FURTHER INEQUALITIES FOR THE GENERALIZED k - g-FRACTIONAL INTEGRALS OF FUNCTIONS WITH BOUNDED VARIATION

SILVESTRU SEVER DRAGOMIR

Abstract

Let g be a strictly increasing function on (a, b), having a continuous derivative g^{\prime} on (a, b). For the Lebesgue integrable function $f:(a, b) \rightarrow \mathbb{C}$, we define the k - g-left-sided fractional integral of f by $$
S_{k, g, a+} f(x)=\int_{a}^{x} k(g(x)-g(t)) g^{\prime}(t) f(t) d t, x \in(a, b]
$$ and the k-g-right-sided fractional integral of f by $$
S_{k, g, b-} f(x)=\int_{x}^{b} k(g(t)-g(x)) g^{\prime}(t) f(t) d t, x \in[a, b),
$$ where the kernel k is defined either on $(0, \infty)$ or on $[0, \infty)$ with complex values and integrable on any finite subinterval.

In this paper we establish some new inequalities for the k - g-fractional integrals of functions of bounded variation.Examples for the generalized left- and right-sided Riemann-Liouville fractional integrals of a function f with respect to another function g and a general exponential fractional integral are also provided.

1. Introduction

Assume that the kernel k is defined either on $(0, \infty)$ or on $[0, \infty)$ with complex values and integrable on any finite subinterval. We define the function $K:[0, \infty) \rightarrow$ \mathbb{C} by

$$
K(t):=\left\{\begin{array}{l}
\int_{0}^{t} k(s) d s \text { if } 0<t \\
0 \text { if } t=0
\end{array}\right.
$$

[^0]As a simple example, if $k(t)=t^{\alpha-1}$ then for $\alpha \in(0,1)$ the function k is defined on $(0, \infty)$ and $K(t):=\frac{1}{\alpha} t^{\alpha}$ for $t \in[0, \infty)$. If $\alpha \geq 1$, then k is defined on $[0, \infty)$ and $K(t):=\frac{1}{\alpha} t^{\alpha}$ for $t \in[0, \infty)$.

Let g be a strictly increasing function on (a, b), having a continuous derivative g^{\prime} on (a, b). For the Lebesgue integrable function $f:(a, b) \rightarrow \mathbb{C}$, we define the k-g-left-sided fractional integral of f by

$$
\begin{equation*}
S_{k, g, a+} f(x)=\int_{a}^{x} k(g(x)-g(t)) g^{\prime}(t) f(t) d t, x \in(a, b] \tag{1}
\end{equation*}
$$

and the k-g-right-sided fractional integral of f by

$$
\begin{equation*}
S_{k, g, b-} f(x)=\int_{x}^{b} k(g(t)-g(x)) g^{\prime}(t) f(t) d t, x \in[a, b) \tag{2}
\end{equation*}
$$

If we take $k(t)=\frac{1}{\Gamma(\alpha)} t^{\alpha-1}$, where Γ is the Gamma function, then

$$
\begin{align*}
S_{k, g, a+} f(x) & =\frac{1}{\Gamma(\alpha)} \int_{a}^{x}[g(x)-g(t)]^{\alpha-1} g^{\prime}(t) f(t) d t \tag{3}\\
& =: I_{a+, g}^{\alpha} f(x), a<x \leq b
\end{align*}
$$

and

$$
\begin{align*}
S_{k, g, b-} f(x) & =\frac{1}{\Gamma(\alpha)} \int_{x}^{b}[g(t)-g(x)]^{\alpha-1} g^{\prime}(t) f(t) d t \tag{4}\\
& =: I_{b-, g}^{\alpha} f(x), a \leq x<b
\end{align*}
$$

which are the generalized left- and right-sided Riemann-Liouville fractional integrals of a function f with respect to another function g on $[a, b]$ as defined in [23, p. 100].

For $g(t)=t$ in (4) we have the classical Riemann-Liouville fractional integrals while for the logarithmic function $g(t)=\ln t$ we have the Hadamard fractional integrals [23, p. 111]

$$
\begin{equation*}
H_{a+}^{\alpha} f(x):=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}\left[\ln \left(\frac{x}{t}\right)\right]^{\alpha-1} \frac{f(t) d t}{t}, 0 \leq a<x \leq b \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{b-}^{\alpha} f(x):=\frac{1}{\Gamma(\alpha)} \int_{x}^{b}\left[\ln \left(\frac{t}{x}\right)\right]^{\alpha-1} \frac{f(t) d t}{t}, 0 \leq a<x<b \tag{6}
\end{equation*}
$$

One can consider the function $g(t)=-t^{-1}$ and define the "Harmonic fractional integrals" by

$$
\begin{equation*}
R_{a+}^{\alpha} f(x):=\frac{x^{1-\alpha}}{\Gamma(\alpha)} \int_{a}^{x} \frac{f(t) d t}{(x-t)^{1-\alpha} t^{\alpha+1}}, 0 \leq a<x \leq b \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{b-}^{\alpha} f(x):=\frac{x^{1-\alpha}}{\Gamma(\alpha)} \int_{x}^{b} \frac{f(t) d t}{(t-x)^{1-\alpha} t^{\alpha+1}}, 0 \leq a<x<b \tag{8}
\end{equation*}
$$

Also, for $g(t)=\exp (\beta t), \beta>0$, we can consider the $" \beta$-Exponential fractional integrals"

$$
\begin{equation*}
E_{a+, \beta}^{\alpha} f(x):=\frac{\beta}{\Gamma(\alpha)} \int_{a}^{x}[\exp (\beta x)-\exp (\beta t)]^{\alpha-1} \exp (\beta t) f(t) d t \tag{9}
\end{equation*}
$$

for $a<x \leq b$ and

$$
\begin{equation*}
E_{b-, \beta}^{\alpha} f(x):=\frac{\beta}{\Gamma(\alpha)} \int_{x}^{b}[\exp (\beta t)-\exp (\beta x)]^{\alpha-1} \exp (\beta t) f(t) d t \tag{10}
\end{equation*}
$$

for $a \leq x<b$.
If we take $g(t)=t$ in (1) and (2), then we can consider the following k-fractional integrals

$$
\begin{equation*}
S_{k, a+} f(x)=\int_{a}^{x} k(x-t) f(t) d t, x \in(a, b] \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{k, b-} f(x)=\int_{x}^{b} k(t-x) f(t) d t, x \in[a, b) \tag{12}
\end{equation*}
$$

In [26], Raina studied a class of functions defined formally by

$$
\begin{equation*}
\mathcal{F}_{\rho, \lambda}^{\sigma}(x):=\sum_{k=0}^{\infty} \frac{\sigma(k)}{\Gamma(\rho k+\lambda)} x^{k},|x|<R, \text { with } R>0 \tag{13}
\end{equation*}
$$

for $\rho, \lambda>0$ where the coefficients $\sigma(k)$ generate a bounded sequence of positive real numbers. With the help of $\sqrt[13]{ }$, Raina defined the following left-sided fractional integral operator

$$
\begin{equation*}
\mathcal{J}_{\rho, \lambda, a+; w}^{\sigma} f(x):=\int_{a}^{x}(x-t)^{\lambda-1} \mathcal{F}_{\rho, \lambda}^{\sigma}\left(w(x-t)^{\rho}\right) f(t) d t, x>a \tag{14}
\end{equation*}
$$

where $\rho, \lambda>0, w \in \mathbb{R}$ and f is such that the integral on the right side exists.
In [1], the right-sided fractional operator was also introduced as

$$
\begin{equation*}
\mathcal{J}_{\rho, \lambda, b-; w}^{\sigma} f(x):=\int_{x}^{b}(t-x)^{\lambda-1} \mathcal{F}_{\rho, \lambda}^{\sigma}\left(w(t-x)^{\rho}\right) f(t) d t, x<b \tag{15}
\end{equation*}
$$

where $\rho, \lambda>0, w \in \mathbb{R}$ and f is such that the integral on the right side exists. Several Ostrowski type inequalities were also established.

We observe that for $k(t)=t^{\lambda-1} \mathcal{F}_{\rho, \lambda}^{\sigma}\left(w t^{\rho}\right)$ we re-obtain the definitions of 14 and $\sqrt{15}$ from (11) and (12).

In [24, Kirane and Torebek introduced the following exponential fractional integrals

$$
\begin{equation*}
\mathcal{T}_{a+}^{\alpha} f(x):=\frac{1}{\alpha} \int_{a}^{x} \exp \left\{-\frac{1-\alpha}{\alpha}(x-t)\right\} f(t) d t, x>a \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{T}_{b-}^{\alpha} f(x):=\frac{1}{\alpha} \int_{x}^{b} \exp \left\{-\frac{1-\alpha}{\alpha}(t-x)\right\} f(t) d t, x<b \tag{17}
\end{equation*}
$$

where $\alpha \in(0,1)$.
We observe that for $k(t)=\frac{1}{\alpha} \exp \left(-\frac{1-\alpha}{\alpha} t\right), t \in \mathbb{R}$ we re-obtain the definitions of (16) and (17) from (11) and (12).

