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FURTHER INEQUALITIES FOR THE GENERALIZED
k-g-FRACTIONAL INTEGRALS OF FUNCTIONS WITH

BOUNDED VARIATION

SILVESTRU SEVER DRAGOMIR

Abstract. Let g be a strictly increasing function on (a, b) , having a continu-
ous derivative g′ on (a, b) . For the Lebesgue integrable function f : (a, b)→ C,
we define the k-g-left-sided fractional integral of f by

Sk,g,a+f (x) =

∫ x

a
k (g (x)− g (t)) g′ (t) f (t) dt, x ∈ (a, b]

and the k-g-right-sided fractional integral of f by

Sk,g,b−f (x) =

∫ b

x
k (g (t)− g (x)) g′ (t) f (t) dt, x ∈ [a, b),

where the kernel k is defined either on (0,∞) or on [0,∞) with complex values
and integrable on any finite subinterval.

In this paper we establish some new inequalities for the k-g-fractional inte-
grals of functions of bounded variation.Examples for the generalized left- and
right-sided Riemann-Liouville fractional integrals of a function f with respect
to another function g and a general exponential fractional integral are also
provided.

1. Introduction

Assume that the kernel k is defined either on (0,∞) or on [0,∞) with complex
values and integrable on any finite subinterval. We define the function K : [0,∞)→
C by

K (t) :=


∫ t

0
k (s) ds if 0 < t,

0 if t = 0.
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As a simple example, if k (t) = tα−1 then for α ∈ (0, 1) the function k is defined on
(0,∞) and K (t) := 1

α t
α for t ∈ [0,∞) . If α ≥ 1, then k is defined on [0,∞) and

K (t) := 1
α t
α for t ∈ [0,∞) .

Let g be a strictly increasing function on (a, b) , having a continuous derivative
g′ on (a, b) . For the Lebesgue integrable function f : (a, b) → C, we define the
k-g-left-sided fractional integral of f by

Sk,g,a+f (x) =

∫ x

a

k (g (x)− g (t)) g′ (t) f (t) dt, x ∈ (a, b] (1)

and the k-g-right-sided fractional integral of f by

Sk,g,b−f (x) =

∫ b

x

k (g (t)− g (x)) g′ (t) f (t) dt, x ∈ [a, b). (2)

If we take k (t) = 1
Γ(α) t

α−1, where Γ is the Gamma function, then

Sk,g,a+f (x) =
1

Γ (α)

∫ x

a

[g (x)− g (t)]
α−1

g′ (t) f (t) dt (3)

=: Iαa+,gf(x), a < x ≤ b

and

Sk,g,b−f (x) =
1

Γ (α)

∫ b

x

[g (t)− g (x)]
α−1

g′ (t) f (t) dt (4)

=: Iαb−,gf(x), a ≤ x < b,

which are the generalized left- and right-sided Riemann-Liouville fractional integrals
of a function f with respect to another function g on [a, b] as defined in [23, p. 100].
For g (t) = t in (4) we have the classical Riemann-Liouville fractional integrals

while for the logarithmic function g (t) = ln t we have the Hadamard fractional
integrals [23, p. 111]

Hα
a+f(x) :=

1

Γ (α)

∫ x

a

[
ln
(x
t

)]α−1 f (t) dt

t
, 0 ≤ a < x ≤ b (5)

and

Hα
b−f(x) :=

1

Γ (α)

∫ b

x

[
ln

(
t

x

)]α−1
f (t) dt

t
, 0 ≤ a < x < b. (6)

One can consider the function g (t) = −t−1 and define the "Harmonic fractional
integrals" by

Rαa+f(x) :=
x1−α

Γ (α)

∫ x

a

f (t) dt

(x− t)1−α
tα+1

, 0 ≤ a < x ≤ b (7)

and

Rαb−f(x) :=
x1−α

Γ (α)

∫ b

x

f (t) dt

(t− x)
1−α

tα+1
, 0 ≤ a < x < b. (8)
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Also, for g (t) = exp (βt) , β > 0, we can consider the "β-Exponential fractional
integrals"

Eαa+,βf(x) :=
β

Γ (α)

∫ x

a

[exp (βx)− exp (βt)]
α−1

exp (βt) f (t) dt, (9)

for a < x ≤ b and

Eαb−,βf(x) :=
β

Γ (α)

