 8 cos(2t)
,

5 cos(2t)− 9 cos(4t) + 3 cos(6t)
√
17
√

9− 8 cos(2t)
,
2
√

15
17 sin(2t)√

9− 8 cos(2t)

)
.

V β4 (t) =
1√

9− 8 cos(2t)

(
−4 sin(t), 1

4
cos(4t),

1

4
sin(4t),

√
15

4

)
,

kβ1 (t) = 4

√
15

17
cos(t),

kβ2 (t) =

√
15

17

√
9− 8 cos(2t),

kβ3 (t) =

√
15

17

√
9− 8 cos(2t).

Therefore, β is a general helix whose first Frenet vector makes the constant angle θ = arccos
(

1√
17

)
with e1.

Example 3.2. Given that
n = 1, c1 = 2, u(t) = t

in Lemma 3.1. Then, we have the W-curve

γ (u (t)) =

(
1

2
cos(2t),

1

2
sin(2t),

√
3

2

)
Therefore, we have the spherical general helix (See Figure 1)

α (u(t)) =

(
1

4
(−3 sin(t)− sin(3t)), cos3(t),

√
3

2
sin(t)

)
.

Consequently, we have the slant helix (See Figure 2)

β (t) =
1

12

(
(9 cos(t) + cos(3t)), (9 sin(t) + sin(3t)),−6

√
3 cos(t)

)
that lies on the hyperboloid of one sheet

9

4

(
x21 + x22

)
− 3x23

4
= 1

with the Frenet vectors

V β1 (t) =

(
−1

4
(3 sin(t) + sin(3t)), cos3(t),

1

2

√
3 sin(t)

)
,

V β2 (t) =

(
−
√
3

2
cos(2t),−

√
3 sin(t) cos(t),

1

2

)
,

V β3 (t) =

(
−1

2
cos(t)(cos(2t)− 2), sin3(t),

√
3

2
cos(t)

)
and the curvature functions

kβ1 (t) =
√
3 cos(t),

kβ2 (t) =
√
3 sin(t).
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Figure 1. The spherical helix α on S2.

Figure 2. The slant helix β on the one sheeted hyperboloid 9
4

(
x2
1 + x2

2

)
− 3x2

3
4 = 1.

In Definition 2.3, we defined Salkowski curves. From the method introduced in Theorem 3.1, we can
construct Salkowski curves in En by the Lemma below.

Lemma 3.2. Let β be a curve defined by Theorem 3.1. β is a Salkowski curve if and only if u (t) = ± arcsin
(

t√
a−1 + a1

)
where a1 ∈ R.

Proof. From Equation 3.1, we have

kβ1 =
√
a− 1 cos (u) u′ (3.3)

By solving the differential equation
√
a− 1 cos (u) u′ = 1,
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we have

u (t) = ± arcsin

(
t√
a− 1

+ a1

)
.

Example 3.3. Given that n = 2, c1 = 3, c2 = 4 in Lemma 3.1. Then, we have the W-curve

γ (u (t)) =

(
1

5
cos(3t),

1

5
sin(3t),

1

5
cos(4t),

1

5
sin(4t),

√
23

5

)
.

Consequently, we have the spherical general helix

α (u(t)) =

(
1

5
sin(u(t)) cos(3u(t))− 3

5
sin(3u(t)) cos(u(t)),

1

5
sin(u(t)) sin(3u(t)) +

3

5
cos(u(t)) cos(3u(t)),

1

5
sin(u(t)) cos(4u(t))− 4

5
sin(4u(t)) cos(u(t)),

1

5
sin(u(t)) sin(4u(t)) +

4

5
cos(u(t)) cos(4u(t)),

1

5

√
23 sin(u(t))

)
.

By means of Lemma 3.2, if we take a1 = 0, then

u (t) = arcsin

(
5t

2
√
78

)
.

Therefore, we have the unit speed Salkowski curve β in E5 as follows

β (t) =

((
312− 25t2

)5/2
1521000

,
125t5 − 3900t3 + 36504t

60840
,

−
5t2
(
125t4 − 3900t2 + 36504

)
48672

√
78

,
t
(
312− 25t2

)5/2
243360

√
78

,

1

4

√
23

78
t2

)
.