Let g be a strictly increasing function on (a, b), having a continuous derivative g^{\prime} on (a, b). We can define the more general exponential fractional integrals

$$
\begin{equation*}
\mathcal{T}_{g, a+}^{\alpha} f(x):=\frac{1}{\alpha} \int_{a}^{x} \exp \left\{-\frac{1-\alpha}{\alpha}(g(x)-g(t))\right\} g^{\prime}(t) f(t) d t, x>a \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{T}_{g, b-}^{\alpha} f(x):=\frac{1}{\alpha} \int_{x}^{b} \exp \left\{-\frac{1-\alpha}{\alpha}(g(t)-g(x))\right\} g^{\prime}(t) f(t) d t, x<b \tag{19}
\end{equation*}
$$

where $\alpha \in(0,1)$.
Let g be a strictly increasing function on (a, b), having a continuous derivative g^{\prime} on (a, b). Assume that $\alpha>0$. We can also define the logarithmic fractional integrals

$$
\begin{equation*}
\mathcal{L}_{g, a+}^{\alpha} f(x):=\int_{a}^{x}(g(x)-g(t))^{\alpha-1} \ln (g(x)-g(t)) g^{\prime}(t) f(t) d t \tag{20}
\end{equation*}
$$

for $0<a<x \leq b$ and

$$
\begin{equation*}
\mathcal{L}_{g, b-}^{\alpha} f(x):=\int_{x}^{b}(g(t)-g(x))^{\alpha-1} \ln (g(t)-g(x)) g^{\prime}(t) f(t) d t \tag{21}
\end{equation*}
$$

for $0<a \leq x<b$, where $\alpha>0$. These are obtained from (11) and for the kernel $k(t)=t^{\alpha-1} \ln t, t>0$.

For $\alpha=1$ we get

$$
\begin{equation*}
\mathcal{L}_{g, a+} f(x):=\int_{a}^{x} \ln (g(x)-g(t)) g^{\prime}(t) f(t) d t, 0<a<x \leq b \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{L}_{g, b-} f(x):=\int_{x}^{b} \ln (g(t)-g(x)) g^{\prime}(t) f(t) d t, 0<a \leq x<b \tag{23}
\end{equation*}
$$

For $g(t)=t$, we have the simple forms

$$
\begin{gather*}
\mathcal{L}_{a+}^{\alpha} f(x):=\int_{a}^{x}(x-t)^{\alpha-1} \ln (x-t) f(t) d t, 0<a<x \leq b, \tag{24}\\
\mathcal{L}_{b-}^{\alpha} f(x) \tag{25}\\
:=\int_{x}^{b}(t-x)^{\alpha-1} \ln (t-x) f(t) d t, 0<a \leq x<b \tag{26}\\
\mathcal{L}_{a+} f(x):=\int_{a}^{x} \ln (x-t) f(t) d t, 0<a<x \leq b
\end{gather*}
$$

and

$$
\begin{equation*}
\mathcal{L}_{b-} f(x):=\int_{x}^{b} \ln (t-x) f(t) d t, 0<a \leq x<b \tag{27}
\end{equation*}
$$

For several Ostrowski type inequalities for Riemann-Liouville fractional integrals see [2]-17], 21]-34] and the references therein.

For k and g as at the beginning of Introduction, we consider the mixed operator

$$
\begin{align*}
& S_{k, g, a+, b-} f(x) \tag{28}\\
& :=\frac{1}{2}\left[S_{k, g, a+} f(x)+S_{k, g, b-} f(x)\right] \\
& =\frac{1}{2}\left[\int_{a}^{x} k(g(x)-g(t)) g^{\prime}(t) f(t) d t+\int_{x}^{b} k(g(t)-g(x)) g^{\prime}(t) f(t) d t\right]
\end{align*}
$$

for the Lebesgue integrable function $f:(a, b) \rightarrow \mathbb{C}$ and $x \in(a, b)$.
We also define the function $\mathbf{K}:[0, \infty) \rightarrow[0, \infty)$ by

$$
\mathbf{K}(t):=\left\{\begin{array}{l}
\int_{0}^{t}|k(s)| d s \text { if } 0<t \\
0 \text { if } t=0
\end{array}\right.
$$

In the recent paper [19] we obtained the following result for functions of bounded variation:

Theorem 1. Assume that the kernel k is defined either on $(0, \infty)$ or on $[0, \infty)$ with complex values and integrable on any finite subinterval. Let $f:[a, b] \rightarrow \mathbb{C}$ be a function of bounded variation on $[a, b]$ and g be a strictly increasing function on (a, b), having a continuous derivative g^{\prime} on (a, b). Then we have the Ostrowski type inequality

$$
\begin{align*}
& \left|S_{k, g, a+, b-} f(x)-\frac{1}{2}[K(g(b)-g(x))+K(g(x)-g(a))] f(x)\right| \\
& \leq \frac{1}{2}\left[\int_{x}^{b}|k(g(t)-g(x))| \bigvee_{x}^{t}(f) g^{\prime}(t) d t+\int_{a}^{x}|k(g(x)-g(t))| \bigvee_{t}^{x}(f) g^{\prime}(t) d t\right] \\
& \leq \frac{1}{2}\left[\mathbf{K}(g(b)-g(x)) \bigvee_{x}^{b}(f)+\mathbf{K}(g(x)-g(a)) \bigvee_{a}^{x}(f)\right] \\
& \leq \frac{1}{2}\left\{\begin{array}{l}
{\left[\mathbf{K}^{p}(g(b)-g(x))+\mathbf{K}^{p}(g(x)-g(a))\right]^{1 / p}\left(\left(\bigvee_{a}^{x}(f)\right)^{q}+\left(\bigvee_{x}^{b}(f)\right)^{q}\right)^{1 / q}} \\
\text { with } p, q>1, \frac{1}{p}+\frac{1}{q}=1 ; \\
{[\mathbf{K}(g(b)-g(x))+\mathbf{K}(g(x)-g(a))]\left[\frac{1}{2} \bigvee_{a}^{b}(f)+\frac{1}{2}\left|\bigvee_{a}^{x}(f)-\bigvee_{x}^{b}(f)\right|\right]}
\end{array}\right. \tag{29}
\end{align*}
$$

and the trapezoid type inequality

$$
\left|S_{k, g, a+, b-} f(x)-\frac{1}{2}[K(g(b)-g(x)) f(b)+K(g(x)-g(a)) f(a)]\right|
$$

$$
\left.\left.\begin{array}{l}
\leq \frac{1}{2}\left[\int_{a}^{x}|k(g(x)-g(t))| \bigvee_{a}^{t}(f) g^{\prime}(t) d t+\int_{x}^{b}|k(g(t)-g(x))| \bigvee_{t}^{b}(f) g^{\prime}(t) d t\right] \\
\leq \frac{1}{2}\left[\mathbf{K}(g(b)-g(x)) \bigvee_{x}^{b}(f)+\mathbf{K}(g(x)-g(a)) \bigvee_{a}^{x}(f)\right]
\end{array}\right] \begin{array}{l}
\max \{\mathbf{K}(g(b)-g(x)), \mathbf{K}(g(x)-g(a))\} \bigvee_{a}^{b}(f) \\
\leq \frac{1}{2}\left\{\begin{array}{l}
{\left[\mathbf{K}^{p}(g(b)-g(x))+\mathbf{K}^{p}(g(x)-g(a))\right]^{1 / p}} \\
\times\left(\left(\bigvee_{a}^{x}(f)\right)^{q}+\left(\bigvee_{x}^{b}(f)\right)^{q}\right)^{1 / q} \\
\text { with } p, q>1, \frac{1}{p}+\frac{1}{q}=1 ;
\end{array}\right. \\
{[\mathbf{K}(g(b)-g(x))+\mathbf{K}(g(x)-g(a))]} \tag{30}\\
\times\left[\frac{1}{2} \bigvee_{a}^{b}(f)+\frac{1}{2}\left|\bigvee_{a}^{x}(f)-\bigvee_{x}^{b}(f)\right|\right]
\end{array}\right]
$$

for any $x \in(a, b)$, where $\bigvee_{c}^{d}(f)$ denoted the total variation on the interval $[c, d]$.
Observe that

$$
\begin{equation*}
S_{k, g, x+} f(b)=\int_{x}^{b} k(g(b)-g(t)) g^{\prime}(t) f(t) d t, x \in[a, b) \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{k, g, x-} f(a)=\int_{a}^{x} k(g(t)-g(a)) g^{\prime}(t) f(t) d t, x \in(a, b] . \tag{32}
\end{equation*}
$$

We can define also the mixed operator

$$
\begin{align*}
& \breve{S}_{k, g, a+, b-} f(x) \tag{33}\\
& :=\frac{1}{2}\left[S_{k, g, x+} f(b)+S_{k, g, x-} f(a)\right] \\
& =\frac{1}{2}\left[\int_{x}^{b} k(g(b)-g(t)) g^{\prime}(t) f(t) d t+\int_{a}^{x} k(g(t)-g(a)) g^{\prime}(t) f(t) d t\right]
\end{align*}
$$

for any $x \in(a, b)$.
In this paper we establish some inequalities for the k - g-fractional integrals of functions with bounded variation $f:[a, b] \rightarrow \mathbb{C}$ that provide error bounds in approximating the composite operators $S_{k, g, a+, b-} f$ and $\breve{S}_{k, g, a+, b-} f$ in terms of the double trapezoid rule

$$
\frac{1}{2}\left[\frac{f(x)+f(b)}{2} K(g(b)-g(x))+\frac{f(a)+f(x)}{2} K(g(x)-g(a))\right], x \in(a, b) .
$$

Examples for the generalized left- and right-sided Riemann-Liouville fractional integrals of a function f with respect to another function g and a general exponential fractional integral are also provided.