∫ b

x

[exp (βt)− exp (βx)]
α−1

exp (βt) f (t) dt, (10)

for a ≤ x < b.
If we take g (t) = t in (1) and (2), then we can consider the following k-fractional

integrals

Sk,a+f (x) =

∫ x

a

k (x− t) f (t) dt, x ∈ (a, b] (11)

and

Sk,b−f (x) =

∫ b

x

k (t− x) f (t) dt, x ∈ [a, b). (12)

In [26], Raina studied a class of functions defined formally by

Fσρ,λ (x) :=

∞∑
k=0

σ (k)

Γ (ρk + λ)
xk, |x| < R, with R > 0 (13)

for ρ, λ > 0 where the coeffi cients σ (k) generate a bounded sequence of positive real
numbers. With the help of (13), Raina defined the following left-sided fractional
integral operator

J σρ,λ,a+;wf (x) :=

∫ x

a

(x− t)λ−1 Fσρ,λ (w (x− t)ρ) f (t) dt, x > a (14)

where ρ, λ > 0, w ∈ R and f is such that the integral on the right side exists.
In [1], the right-sided fractional operator was also introduced as

J σρ,λ,b−;wf (x) :=

∫ b

x

(t− x)
λ−1 Fσρ,λ (w (t− x)

ρ
) f (t) dt, x < b (15)

where ρ, λ > 0, w ∈ R and f is such that the integral on the right side exists.
Several Ostrowski type inequalities were also established.
We observe that for k (t) = tλ−1Fσρ,λ (wtρ) we re-obtain the definitions of (14)

and (15) from (11) and (12).
In [24], Kirane and Torebek introduced the following exponential fractional in-

tegrals

T αa+f (x) :=
1

α

∫ x

a

exp

{
−1− α

α
(x− t)

}
f (t) dt, x > a (16)

and

T αb−f (x) :=
1

α

∫ b

x

exp

{
−1− α

α
(t− x)

}
f (t) dt, x < b (17)
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where α ∈ (0, 1) .
We observe that for k (t) = 1

α exp
(
− 1−α

α t
)
, t ∈ R we re-obtain the definitions of

(16) and (17) from (11) and (12).
Let g be a strictly increasing function on (a, b) , having a continuous derivative

g′ on (a, b) . We can define the more general exponential fractional integrals

T αg,a+f (x) :=
1

α

∫ x

a

exp

{
−1− α

α
(g (x)− g (t))

}
g′ (t) f (t) dt, x > a (18)

and

T αg,b−f (x) :=
1

α

∫ b

x

exp

{
−1− α

α
(g (t)− g (x))

}
g′ (t) f (t) dt, x < b (19)

where α ∈ (0, 1) .
Let g be a strictly increasing function on (a, b) , having a continuous derivative g′

on (a, b) . Assume that α > 0.We can also define the logarithmic fractional integrals

Lαg,a+f (x) :=

∫ x

a

(g (x)− g (t))
α−1

ln (g (x)− g (t)) g′ (t) f (t) dt, (20)

for 0 < a < x ≤ b and

Lαg,b−f (x) :=

∫ b

x

(g (t)− g (x))
α−1

ln (g (t)− g (x)) g′ (t) f (t) dt, (21)

for 0 < a ≤ x < b, where α > 0. These are obtained from (11) and (12) for the
kernel k (t) = tα−1 ln t, t > 0.
For α = 1 we get

Lg,a+f (x) :=

∫ x

a

ln (g (x)− g (t)) g′ (t) f (t) dt, 0 < a < x ≤ b (22)

and

Lg,b−f (x) :=

∫ b

x

ln (g (t)− g (x)) g′ (t) f (t) dt, 0 < a ≤ x < b. (23)

For g (t) = t, we have the simple forms

Lαa+f (x) :=

∫ x

a

(x− t)α−1
ln (x− t) f (t) dt, 0 < a < x ≤ b, (24)

Lαb−f (x) :=

∫ b

x

(t− x)
α−1

ln (t− x) f (t) dt, 0 < a ≤ x < b, (25)