With necessary computations we have,

V β1 (t) =

(
−
t
(
312− 25t2

)3/2
12168

,
625t4 − 11700t2 + 36504

60840
,

−
5t
(
125t4 − 2600t2 + 12168

)
8112
√
78

,

(
52− 25t2

) (
312− 25t2

)3/2
40560

√
78

,

1

2

√
23

78
t

)
,
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V β2 (t) =

(√
312− 25t2

(
25t2 − 78

)
3042

,
5t
(
25t2 − 234

)
3042

,

−
5
(
625t4 − 7800t2 + 12168

)
8112

√
78

,
25t
√

4− 25t2

78

(
25t2 − 156

)
8112

,√
23

312

)

Therefore, the second Frenet vector of the Salkowski curve β makes the constant angle θ = arccos(
√

23
312 ) with

e5. The curvature functions of the curve β are

kβ1 (t) = 1,

kβ2 (t) =

√
4350

4056− 325t2
− 1

kβ3 (t) =
175
√
6
√
1625t2 + 3732√

4056− 325t2 (325t2 + 294)

kβ4 (t) =
125
√
138t
√
325t2 + 294√

25t2 − 312 (1625t2 + 3732)
.

Now, we give another method to construct slant helices from an arclength parameterized curve on the unit
hypersphere. By means of this method, we can construct rectifying slant helices in En.

Theorem 3.2. Let γ (u) : I → En be a unit speed spherical curve on Sn−1 with∥∥∥∥d2γ (u)du2

∥∥∥∥ = a

such that

γ (u) = (γ1 (u) , γ2 (u) , . . . , γn−1 (u) , c)

where u (t) : I → R is a differentiable function, a > 1 and c ∈ R/{0}. Then, the curve β defined by

β (t) = sec (u (t)) γ (u (t))

is a slant helix in En.

Proof. From the definition of γ, we have

‖γ (u)‖ = 1,

∥∥∥∥dγ (u)du

∥∥∥∥ = 1,

∥∥∥∥d2γ (u)du2

∥∥∥∥ = a.

Then, we have

‖β‖ = secu,

β′ = secu u′
(
tanu γ (u) +

dγ (u)

du

)
,

‖β′‖ = secu2 |u′| . (3.4)
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With straigtforward calculations, we have

V β1 =sinu γ (u) + cos (u)
dγ (u)

du

=

(
sinu γ1 (u) + cosu

dγ1 (u)

du
, . . . ,

sinu γn−1 (u) + cosu
dγn−1 (u)

du
, c sinu

)

and

V β2 =
1√
a− 1

(
γ (u) +

d2γ (u)

du2

)
=

1√
a− 1

(
γ1 (u) +

d2γ1 (u)

du2
, . . . , γn−1 (u) +

d2γn−1 (u)

du2
, c

)
.

Therefore, β is a slant helix whose second Frenet vector makes the constant angle θ = arccos
(

c√
a−1

)
with

en.

Slant helices that have been constructed from the method in Theorem 3.2 are also rectifying curves. In order
to show this, we need the following Corollary which is an immediate consequence of the Theorem 4.4 in [5].

Corollary 3.2. Let β : I → En be a curve with nonzero curvatures. Then, β is congruent to a rectifying curve if and only
if the tangential component of the position vector of the curve satisfies the equation below

〈β (t) , V1 (t)〉 =
∫
ν(t)dt. (3.5)

Therefore, we have the following Lemma.

Lemma 3.3. The curve β defined by Theorem 3.2 is a rectifying slant helix.

Proof. By straightforward calculations, we have

〈β (t) , V1 (t)〉 = tan (u (t)) =

∫
ν(t)dt.

From the Corollary 3.2, β is a rectifying curve. As we see at Theorem 3.2, this curve is also a slant helix.
Therefore, the curve β is a rectifying slant helix.

We can construct unit speed slant helices by means of Theorem 3.2 and Corollary 3.2 as follows.

Lemma 3.4. Let β be a curve defined by Theorem 3.2. β is a unit speed rectifying slant helix if and only if u (t) =
± arctan (t+ a1) where a1 ∈ R.

Proof. From Equation 3.4, we have

‖β′‖ = secu2 |u′| .

By solving the differential equation

secu2 |u′| = 1,

we easily have

u (t) = ± arctan (t+ a1).
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The following Lemma is a result of Theorem 3.2.