2. Further Inequalities for Functions of BV

The following two parameters representation for the operators $S_{k, g, a+, b-}$ and $\breve{S}_{k, g, a+, b-}$ hold [20]:

Lemma 2. Assume that the kernel k is defined either on $(0, \infty)$ or on $[0, \infty)$ with complex values and integrable on any finite subinterval. Let $f:[a, b] \rightarrow \mathbb{C}$ be an integrable function on $[a, b]$ and g be a strictly increasing function on (a, b), having a continuous derivative g^{\prime} on (a, b). Then

$$
\begin{align*}
S_{k, g, a+, b-} f(x) & =\frac{1}{2}[\gamma K(g(b)-g(x))+\lambda K(g(x)-g(a))] \tag{34}\\
& +\frac{1}{2} \int_{a}^{x} k(g(x)-g(t)) g^{\prime}(t)[f(t)-\lambda] d t \\
& +\frac{1}{2} \int_{x}^{b} k(g(t)-g(x)) g^{\prime}(t)[f(t)-\gamma] d t
\end{align*}
$$

and

$$
\begin{align*}
\breve{S}_{k, g, a+, b-} f(x) & =\frac{1}{2}[\lambda K(g(b)-g(x))+\gamma K(g(x)-g(a))] \tag{35}\\
& +\frac{1}{2} \int_{a}^{x} k(g(t)-g(a)) g^{\prime}(t)[f(t)-\gamma] d t \\
& +\frac{1}{2} \int_{x}^{b} k(g(b)-g(t)) g^{\prime}(t)[f(t)-\lambda] d t
\end{align*}
$$

for $x \in(a, b)$ and for any $\lambda, \gamma \in \mathbb{C}$.
Proof. We have, by taking the derivative over t and using the chain rule, that

$$
[K(g(x)-g(t))]^{\prime}=K^{\prime}(g(x)-g(t))(g(x)-g(t))^{\prime}=-k(g(x)-g(t)) g^{\prime}(t)
$$

for $t \in(a, x)$ and

$$
[K(g(t)-g(x))]^{\prime}=K^{\prime}(g(t)-g(x))(g(t)-g(x))^{\prime}=k(g(t)-g(x)) g^{\prime}(t)
$$

for $t \in(x, b)$.
Therefore, for any $\lambda, \gamma \in \mathbb{C}$ we have

$$
\begin{align*}
& \int_{a}^{x} k(g(x)-g(t)) g^{\prime}(t)[f(t)-\lambda] d t \tag{36}\\
& =\int_{a}^{x} k(g(x)-g(t)) g^{\prime}(t) f(t) d t-\lambda \int_{a}^{x} k(g(x)-g(t)) g^{\prime}(t) d t \\
& =S_{k, g, a+} f(x)+\lambda \int_{a}^{x}[K(g(x)-g(t))]^{\prime} d t \\
& =S_{k, g, a+} f(x)+\left.\lambda[K(g(x)-g(t))]\right|_{a} ^{x}=S_{k, g, a+} f(x)-\lambda K(g(x)-g(a))
\end{align*}
$$

and

$$
\begin{align*}
& \int_{x}^{b} k(g(t)-g(x)) g^{\prime}(t)[f(t)-\gamma] d t \tag{37}\\
& =\int_{x}^{b} k(g(t)-g(x)) g^{\prime}(t) f(t) d t-\gamma \int_{x}^{b} k(g(t)-g(x)) g^{\prime}(t) d t \\
& =S_{k, g, b-} f(x)-\gamma \int_{x}^{b}[K(g(t)-g(x))]^{\prime} d t \\
& =S_{k, g, b-} f(x)-\left.\gamma[K(g(t)-g(x))]\right|_{x} ^{b}=S_{k, g, b-} f(x)-\gamma K(g(b)-g(x))
\end{align*}
$$

for $x \in(a, b)$.
If we add the equalities (36) and (37) and divide by 2 then we get the desired result (34).

Moreover, by taking the derivative over t and using the chain rule, we have that

$$
[K(g(b)-g(t))]^{\prime}=K^{\prime}(g(b)-g(t))(g(b)-g(t))^{\prime}=-k(g(b)-g(t)) g^{\prime}(t)
$$

for $t \in(x, b)$ and

$$
[K(g(t)-g(a))]^{\prime}=K^{\prime}(g(t)-g(a))(g(t)-g(a))^{\prime}=k(g(t)-g(a)) g^{\prime}(t)
$$

for $t \in(a, x)$.
For any $\lambda, \gamma \in \mathbb{C}$ we have

$$
\begin{align*}
& \int_{x}^{b} k(g(b)-g(t)) g^{\prime}(t)[f(t)-\lambda] d t \tag{38}\\
& =\int_{x}^{b} k(g(b)-g(t)) g^{\prime}(t) f(t) d t-\lambda \int_{x}^{b} k(g(b)-g(t)) g^{\prime}(t) d t \\
& =S_{k, g, x+} f(b)+\lambda \int_{x}^{b}[K(g(b)-g(t))]^{\prime} d t \\
& =S_{k, g, x+} f(b)-\lambda K(g(b)-g(x))
\end{align*}
$$

and

$$
\begin{align*}
& \int_{a}^{x} k(g(t)-g(a)) g^{\prime}(t)[f(t)-\gamma] d t \tag{39}\\
& =\int_{a}^{x} k(g(t)-g(a)) g^{\prime}(t) f(t) d t-\gamma \int_{a}^{x} k(g(t)-g(a)) g^{\prime}(t) d t \\
& =\int_{a}^{x} k(g(t)-g(a)) g^{\prime}(t) f(t) d t-\gamma \int_{a}^{x}[K(g(t)-g(a))]^{\prime} d t \\
& =\int_{a}^{x} k(g(t)-g(a)) g^{\prime}(t) f(t) d t-\gamma K(g(x)-g(a))
\end{align*}
$$

for $x \in(a, b)$.
If we add the equalities (38) and (39) and divide by 2 then we get the desired result (35).

If g is a function which maps an interval I of the real line to the real numbers, and is both continuous and injective then we can define the g-mean of two numbers $a, b \in I$ as

$$
M_{g}(a, b):=g^{-1}\left(\frac{g(a)+g(b)}{2}\right)
$$

If $I=\mathbb{R}$ and $g(t)=t$ is the identity function, then $M_{g}(a, b)=A(a, b):=\frac{a+b}{2}$, the arithmetic mean. If $I=(0, \infty)$ and $g(t)=\ln t$, then $M_{g}(a, b)=G(a, b):=\sqrt{a b}$, the geometric mean. If $I=(0, \infty)$ and $g(t)=\frac{1}{t}$, then $M_{g}(a, b)=H(a, b):=$ $\frac{2 a b}{a+b}$, the harmonic mean. If $I=(0, \infty)$ and $g(t)=t^{p}, p \neq 0$, then $M_{g}(a, b)=$ $M_{p}(a, b):=\left(\frac{a^{p}+b^{p}}{2}\right)^{1 / p}$, the power mean with exponent p. Finally, if $I=\mathbb{R}$ and $g(t)=\exp t$, then

$$
M_{g}(a, b)=L M E(a, b):=\ln \left(\frac{\exp a+\exp b}{2}\right)
$$

the LogMeanExp function.
Using the g-mean of two numbers we can introduce

$$
\begin{align*}
P_{k, g, a+, b-} f & :=S_{k, g, a+, b-} f\left(M_{g}(a, b)\right) \tag{40}\\
& =\frac{1}{2} \int_{a}^{M_{g}(a, b)} k\left(\frac{g(a)+g(b)}{2}-g(t)\right) g^{\prime}(t) f(t) d t \\
& +\frac{1}{2} \int_{M_{g}(a, b)}^{b} k\left(g(t)-\frac{g(a)+g(b)}{2}\right) g^{\prime}(t) f(t) d t
\end{align*}
$$

Using the representation (34) we have

$$
\begin{align*}
P_{k, g, a+, b-} f & =K\left(\frac{g(b)-g(a)}{2}\right) \frac{\gamma+\lambda}{2} \tag{41}\\
& +\frac{1}{2} \int_{a}^{M_{g}(a, b)} k\left(\frac{g(a)+g(b)}{2}-g(t)\right) g^{\prime}(t)[f(t)-\lambda] d t \\
& +\frac{1}{2} \int_{M_{g}(a, b)}^{b} k\left(g(t)-\frac{g(a)+g(b)}{2}\right) g^{\prime}(t)[f(t)-\gamma] d t
\end{align*}
$$

for any $\lambda, \gamma \in \mathbb{C}$.
Also, if

$$
\begin{align*}
\breve{P}_{k, g, a+, b-} f & :=\breve{S}_{k, g, a+, b-} f\left(M_{g}(a, b)\right) \tag{42}\\
& =\frac{1}{2} \int_{M_{g}(a, b)}^{b} k(g(b)-g(t)) g^{\prime}(t) f(t) d t \\
& +\frac{1}{2} \int_{a}^{M_{g}(a, b)} k(g(t)-g(a)) g^{\prime}(t) f(t) d t .
\end{align*}
$$

then by we get

$$
\begin{align*}
\breve{P}_{k, g, a+, b-} f & =K\left(\frac{g(b)-g(a)}{2}\right) \frac{\gamma+\lambda}{2} \tag{43}\\
& +\frac{1}{2} \int_{a}^{M_{g}(a, b)} k(g(t)-g(a)) g^{\prime}(t)[f(t)-\gamma] d t \\
& +\frac{1}{2} \int_{M_{g}(a, b)}^{b} k(g(b)-g(t)) g^{\prime}(t)[f(t)-\lambda] d t
\end{align*}
$$

for any $\lambda, \gamma \in \mathbb{C}$.
Theorem 3. Assume that the kernel k is defined either on $(0, \infty)$ or on $[0, \infty)$ with complex values and integrable on any finite subinterval. Let $f:[a, b] \rightarrow \mathbb{C}$ be a function of bounded variation on $[a, b]$ and g be a strictly increasing function on (a, b), having a continuous derivative g^{\prime} on (a, b). Then we have the double trapezoid inequalities

$$
\begin{align*}
& \mid S_{k, g, a+, b-} f(x) \\
& \left.-\frac{1}{2}\left[\frac{f(x)+f(b)}{2} K(g(b)-g(x))+\frac{f(a)+f(x)}{2} K(g(x)-g(a))\right] \right\rvert\, \\
& \leq \frac{1}{4}\left[\mathbf{K}(g(x)-g(a)) \bigvee_{a}^{x}(f)+\mathbf{K}(g(b)-g(x)) \bigvee_{x}^{b}(f)\right] \\
& \leq \frac{1}{4}\left\{\begin{array}{l}
{\left[\mathbf{K}^{p}(g(b)-g(x))+\mathbf{K}^{p}(g(x)-g(a))\right]^{1 / p}\left(\left(\bigvee_{a}^{x}(f)\right)^{q}+\left(\bigvee_{x}^{b}(f)\right)^{q}\right)^{1 / q}} \\
\text { with } p, q>1, \frac{1}{p}+\frac{1}{q}=1 ; \\
{[\mathbf{K}(g(b)-g(x))+\mathbf{K}(g(x)-g(a))]\left[\frac{1}{2} \bigvee_{a}^{b}(f)+\frac{1}{2}\left|\bigvee_{a}^{x}(f)-\bigvee_{x}^{b}(f)\right|\right]}
\end{array}\right. \tag{44}
\end{align*}
$$

and

$$
\begin{aligned}
& \mid \breve{S}_{k, g, a+, b-} f(x) \\
& \left.-\frac{1}{2}\left[\frac{f(x)+f(b)}{2} K(g(b)-g(x))+\frac{f(a)+f(x)}{2} K(g(x)-g(a))\right] \right\rvert\, \\
& \quad \leq \frac{1}{4}\left[\mathbf{K}(g(x)-g(a)) \bigvee_{a}^{x}(f)+\mathbf{K}(g(b)-g(x)) \bigvee_{x}^{b}(f)\right]
\end{aligned}
$$

$$
\leq \frac{1}{4}\left\{\begin{array}{l}
\max \{\mathbf{K}(g(b)-g(x)), \mathbf{K}(g(x)-g(a))\} \bigvee_{a}^{b}(f) ; \tag{45}\\
{\left[\mathbf{K}^{p}(g(b)-g(x))+\mathbf{K}^{p}(g(x)-g(a))\right]^{1 / p}\left(\left(\bigvee_{a}^{x}(f)\right)^{q}+\left(\bigvee_{x}^{b}(f)\right)^{q}\right)^{1 / q}} \\
\text { with } p, q>1, \frac{1}{p}+\frac{1}{q}=1 ; \\
{[\mathbf{K}(g(b)-g(x))+\mathbf{K}(g(x)-g(a))]\left[\frac{1}{2} \bigvee_{a}^{b}(f)+\frac{1}{2}\left|\bigvee_{a}^{x}(f)-\bigvee_{x}^{b}(f)\right|\right]}
\end{array}\right.
$$

for $x \in(a, b)$.
Proof. Using the identity (34) for $\lambda=\frac{f(a)+f(x)}{2}$ and $\gamma=\frac{f(x)+f(b)}{2}$ we have

$$
\begin{align*}
& S_{k, g, a+, b-} f(x) \tag{46}\\
& =\frac{1}{2}\left[\frac{f(x)+f(b)}{2} K(g(b)-g(x))+\frac{f(a)+f(x)}{2} K(g(x)-g(a))\right] \\
& +\frac{1}{2} \int_{a}^{x} k(g(x)-g(t)) g^{\prime}(t)\left[f(t)-\frac{f(a)+f(x)}{2}\right] d t \\
& +\frac{1}{2} \int_{x}^{b} k(g(t)-g(x)) g^{\prime}(t)\left[f(t)-\frac{f(x)+f(b)}{2}\right] d t
\end{align*}
$$

for $x \in(a, b)$.
Since f is of bounded variation, then

$$
\begin{aligned}
\left|f(t)-\frac{f(a)+f(x)}{2}\right| & =\left|\frac{f(t)-f(a)+f(t)-f(x)}{2}\right| \\
& \leq \frac{1}{2}[|f(t)-f(a)|+|f(x)-f(t)|] \leq \frac{1}{2} \bigvee_{a}^{x}(f)
\end{aligned}
$$

and

$$
\begin{aligned}
\left|f(t)-\frac{f(x)+f(b)}{2}\right| & =\left|\frac{f(t)-f(x)+f(t)-f(b)}{2}\right| \\
& \leq \frac{1}{2}[|f(t)-f(x)|+|f(b)-f(t)|] \leq \frac{1}{2} \bigvee_{x}^{b}(f)
\end{aligned}
$$

for $x \in(a, b)$.
Using the equality 46) we have

$$
\begin{aligned}
& \mid S_{k, g, a+, b-} f(x) \\
& \left.-\frac{1}{2}\left[\frac{f(x)+f(b)}{2} K(g(b)-g(x))+\frac{f(a)+f(x)}{2} K(g(x)-g(a))\right] \right\rvert\, \\
& \quad \leq \frac{1}{2}\left|\int_{a}^{x} k(g(x)-g(t)) g^{\prime}(t)\left[f(t)-\frac{f(a)+f(x)}{2}\right] d t\right|
\end{aligned}
$$

$$
\begin{array}{r}
+\frac{1}{2}\left|\int_{x}^{b} k(g(t)-g(x)) g^{\prime}(t)\left[f(t)-\frac{f(x)+f(b)}{2}\right] d t\right| \\
\leq \frac{1}{2} \int_{a}^{x}|k(g(x)-g(t))|\left|f(t)-\frac{f(a)+f(x)}{2}\right| g^{\prime}(t) d t \\
\\
+\frac{1}{2} \int_{x}^{b}|k(g(t)-g(x))|\left|f(t)-\frac{f(x)+f(b)}{2}\right| g^{\prime}(t) d t \\
\leq \frac{1}{4}\left[\bigvee_{a}^{x}(f) \int_{a}^{x}|k(g(x)-g(t))| g^{\prime}(t) d t+\bigvee_{x}^{b}(f) \int_{x}^{b}|k(g(t)-g(x))| g^{\prime}(t) d t\right] \tag{47}\\
=: B(x) \quad
\end{array}
$$

for $x \in(a, b)$.
We have, by taking the derivative over t and using the chain rule, that

$$
[\mathbf{K}(g(x)-g(t))]^{\prime}=\mathbf{K}^{\prime}(g(x)-g(t))(g(x)-g(t))^{\prime}=-|k(g(x)-g(t))| g^{\prime}(t)
$$

for $t \in(a, x)$ and

$$
[\mathbf{K}(g(t)-g(x))]^{\prime}=\mathbf{K}^{\prime}(g(t)-g(x))(g(t)-g(x))^{\prime}=|k(g(t)-g(x))| g^{\prime}(t)
$$

for $t \in(x, b)$.
Then

$$
\int_{a}^{x}|k(g(x)-g(t))| g^{\prime}(t) d t=-\int_{a}^{x}[\mathbf{K}(g(x)-g(t))]^{\prime} d t=\mathbf{K}(g(x)-g(a))
$$

and

$$
\int_{x}^{b}|k(g(t)-g(x))| g^{\prime}(t) d t=\int_{x}^{b}[\mathbf{K}(g(t)-g(x))]^{\prime} d t=\mathbf{K}(g(b)-g(x)) .
$$

Therefore

$$
\begin{aligned}
B(x) & =\frac{1}{4}\left[\bigvee_{a}^{x}(f) \int_{a}^{x}|k(g(x)-g(t))| g^{\prime}(t) d t+\bigvee_{x}^{b}(f) \int_{x}^{b}|k(g(t)-g(x))| g^{\prime}(t) d t\right] \\
& =\frac{1}{4}\left[\mathbf{K}(g(x)-g(a)) \bigvee_{a}^{x}(f)+\mathbf{K}(g(b)-g(x)) \bigvee_{x}^{b}(f)\right] .
\end{aligned}
$$

The last part of 44 is obvious by making use of the elementary Hölder type inequalities for positive real numbers $c, d, m, n \geq 0$

$$
m c+n d \leq\left\{\begin{array}{l}
\max \{m, n\}(c+d) \\
\left(m^{p}+n^{p}\right)^{1 / p}\left(c^{q}+d^{q}\right)^{1 / q} \text { with } p, q>1, \frac{1}{p}+\frac{1}{q}=1
\end{array}\right.
$$

Using the identity 35 for $\lambda=\frac{f(x)+f(b)}{2}$ and $\gamma=\frac{f(x)+f(a)}{2}$ we also have

$$
\mid \breve{S}_{k, g, a+, b-} f(x)
$$

$$
\begin{aligned}
&-\frac{1}{2}[\left.\frac{f(x)+f(b)}{2} K(g(b)-g(x))+\frac{f(x)+f(a)}{2} K(g(x)-g(a))\right] \mid \\
& \leq \frac{1}{2} \int_{a}^{x}|k(g(t)-g(a))|\left|f(t)-\frac{f(x)+f(a)}{2}\right| g^{\prime}(t) d t \\
&+\frac{1}{2} \int_{x}^{b}|k(g(b)-g(t))|\left|f(t)-\frac{f(x)+f(b)}{2}\right| g^{\prime}(t) d t \\
& \leq \frac{1}{4} \bigvee_{a}^{x}(f) \int_{a}^{x}|k(g(t)-g(a))| g^{\prime}(t) d t+\frac{1}{4} \bigvee_{x}^{b}(f) \int_{x}^{b}|k(g(b)-g(t))| g^{\prime}(t) d t \\
&=: C(x) .
\end{aligned}
$$