Lemma 3.5. Consider the W-curve γ (u) : I → S2n−1 (P,R) ⊂ S2n ⊂ E2n+1 such that

γ(u) =
R
√
n

(
n∑
j=1

cos (cju) e2j−1 +

n∑
j=1

sin (cju) e2j

)
+
√

1−R2 e2n+1

where u : I → R is a differentiable function, P =
(
0, 0, . . . , 0,

√
1−R2

)
∈ E2n+1, 0 < R =

(
n∑n

j=1 cj
2

)1/2
< 1 and

ci, cj ∈ R/{−1, 0, 1} , ci 6= cj , 1 ≤ i < j ≤ n. Then, the curve β defined by

β (t) = sec (u (t)) γ (u (t))

is a rectifying slant helix in E2n+1.

Proof. The proof of this Lemma is similar to the Lemma 3.1. Therefore, we omit the proof.

Similar to the Corollary 3.1, we have

Corollary 3.3. For the curve β in Lemma 3.5, we have the following results;
(i) The rectifying slant helix β lies on the cone

C2n =

{
(x1, x2, . . . , x2n+1) ∈ E2n+1 |

(∑n
i=1 c

2
i

)
4n

 n∑
j=1

(
c2j − 1

c2j

)2 (
x22j−1 + x22j

)
−

∑n
i=1

(
c2j−1
c2j

)2
−n+

∑n
i=1 c

2
i

x2n+1

 = 0

}
.

(ii) The rectifying slant helix β is a geodesic of the cone C2n.
(iii) For n ≥ 2, if cj = ck, 1 ≤ j, k ≤ n, j 6= k. The slant helix β is included in the (2n-1)-dimensional hyperplane
of E2n+1, so we can consider it to be a slant helix in E2n−1. Also, the rectifying slant helix β lies on the cone

C2n−2 =
{
(x1, x2, . . . , x2n+1) ∈ C2n | x2j−1 = x2k−1, x2j = x2k

}
.

(iv) For n ≥ 2 and j ∈ {1, 2, · · · , n}. If |cj | = 1, then (2j − 1)th term of the curve β vanishes and the (2j)th
term of the curve β becomes a linear function of the parameter t. Therefore, it is included in the 2n-dimensional
hyperplane of E2n+1 and its first Frenet vector makes a constant angle with e2j−1. So, we can consider it to be a
general helix in E2n.

Example 3.4. Given that

n = 3, u (t) = arctan (t), c1 =
√
2, c2 =

√
3, c3 =

√
5

in Lemma 3.5, then we have the unit speed rectifying slant helix

β (t) =

√
t2 + 1√
10

(
cos
(√

2 arctan(t)
)
, sin

(√
2 arctan(t)

)
,

cos
(√

3 arctan(t)
)
, sin

(√
3 arctan(t)

)
,

cos
(√

5 arctan(t)
)
, sin

(√
5 arctan(t)

)
,

√
7

)

in E7, which is a geodesic of the cone

www.iejgeo.com 238

http://www.iej.geo.com


B. Altunkaya

5

12

(
x21 + x22

)
+

10

9

(
x23 + x24

)
+

8

3

(
x25 + x26

)
=

151

252
x27

with the second Frenet vector

V β2 (t) =

(
−

cos
(√

2 arctan(t)
)

2
√
7

,−
sin
(√

2 arctan(t)
)

2
√
7

,

−
cos
(√

3 arctan(t)
)

√
7

,−
sin
(√

3 arctan(t)
)

√
7

,

2 cos
(√

5 arctan(t)
)

√
7

,−
2 sin

(√
5 arctan(t)

)
√
7

,

1

2

)
.

Therefore, the second Frenet vector of the rectifying slant helix β makes the constant angle θ = arccos( 12 ) with
e7. The curvature functions of the curve β are

kβ1 (t) =

√
14
5

(t2 + 1)
3/2

,

kβ2 (t) =

√
235t2 + 39

√
70 (t2 + 1)

3/2
,

kβ3 =

√
15
14

√
25239t2 + 11323

√
t2 + 1 (235t2 + 39)

,

kβ4 (t) =

√
546
√
235t2 + 39

√
6086t2 + 335

(t2 + 1) (25239t2 + 11323)
,

kβ5 (t) =

√
10
13

√
595t2 + 271

√
25239t2 + 11323

6086t4 + 6421t2 + 335
,

kβ6 (t) =
4
√

35
13 t
√
6086t2 + 335

595t4 + 866t2 + 271
.

By means of the methods that introduced in this work, we can find different families of slant helices which
lie on other hypersurfaces.
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