We also have, by taking the derivative over t and using the chain rule, that

$$
[\mathbf{K}(g(b)-g(t))]^{\prime}=\mathbf{K}^{\prime}(g(b)-g(t))(g(b)-g(t))^{\prime}=-|k(g(b)-g(t))| g^{\prime}(t)
$$ for $t \in(x, b)$ and

$$
[\mathbf{K}(g(t)-g(a))]^{\prime}=\mathbf{K}^{\prime}(g(t)-g(a))(g(t)-g(a))^{\prime}=|k(g(t)-g(a))| g^{\prime}(t)
$$

for $t \in(a, x)$.
Therefore

$$
\int_{a}^{x}|k(g(t)-g(a))| g^{\prime}(t) d t=\mathbf{K}(g(x)-g(a))
$$

and

$$
\int_{x}^{b}|k(g(b)-g(t))| g^{\prime}(t) d t=\mathbf{K}(g(b)-g(x))
$$

giving that

$$
C(x)=\frac{1}{4} \bigvee_{a}^{x}(f) \mathbf{K}(g(x)-g(a))+\frac{1}{4} \bigvee_{x}^{b}(f) \mathbf{K}(g(b)-g(x))
$$

for $x \in(a, b)$, and the inequality 45 is thus proved.
Corollary 4. With the assumptions of Theorem 3 we have

$$
\begin{align*}
& \left|P_{k, g, a+, b-} f-\frac{1}{2} K\left(\frac{g(b)-g(a)}{2}\right)\left[f\left(M_{g}(a, b)\right)+\frac{f(a)+f(b)}{2}\right]\right| \tag{48}\\
& \leq \frac{1}{4} \mathbf{K}\left(\frac{g(b)-g(a)}{2}\right) \bigvee_{a}^{b}(f)
\end{align*}
$$

and

$$
\begin{align*}
& \left|\breve{P}_{k, g, a+, b-} f-\frac{1}{2} K\left(\frac{g(b)-g(a)}{2}\right)\left[f\left(M_{g}(a, b)\right)+\frac{f(a)+f(b)}{2}\right]\right| \tag{49}\\
& \leq \frac{1}{4} \mathbf{K}\left(\frac{g(b)-g(a)}{2}\right) \bigvee_{a}^{b}(f) .
\end{align*}
$$

If we take $x=\frac{a+b}{2}$ in 44 and 45 , then we get

$$
\begin{align*}
& S_{k, g, a+, b-} f\left(\frac{a+b}{2}\right)-\frac{f\left(\frac{a+b}{2}\right)+f(b)}{4} K\left(g(b)-g\left(\frac{a+b}{2}\right)\right) \\
& \left.-\frac{f(a)+f\left(\frac{a+b}{2}\right)}{4} K\left(g\left(\frac{a+b}{2}\right)-g(a)\right) \right\rvert\, \\
& \leq \frac{1}{4}\left[\mathbf{K}\left(g\left(\frac{a+b}{2}\right)-g(a)\right) \bigvee_{a}^{\frac{a+b}{2}}(f)+\mathbf{K}\left(g(b)-g\left(\frac{a+b}{2}\right)\right) \bigvee_{\frac{a+b}{2}}^{b}(f)\right] \\
& \leq \frac{1}{4}\left\{\begin{array}{l}
{\left[\mathbf{K}^{p}\left(g(b)-g\left(\frac{a+b}{2}\right)\right)+\mathbf{K}^{p}\left(g\left(\frac{a+b}{2}\right)-g(a)\right)\right]^{1 / p}} \\
\left(\left(\bigvee_{a}^{\frac{a+b}{2}}(f)\right)^{q}+\left(\bigvee_{\frac{a+b}{2}}^{b}(f)\right)^{q}\right)^{1 / q} \\
\operatorname{with}^{2}, q>1, \frac{1}{p}+\frac{1}{q}=1 ; \\
{\left[\mathbf{K}\left(g(b)-g\left(\frac{a+b}{2}\right)\right)+\mathbf{K}\left(g\left(\frac{a+b}{2}\right)-g(a)\right)\right]} \\
{\left[\frac{1}{2} \bigvee_{a}^{b}(f)+\frac{1}{2}\left|\bigvee_{a}^{\frac{a+b}{2}}(f)-\bigvee_{\frac{a+b}{2}}^{b}(f)\right|\right]}
\end{array}\right. \tag{50}
\end{align*}
$$

and

$$
\begin{aligned}
& \left\lvert\, \breve{S}_{k, g, a+, b-} f\left(\frac{a+b}{2}\right)-\frac{f\left(\frac{a+b}{2}\right)+f(b)}{4} K\left(g(b)-g\left(\frac{a+b}{2}\right)\right)\right. \\
& \left.-\frac{f(a)+f\left(\frac{a+b}{2}\right)}{4} K\left(g\left(\frac{a+b}{2}\right)-g(a)\right) \right\rvert\, \\
& \leq \frac{1}{4}\left[\mathbf{K}\left(g\left(\frac{a+b}{2}\right)-g(a)\right) \bigvee_{a}^{\frac{a+b}{2}}(f)+\mathbf{K}\left(g(b)-g\left(\frac{a+b}{2}\right)\right) \bigvee_{x}^{b}(f)\right]
\end{aligned}
$$

$$
\leq \frac{1}{4}\left\{\begin{array}{l}
\max \left\{\mathbf{K}\left(g(b)-g\left(\frac{a+b}{2}\right)\right), \mathbf{K}\left(g\left(\frac{a+b}{2}\right)-g(a)\right)\right\} \bigvee_{a}^{b}(f) ; \tag{51}\\
{\left[\mathbf{K}^{p}\left(g(b)-g\left(\frac{a+b}{2}\right)\right)+\mathbf{K}^{p}\left(g\left(\frac{a+b}{2}\right)-g(a)\right)\right]^{1 / p}} \\
\left(\left(\bigvee_{a}^{\frac{a+b}{2}}(f)\right)^{q}+\left(\bigvee_{a+b}^{b}(f)\right)^{q}\right)^{1 / q} \\
\text { with } p, q>1, \frac{1}{p}+\frac{1}{q}=1 ; \\
{\left[\mathbf{K}\left(g(b)-g\left(\frac{a+b}{2}\right)\right)+\mathbf{K}\left(g\left(\frac{a+b}{2}\right)-g(a)\right)\right]} \\
{\left[\frac{1}{2} \bigvee_{a}^{b}(f)+\frac{1}{2}\left|\bigvee_{a}^{\frac{a+b}{2}}(f)-\bigvee_{\frac{a+b}{b}}^{b}(f)\right|\right]}
\end{array}\right.
$$

for $x \in(a, b)$.
We use the classical Lebesgue p-norms defined as

$$
\|h\|_{[c, d], \infty}:=\operatorname{essup}_{s \in[c, d]}|h(s)|
$$

and

$$
\|h\|_{[c, d], p}:=\left(\int_{c}^{d}|h(s)|^{p} d s\right)^{1 / p}, p \geq 1 .
$$

Using Hölder's integral inequality we have for $t>0$ that

$$
K(t)=\int_{0}^{t}|k(s)| d s \leq\left\{\begin{array}{l}
t\|k\|_{[0, t], \infty} \text { if } k \in L_{\infty}[0, t] \\
t^{1 / p}\|k\|_{[0, t], q} \text { if } k \in L_{q}[0, t], p, q>1, \frac{1}{p}+\frac{1}{q}=1 .
\end{array}\right.
$$

Therefore by the first inequality in and we get for $p, q>1, \frac{1}{p}+\frac{1}{q}=1$

$$
\begin{align*}
& \mid S_{k, g, a+, b-} f(x) \\
&-\frac{1}{2}\left[\frac{f(x)+f(b)}{2} K\right.\left.K(g(b)-g(x))+\frac{f(a)+f(x)}{2} K(g(x)-g(a))\right] \mid \\
& \leq \frac{1}{4} \bigvee_{a}^{x}(f)\left\{\begin{array}{l}
(g(x)-g(a))\|k\|_{[0, g(x)-g(a)], \infty} \\
(g(x)-g(a))^{1 / p}\|k\|_{[0, g(x)-g(a)], q}
\end{array}\right. \\
&+ \frac{1}{4} \bigvee_{x}^{b}(f)\left\{\begin{array}{l}
(g(b)-g(x))\|k\|_{[0, g(b)-g(x)], \infty} \\
(g(b)-g(x))^{1 / p}\|k\|_{[0, g(b)-g(x)], q}
\end{array}\right. \tag{52}
\end{align*}
$$

and

$$
\begin{aligned}
& \mid \breve{S}_{k, g, a+, b-} f(x) \\
& \left.\quad-\frac{1}{2}\left[\frac{f(x)+f(b)}{2} K(g(b)-g(x))+\frac{f(a)+f(x)}{2} K(g(x)-g(a))\right] \right\rvert\,
\end{aligned}
$$

$$
\begin{align*}
\leq \frac{1}{4} \bigvee_{a}^{x}(f) & \left\{\begin{array}{l}
(g(x)-g(a))\|k\|_{[0, g(x)-g(a)], \infty} \\
(g(x)-g(a))^{1 / p}\|k\|_{[0, g(x)-g(a)], q}
\end{array}\right. \\
+ & \frac{1}{4} \bigvee_{x}^{b}(f)\left\{\begin{array}{l}
(g(b)-g(x))\|k\|_{[0, g(b)-g(x)], \infty} \\
(g(b)-g(x))^{1 / p}\|k\|_{[0, g(b)-g(x)], q}
\end{array}\right. \tag{53}
\end{align*}
$$

for $x \in(a, b)$.
From 48 and 49 we also have for $p, q>1, \frac{1}{p}+\frac{1}{q}=1$ that

$$
\begin{align*}
& \left\lvert\, P_{k, g, a+, b-} f-\frac{1}{2} K\left(\frac{g(b)-g(a)}{2}\right)\right. { \left.\left[f\left(M_{g}(a, b)\right)+\frac{f(a)+f(b)}{2}\right] \right\rvert\, } \\
& \leq \frac{1}{4} \bigvee_{a}^{b}(f)\left\{\begin{array}{l}
\left(\frac{g(b)-g(a)}{2}\right)\|k\|_{\left[0, \frac{g(b)-g(a)}{2}\right], \infty} \\
\left(\frac{g(b)-g(a)}{2}\right)^{1 / p}\|k\|_{\left[0, \frac{g(b)-g(a)}{2}\right], q}
\end{array}\right. \tag{54}
\end{align*}
$$

and

$$
\begin{align*}
& \left\lvert\, \breve{P}_{k, g, a+, b-} f-\frac{1}{2} K\left(\frac{g(b)-g(a)}{2}\right)\right. { \left.\left[f\left(M_{g}(a, b)\right)+\frac{f(a)+f(b)}{2}\right] \right\rvert\, } \\
& \leq \frac{1}{4} \bigvee_{a}^{b}(f)\left\{\begin{array}{l}
\left(\frac{g(b)-g(a)}{2}\right)\|k\|_{\left[0, \frac{g(b)-g(a)}{2}\right], \infty} \\
\left(\frac{g(b)-g(a)}{2}\right)^{1 / p}\|k\|_{\left[0, \frac{g(b)-g(a)}{2}\right], q}
\end{array}\right. \tag{55}
\end{align*}
$$

3. Applications for Generalized Riemann-Liouville Fractional Integrals

If we take $k(t)=\frac{1}{\Gamma(\alpha)} t^{\alpha-1}$, where Γ is the Gamma function, then

$$
S_{k, g, a+} f(x)=I_{a+, g}^{\alpha} f(x):=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}[g(x)-g(t)]^{\alpha-1} g^{\prime}(t) f(t) d t
$$

for $a<x \leq b$ and

$$
S_{k, g, b-} f(x)=I_{b-, g}^{\alpha} f(x):=\frac{1}{\Gamma(\alpha)} \int_{x}^{b}[g(t)-g(x)]^{\alpha-1} g^{\prime}(t) f(t) d t
$$

for $a \leq x<b$, which are the generalized left- and right-sided Riemann-Liouville fractional integrals of a function f with respect to another function g on $[a, b]$ as defined in [23, p. 100].

We consider the mixed operators

$$
\begin{equation*}
I_{g, a+, b-}^{\alpha} f(x):=\frac{1}{2}\left[I_{a+, g}^{\alpha} f(x)+I_{b-, g}^{\alpha} f(x)\right] \tag{56}
\end{equation*}
$$

and

$$
\begin{equation*}
\breve{I}_{g, a+, b-}^{\alpha} f(x):=\frac{1}{2}\left[I_{x+, g}^{\alpha} f(b)+I_{x-, g}^{\alpha} f(a)\right] \tag{57}
\end{equation*}
$$

for $x \in(a, b)$.
We observe that for $\alpha>0$ we have

$$
K(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t} s^{\alpha-1} d s=\frac{t^{\alpha}}{\alpha \Gamma(\alpha)}=\frac{t^{\alpha}}{\Gamma(\alpha+1)}, t \geq 0 .
$$

If we use the inequalities 44 and 45 we get

$$
\left.\begin{array}{l}
\mid I_{g, a+, b-}^{\alpha} f(x) \\
\left.-\frac{1}{2 \Gamma(\alpha+1)}\left[\frac{f(x)+f(b)}{2}(g(b)-g(x))^{\alpha}+\frac{f(a)+f(x)}{2}(g(x)-g(a))^{\alpha}\right] \right\rvert\, \\
\leq \frac{1}{4 \Gamma(\alpha+1)}\left[(g(x)-g(a))^{\alpha} \bigvee_{a}^{x}(f)+(g(b)-g(x))^{\alpha} \bigvee_{x}^{b}(f)\right] \\
\leq \frac{1}{4 \Gamma(\alpha+1)}
\end{array}\right] \begin{aligned}
& {\left[\frac{g(b)-g(a)}{2}+\left|g(x)-\frac{g(b)+g(a)}{2}\right|\right]^{\alpha} \bigvee_{a}^{b}(f) ;} \\
& \times\left\{\begin{array}{l}
\left.[g(b)-g(x))^{p \alpha}+(g(x)-g(a))^{p \alpha}\right]^{1 / p}\left(\left(\bigvee_{a}^{x}(f)\right)^{q}+\left(\bigvee_{x}^{b}(f)\right)^{q}\right)^{1 / q} \\
\text { with } p, q>1, \frac{1}{p}+\frac{1}{q}=1 ; \\
{\left[(g(b)-g(x))^{\alpha}+(g(x)-g(a))^{\alpha}\right]\left[\frac{1}{2} \bigvee_{a}^{b}(f)+\frac{1}{2}\left|\bigvee_{a}^{x}(f)-\bigvee_{x}^{b}(f)\right|\right]}
\end{array}\right. \tag{58}
\end{aligned}
$$

and

$$
\begin{aligned}
& \mid \breve{I}_{g, a+, b-}^{\alpha} f(x) \\
& \left.-\frac{1}{2 \Gamma(\alpha+1)}\left[\frac{f(x)+f(b)}{2}(g(b)-g(x))^{\alpha}+\frac{f(a)+f(x)}{2}(g(x)-g(a))^{\alpha}\right] \right\rvert\, \\
& \quad \leq \frac{1}{4 \Gamma(\alpha+1)}\left[(g(x)-g(a))^{\alpha} \bigvee_{a}^{x}(f)+(g(b)-g(x))^{\alpha} \bigvee_{x}^{b}(f)\right] \\
& \leq \frac{1}{4 \Gamma(\alpha+1)}
\end{aligned}
$$

$$
\times\left\{\begin{array}{l}
{\left[\frac{g(b)-g(a)}{2}+\left|g(x)-\frac{g(b)+g(a)}{2}\right|\right]^{\alpha} \bigvee_{a}^{b}(f)} \tag{59}\\
{\left[(g(b)-g(x))^{p \alpha}+(g(x)-g(a))^{p \alpha}\right]^{1 / p}\left(\left(\bigvee_{a}^{x}(f)\right)^{q}+\left(\bigvee_{x}^{b}(f)\right)^{q}\right)^{1 / q}} \\
\text { with } p, q>1, \frac{1}{p}+\frac{1}{q}=1 ; \\
{\left[(g(b)-g(x))^{\alpha}+(g(x)-g(a))^{\alpha}\right]\left[\frac{1}{2} \bigvee_{a}^{b}(f)+\frac{1}{2}\left|\bigvee_{a}^{x}(f)-\bigvee_{x}^{b}(f)\right|\right]}
\end{array}\right.
$$

for $x \in(a, b)$.
From (48) and 49 we get

$$
\begin{array}{r}
\left|I_{g, a+, b-}^{\alpha} f\left(M_{g}(a, b)\right)-\frac{(g(b)-g(a))^{\alpha}}{2^{\alpha+1} \Gamma(\alpha+1)}\left[f\left(M_{g}(a, b)\right)+\frac{f(a)+f(b)}{2}\right]\right| \\
\leq \frac{1}{2^{\alpha+2} \Gamma(\alpha+1)}(g(b)-g(a))^{\alpha} \bigvee_{a}^{b}(f) \tag{60}
\end{array}
$$

and

$$
\begin{array}{r}
\left|\breve{I}_{g, a+, b-}^{\alpha} f\left(M_{g}(a, b)\right)-\frac{(g(b)-g(a))^{\alpha}}{2^{\alpha+1} \Gamma(\alpha+1)}\left[f\left(M_{g}(a, b)\right)+\frac{f(a)+f(b)}{2}\right]\right| \\
\leq \frac{1}{2^{\alpha+2} \Gamma(\alpha+1)}(g(b)-g(a))^{\alpha} \bigvee_{a}^{b}(f) . \tag{61}
\end{array}
$$

4. Example for an Exponential Kernel

For $\alpha, \beta \in \mathbb{R}$ we consider the kernel $k(t):=\exp [(\alpha+\beta i) t], t \in \mathbb{R}$. We have

$$
K(t)=\frac{\exp [(\alpha+\beta i) t]-1}{(\alpha+\beta i)}, \text { if } t \in \mathbb{R}
$$

for $\alpha, \beta \neq 0$.
Also, we have

$$
|k(s)|:=|\exp [(\alpha+\beta i) s]|=\exp (\alpha s) \text { for } s \in \mathbb{R}
$$

and

$$
\mathbf{K}(t)=\int_{0}^{t} \exp (\alpha s) d s=\frac{\exp (\alpha t)-1}{\alpha} \text { if } 0<t
$$

for $\alpha \neq 0$.
Let $f:[a, b] \rightarrow \mathbb{C}$ be a function of bounded variation on $[a, b]$ and g be a strictly increasing function on (a, b), having a continuous derivative g^{\prime} on (a, b). We consider the operator

$$
\begin{equation*}
\mathcal{H}_{g, a+, b-}^{\alpha+\beta i} f(x):=\frac{1}{2} \int_{a}^{x} \exp [(\alpha+\beta i)(g(x)-g(t))] g^{\prime}(t) f(t) d t \tag{62}
\end{equation*}
$$

$$
+\frac{1}{2} \int_{x}^{b} \exp [(\alpha+\beta i)(g(t)-g(x))] g^{\prime}(t) f(t) d t
$$

for $x \in(a, b)$.
If $g=\ln h$ where $h:[a, b] \rightarrow(0, \infty)$ is a strictly increasing function on (a, b), having a continuous derivative h^{\prime} on (a, b), then we can consider the following operator as well

$$
\begin{align*}
& \kappa_{h, a+, b-}^{\alpha+\beta i} f(x) \tag{63}\\
& :=\mathcal{H}_{\ln h, a+, b-}^{\alpha+\beta i} f(x) \\
& =\frac{1}{2}\left[\int_{a}^{x}\left(\frac{h(x)}{h(t)}\right)^{\alpha+\beta i} \frac{h^{\prime}(t)}{h(t)} f(t) d t+\int_{x}^{b}\left(\frac{h(t)}{h(x)}\right)^{\alpha+\beta i} \frac{h^{\prime}(t)}{h(t)} f(t) d t\right]
\end{align*}
$$

for $x \in(a, b)$.
Using the inequality 44 we have for $x \in(a, b)$

$$
\left.\begin{array}{rl}
\mathcal{H}_{g, a+, b-}^{\alpha+\beta i} f(x) & -\frac{1}{2} \frac{f(x)+f(b)}{2} \frac{\exp [(\alpha+\beta i)(g(b)-g(x))]-1}{(\alpha+\beta i)} \\
& \left.-\frac{f(a)+f(x)}{2} \frac{\exp [(\alpha+\beta i)(g(x)-g(a))]-1}{(\alpha+\beta i)} \right\rvert\, \\
\leq \frac{1}{4}\left[\frac{\exp (\alpha(g(x)-g(a)))-1}{\alpha} \bigvee_{a}^{x}(f)+\frac{\exp (\alpha(g(b)-g(x)))-1}{\alpha} \bigvee_{x}^{b}(f)\right]
\end{array}\right] \begin{aligned}
& \max \left\{\frac{\exp (\alpha(g(x)-g(a)))-1}{\alpha}, \frac{\exp (\alpha(g(b)-g(x)))-1}{\alpha}\right\} \bigvee_{a}^{b}(f) ; \\
& \leq \frac{\left[\left(\frac{\exp (\alpha(g(x)-g(a)))-1}{\alpha}\right)^{p}+\left(\frac{\exp (\alpha(g(b)-g(x)))-1}{\alpha}\right)^{p}\right]^{1 / p}}{}\left\{\begin{array}{l}
\times\left(\left(\bigvee_{a}^{x}(f)\right)^{q}+\left(\bigvee_{x}^{b}(f)\right)^{q}\right)^{1 / q} \\
\operatorname{with} p, q>1, \frac{1}{p}+\frac{1}{q}=1 ; \\
{\left[\frac{\exp (\alpha(g(x)-g(a)))+\exp (\alpha(g(b)-g(x)))-2}{\alpha}\right]} \\
\times\left[\frac{1}{2} \bigvee_{a}^{b}(f)+\frac{1}{2}\left|\bigvee_{a}^{x}(f)-\bigvee_{x}^{b}(f)\right|\right]
\end{array}\right. \tag{64}
\end{aligned}
$$

and if we take $g=\ln h$ where $h:[a, b] \rightarrow(0, \infty)$ is a strictly increasing function on (a, b), having a continuous derivative h^{\prime} on (a, b), then we get

$$
\kappa_{h, a+, b-}^{\alpha+\beta i} f(x)-\frac{1}{2}\left[\frac{f(x)+f(b)}{2} \frac{\left(\frac{h(b)}{h(x)}\right)^{\alpha+\beta i}-1}{(\alpha+\beta i)}\right.
$$

$$
\begin{gather*}
\left.-\frac{f(a)+f(x)}{2} \frac{\left(\frac{h(x)}{h(a)}\right)^{\alpha+\beta i}-1}{(\alpha+\beta i)}\right]\left.\right|_{a} \\
\leq \frac{1}{4}\left\{\frac{\left(\frac{h(x)}{h(a)}\right)^{\alpha}-1}{\alpha} \bigvee_{a}^{x}(f)+\frac{\left(\frac{h(b)}{h(x)}\right)^{\alpha}-1}{\alpha} \bigvee_{x}^{b}(f)\right] \\
{\left[\left(\frac{\left(\frac{h(x)}{h(a)}\right)^{\alpha}-1}{\alpha}\right)^{p}+\left(\frac{\left(\frac{h(b)}{h(x)}\right)^{\alpha}-1}{\alpha}\right)^{p}\right]^{1 / p}\left(\left(\bigvee_{a}^{x}(f)\right)^{q}+\left(\bigvee_{x}^{b}(f)\right)^{q}\right)^{1 / q}} \tag{65}\\
\operatorname{mith} p, q>1, \frac{1}{p}+\frac{1}{q}=1 ; \\
{\left[\frac{\left(\frac{h(x)}{h(a)}\right)^{\alpha}+\left(\frac{h(b)}{h(x)}\right)^{\alpha}-2}{\alpha}\right]\left[\frac{1}{2} \bigvee_{a}^{b}(f)+\frac{1}{2}\left|\bigvee_{a}^{x}(f)-\bigvee_{x}^{b}(f)\right|\right]}
\end{gather*}
$$

If we take if we take $x_{h}:=h^{-1}(\sqrt{h(a) h(b)})=h^{-1}(G(h(a), h(b))) \in(a, b)$, where G is the geometric mean, then from we get

$$
\begin{array}{r}
\left.\bar{\kappa}_{h, a+, b-}^{\alpha+\beta i} f-\frac{\left(\frac{h(b)}{h(a)}\right)^{\frac{\alpha+\beta i}{2}}-1}{2(\alpha+\beta i)}\left[f\left(h^{-1}(G(h(a), h(b)))\right)+\frac{f(a)+f(b)}{2}\right] \right\rvert\, \\
\leq \frac{1}{4} \frac{\left(\frac{h(b)}{h(a)}\right)^{\frac{\alpha}{2}}-1}{\alpha} \bigvee_{a}^{b}(f) \tag{66}
\end{array}
$$

where $\bar{\kappa}_{h, a+, b-}^{\alpha+\beta i} f=\kappa_{h, a+, b-}^{\alpha+\beta i} f\left(x_{h}\right)$.
Let $f:[a, b] \rightarrow \mathbb{C}$ be an integrable function on $[a, b]$ and g be a strictly increasing function on (a, b), having a continuous derivative g^{\prime} on (a, b). Also define

$$
\begin{align*}
& \breve{\mathcal{H}}_{g, a+, b-}^{\alpha} f(x) \tag{67}\\
& :=\frac{1}{2} \int_{x}^{b} \exp [\alpha(g(b)-g(t))] g^{\prime}(t) f(t) d t \\
& +\frac{1}{2} \int_{a}^{x} \exp [\alpha(g(t)-g(a))] g^{\prime}(t) f(t) d t
\end{align*}
$$

for any $x \in(a, b)$.
If $g=\ln h$ where $h:[a, b] \rightarrow(0, \infty)$ is a strictly increasing function on (a, b), having a continuous derivative h^{\prime} on (a, b), then we can consider the following
operator as well

$$
\begin{align*}
& \breve{\kappa}_{h, a+, b-}^{\alpha} f(x) \tag{68}\\
& :=\breve{\mathcal{H}}_{\ln h, a+, b-}^{\alpha} f(x) \\
& =\frac{1}{2}\left[\int_{x}^{b}\left(\frac{h(b)}{h(t)}\right)^{\alpha} \frac{h^{\prime}(t)}{h(t)} f(t) d t+\int_{a}^{x}\left(\frac{h(t)}{h(a)}\right)^{\alpha} \frac{h^{\prime}(t)}{h(t)} f(t) d t\right]
\end{align*}
$$

for any $x \in(a, b)$.
Using the inequality 45 we have for $x \in(a, b)$ that

$$
\left.\begin{array}{rl}
\mid \breve{\mathcal{H}}_{g, a+, b-}^{\alpha+\beta i} f(x) & -\frac{1}{2}\left[\frac{f(x)+f(b)}{2} \frac{\exp [(\alpha+\beta i)(g(b)-g(x))]-1}{(\alpha+\beta i)}\right. \\
& \left.-\frac{f(a)+f(x)}{2} \frac{\exp [(\alpha+\beta i)(g(x)-g(a))]-1}{(\alpha+\beta i)}\right] \mid \\
\leq \frac{1}{4}\left[\frac{\exp (\alpha(g(x)-g(a)))-1}{\alpha} \bigvee_{a}^{x}(f)+\frac{\exp (\alpha(g(b)-g(x)))-1}{\alpha} \bigvee_{x}^{b}(f)\right]
\end{array}\right] \begin{aligned}
& \max \left\{\frac{\exp (\alpha(g(x)-g(a)))-1}{\alpha}, \frac{\exp (\alpha(g(b)-g(x)))-1}{\alpha}\right\} \bigvee_{a}^{b}(f) ; \\
& \leq \frac{\left[\left(\frac{\exp (\alpha(g(x)-g(a)))-1}{\alpha}\right)^{p}+\left(\frac{\exp (\alpha(g(b)-g(x)))-1}{\alpha}\right)^{p}\right]^{1 / p}}{} \begin{array}{l}
\times\left(\left(\bigvee_{a}^{x}(f)\right)^{q}+\left(\bigvee_{x}^{b}(f)\right)^{q}\right)^{1 / q} \\
\operatorname{with} p, q>1, \frac{1}{p}+\frac{1}{q}=1 ; \\
{\left[\begin{array}{l}
\left.\frac{\exp (\alpha(g(x)-g(a)))+\exp (\alpha(g(b)-g(x)))-2}{\alpha}\right] \\
\times\left[\frac{1}{2} \bigvee_{a}^{b}(f)+\frac{1}{2}\left|\bigvee_{a}^{x}(f)-\bigvee_{x}^{b}(f)\right|\right]
\end{array}\right.}
\end{array} \tag{69}
\end{aligned}
$$

and if we take $g=\ln h$ where $h:[a, b] \rightarrow(0, \infty)$ is a strictly increasing function on (a, b), having a continuous derivative h^{\prime} on (a, b), then we get

$$
\begin{aligned}
\breve{\kappa}_{h, a+, b-}^{\alpha+\beta i} f(x)-\frac{1}{2} & {\left[\frac{f(x)+f(b)}{2} \frac{\left(\frac{h(b)}{h(x)}\right)^{\alpha+\beta i}-1}{(\alpha+\beta i)}\right.} \\
& \left.\quad-\frac{f(a)+f(x)}{2} \frac{\left(\frac{h(x)}{h(a)}\right)^{\alpha+\beta i}-1}{(\alpha+\beta i)}\right] \mid \\
\leq & \frac{1}{4}\left[\frac{\left(\frac{h(x)}{h(a)}\right)^{\alpha}-1}{\alpha} \bigvee_{a}^{x}(f)+\frac{\left(\frac{h(b)}{h(x)}\right)^{\alpha}-1}{\alpha} \bigvee_{x}^{b}(f)\right]
\end{aligned}
$$

$$
\leq \frac{1}{4}\left\{\begin{array}{l}
\max \left\{\frac{\left(\frac{h(x)}{h(a)}\right)^{\alpha}-1}{\alpha}, \frac{\left(\frac{h(b)}{h(x)}\right)^{\alpha}-1}{\alpha}\right\} \bigvee_{a}^{b}(f) ; \\
{\left[\left(\frac{\left(\frac{h(x)}{h(a)}\right)^{\alpha}-1}{\alpha}\right)^{p}+\left(\frac{\left(\frac{h(b)}{h(x)}\right)^{\alpha}-1}{\alpha}\right)^{p}\right]^{1 / p}\left(\left(\bigvee_{a}^{x}(f)\right)^{q}+\left(\bigvee_{x}^{b}(f)\right)^{q}\right)^{1 / q}} \tag{70}\\
\text { with } p, q>1, \frac{1}{p}+\frac{1}{q}=1 ; \\
{\left[\frac{\left(\frac{h(x)}{h(a)}\right)^{\alpha}+\left(\frac{h(b)}{h(x)}\right)^{\alpha}-2}{\alpha}\right]\left[\frac{1}{2} \bigvee_{a}^{b}(f)+\frac{1}{2}\left|\bigvee_{a}^{x}(f)-\bigvee_{x}^{b}(f)\right|\right]}
\end{array}\right.
$$

If we take if we take $x_{h}=h^{-1}(G(h(a), h(b))) \in(a, b)$, where G is the geometric mean, then from (65) we get

$$
\begin{array}{r}
\left|\bar{\ell}_{h, a+, b-}^{\alpha+\beta i} f-\frac{\left(\frac{h(b)}{h(a)}\right)^{\frac{\alpha+\beta i}{2}}-1}{2(\alpha+\beta i)}\left[f\left(h^{-1}(G(h(a), h(b)))\right)+\frac{f(a)+f(b)}{2}\right]\right| \\
\leq \frac{1}{4} \frac{\left(\frac{h(b)}{h(a)}\right)^{\frac{\alpha}{2}}-1}{\alpha} \bigvee_{a}^{b}(f) \tag{71}
\end{array}
$$

where $\bar{\ell}_{h, a+, b-}^{\alpha+\beta i} f=\breve{\kappa}_{h, a+, b-}^{\alpha+\beta i} f\left(x_{h}\right)$.

References

[1] Agarwal, R. P., Luo, M.-J. and Raina, R. K., On Ostrowski type inequalities, Fasc. Math. 56 (2016), 5-27.
[2] Aljinović, A. Aglić, Montgomery identity and Ostrowski type inequalities for RiemannLiouville fractional integral. J. Math. 2014, Art. ID 503195, 6 pp.
[3] Apostol, T. M., Mathematical Analysis, Second Edition, Addison-Wesley Publishing Company, 1975.
[4] Akdemir, A. O., Inequalities of Ostrowski's type for m - and (α, m)-logarithmically convex functions via Riemann-Liouville fractional integrals. J. Comput. Anal. Appl. 16 (2014), no. 2, 375-383
[5] Anastassiou, G. A., Fractional representation formulae under initial conditions and fractional Ostrowski type inequalities. Demonstr. Math. 48 (2015), no. 3, 357-378
[6] Anastassiou, G. A., The reduction method in fractional calculus and fractional Ostrowski type inequalities. Indian J. Math. 56 (2014), no. 3, 333-357.
[7] Budak, H., Sarikaya, M. Z. and Set, E., Generalized Ostrowski type inequalities for functions whose local fractional derivatives are generalized s-convex in the second sense. J. Appl. Math. Comput. Mech. 15 (2016), no. 4, 11-21.
[8] Cerone, P. and Dragomir, S. S., Midpoint-type rules from an inequalities point of view. Handbook of analytic-computational methods in applied mathematics, 135-200, Chapman \& Hall/CRC, Boca Raton, FL, 2000.
[9] Dragomir, S. S., The Ostrowski's integral inequality for Lipschitzian mappings and applications. Comput. Math. Appl. 38 (1999), no. 11-12, 33-37.
[10] Dragomir, S. S., The Ostrowski integral inequality for mappings of bounded variation. Bull. Austral. Math. Soc. 60 (1999), No. 3, 495-508.
[11] Dragomir, S. S., On the midpoint quadrature formula for mappings with bounded variation and applications. Kragujevac J. Math. 22 (2000), 13-19.
[12] Dragomir, S. S., On the Ostrowski's integral inequality for mappings with bounded variation and applications, Math. Ineq. Appl. 4 (2001), No. 1, 59-66. Preprint: RGMIA Res. Rep. Coll. 2 (1999), Art. 7, [Online: http://rgmia.org/papers/v2n1/v2n1-7.pdf]
[13] Dragomir, S. S., Refinements of the generalised trapezoid and Ostrowski inequalities for functions of bounded variation. Arch. Math. (Basel) 91 (2008), no. 5, 450-460.
[14] Dragomir, S. S., Refinements of the Ostrowski inequality in terms of the cumulative variation and applications, Analysis (Berlin) 34 (2014), No. 2, 223-240. Preprint: RGMIA Res. Rep. Coll. 16 (2013), Art. 29 [Online:http://rgmia.org/papers/v16/v16a29.pdf].
[15] Dragomir, S. S., Ostrowski type inequalities for Lebesgue integral: a survey of recent results, Australian J. Math. Anal. Appl., Volume 14, Issue 1, Article 1, pp. 1-287, 2017. [Online http://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].
[16] Dragomir, S. S., Ostrowski type inequalities for Riemann-Liouville fractional integrals of bounded variation, Hölder and Lipschitzian functions, Preprint RGMIA Res. Rep. Coll. 20 (2017), Art. 48. [Online http://rgmia.org/papers/v20/v20a48.pdf].
[17] Dragomir, S. S., Ostrowski type inequalities for generalized Riemann-Liouville fractional integrals of functions with bounded variation, RGMIA Res. Rep. Coll. 20 (2017), Art. 58. [Online http://rgmia.org/papers/v20/v20a58.pdf].
[18] Dragomir, S. S., Further Ostrowski and trapezoid type inequalities for the generalized Riemann-Liouville fractional integrals of functions with bounded variation, RGMIA Res. Rep. Coll. 20 (2017), Art. 84. [Online http://rgmia.org/papers/v20/v20a84.pdf].
[19] Dragomir, S. S., Ostrowski and trapezoid type inequalities for the generalized k - g-fractional integrals of functions with bounded variation, RGMIA Res. Rep. Coll. 20 (2017), Art. 111. [Online http://rgmia.org/papers/v20/v20a111.pdf].
[20] Dragomir, S. S., Some inequalities for the generalized k - g-fractional integrals of functions under complex boundedness conditions, RGMIA Res. Rep. Coll. 20 (2017), Art. 119. [Online http://rgmia.org/papers/v20/v20a119.pdf].
[21] Guezane-Lakoud, A. and Aissaoui, F., New fractional inequalities of Ostrowski type. Transylv. J. Math. Mech. 5 (2013), no. 2, 103-106
[22] Kashuri, A. and Liko, R., Ostrowski type fractional integral inequalities for generalized (s, m, φ)-preinvex functions. Aust. J. Math. Anal. Appl. 13 (2016), no. 1, Art. 16, 11 pp.
[23] Kilbas, A., Srivastava, H. M. and Trujillo, J. J., Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. xvi+523 pp. ISBN: 978-0-444-51832-3; 0-444-51832-0.
[24] Kirane, M. and Torebek, B. T., Hermite-Hadamard, Hermite-Hadamard-Fejer, DragomirAgarwal and Pachpatte type Inequalities for convex functions via fractional integrals, Preprint arXiv:1701.00092.
[25] Noor, M. A., Noor, K. I. and Iftikhar, S., Fractional Ostrowski inequalities for harmonic h-preinvex functions. Facta Univ. Ser. Math. Inform. 31 (2016), no. 2, 417-445
[26] Raina, R. K., On generalized Wright's hypergeometric functions and fractional calculus operators, East Asian Math. J., 21 (2)(2005), 191-203.
[27] Sarikaya, M. Z. and Filiz, H., Note on the Ostrowski type inequalities for fractional integrals. Vietnam J. Math. 42 (2014), no. 2, 187-190
[28] Sarikaya, M. Z. and Budak, H., Generalized Ostrowski type inequalities for local fractional integrals. Proc. Amer. Math. Soc. 145 (2017), no. 4, 1527-1538.
[29] Set, E., New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 63 (2012), no. 7, 1147-1154.
[30] Tunç, M., On new inequalities for h-convex functions via Riemann-Liouville fractional integration, Filomat 27:4 (2013), 559-565.
[31] Tunç, M., Ostrowski type inequalities for m - and (α, m)-geometrically convex functions via Riemann-Louville fractional integrals. Afr. Mat. 27 (2016), no. 5-6, 841-850.
[32] Yildirim, H. and Kirtay, Z., Ostrowski inequality for generalized fractional integral and related inequalities, Malaya J. Mat., 2(3)(2014), 322-329.
[33] Yildiz, C., Özdemir, E and Muhamet, Z. S., New generalizations of Ostrowski-like type inequalities for fractional integrals. Kyungpook Math. J. 56 (2016), no. 1, 161-172.
[34] Yue, H., Ostrowski inequality for fractional integrals and related fractional inequalities. Transylv. J. Math. Mech. 5 (2013), no. 1, 85-89.

Current address: Silvestru Sever Dragomir: Mathematics, College of Engineering \& Science Victoria University, PO Box 14428 Melbourne City, MC 8001, Australia.
DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

E-mail address: sever.dragomir@vu.edu.au
ORCID Address: https://orcid.org/0000-0003-2902-6805

[^0]: Received by the editors: March 21, 2019; Accepted: July 19, 2019.
 2010 Mathematics Subject Classification. Primary 26D15, 26D10; Secondary 26D07, 26A33.
 Key words and phrases. Generalized Riemann-Liouville fractional integrals, Hadamard fractional integrals, Functions of bounded variation, Ostrowski type inequalities, Trapezoid inequalities.