La+f (x) :=

∫ x

a

ln (x− t) f (t) dt, 0 < a < x ≤ b (26)

and

Lb−f (x) :=

∫ b

x

ln (t− x) f (t) dt, 0 < a ≤ x < b. (27)

For several Ostrowski type inequalities for Riemann-Liouville fractional integrals
see [2]-[17], [21]-[34] and the references therein.
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For k and g as at the beginning of Introduction, we consider the mixed operator

Sk,g,a+,b−f (x) (28)

:=
1

2
[Sk,g,a+f (x) + Sk,g,b−f (x)]

=
1

2

[∫ x

a

k (g (x)− g (t)) g′ (t) f (t) dt+

∫ b

x

k (g (t)− g (x)) g′ (t) f (t) dt

]
for the Lebesgue integrable function f : (a, b)→ C and x ∈ (a, b) .
We also define the function K : [0,∞)→ [0,∞) by

K (t) :=


∫ t

0
|k (s)| ds if 0 < t,

0 if t = 0.

In the recent paper [19] we obtained the following result for functions of bounded
variation:

Theorem 1. Assume that the kernel k is defined either on (0,∞) or on [0,∞)
with complex values and integrable on any finite subinterval. Let f : [a, b] → C be
a function of bounded variation on [a, b] and g be a strictly increasing function on
(a, b) , having a continuous derivative g′ on (a, b) . Then we have the Ostrowski type
inequality∣∣∣∣Sk,g,a+,b−f (x)− 1

2
[K (g (b)− g (x)) +K (g (x)− g (a))] f (x)

∣∣∣∣
≤ 1

2

[∫ b

x

|k (g (t)− g (x))|
t∨
x

(f) g′ (t) dt+

∫ x

a

|k (g (x)− g (t))|
x∨
t

(f) g′ (t) dt

]

≤ 1

2

[
K (g (b)− g (x))

b∨
x

(f) +K (g (x)− g (a))

x∨
a

(f)

]

≤ 1

2



max {K (g (b)− g (x)) ,K (g (x)− g (a))}
∨b
a (f) ;

[Kp (g (b)− g (x)) +Kp (g (x)− g (a))]
1/p
(

(
∨x
a (f))

q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;

[K (g (b)− g (x)) +K (g (x)− g (a))]
[

1
2

∨b
a (f) + 1

2

∣∣∣∨xa (f)−
∨b
x (f)

∣∣∣]
(29)

and the trapezoid type inequality∣∣∣∣Sk,g,a+,b−f (x)− 1

2
[K (g (b)− g (x)) f (b) +K (g (x)− g (a)) f (a)]

∣∣∣∣
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≤ 1

2

[∫ x

a

|k (g (x)− g (t))|
t∨
a

(f) g′ (t) dt+

∫ b

x

|k (g (t)− g (x))|
b∨
t

(f) g′ (t) dt

]

≤ 1

2

[
K (g (b)− g (x))

b∨
x

(f) +K (g (x)− g (a))

x∨
a

(f)

]

≤ 1

2



max {K (g (b)− g (x)) ,K (g (x)− g (a))}
∨b
a (f) ;

[Kp (g (b)− g (x)) +Kp (g (x)− g (a))]
1/p

×
(

(
∨x
a (f))

q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;

[K (g (b)− g (x)) +K (g (x)− g (a))]

×
[

1
2

∨b
a (f) + 1

2

∣∣∣∨xa (f)−
∨b
x (f)

∣∣∣]
(30)

for any x ∈ (a, b) , where
∨d
c (f) denoted the total variation on the interval [c, d] .

Observe that

Sk,g,x+f (b) =

∫ b

x

k (g (b)− g (t)) g′ (t) f (t) dt, x ∈ [a, b) (31)

and

Sk,g,x−f (a) =

∫ x

a

k (g (t)− g (a)) g′ (t) f (t) dt, x ∈ (a, b]. (32)

We can define also the mixed operator

S̆k,g,a+,b−f (x) (33)

:=
1

2
[Sk,g,x+f (b) + Sk,g,x−f (a)]

=
1

2

[∫ b

x

k (g (b)− g (t)) g′ (t) f (t) dt+

∫ x

a

k (g (t)− g (a)) g′ (t) f (t) dt

]
for any x ∈ (a, b) .
In this paper we establish some inequalities for the k-g-fractional integrals of

functions with bounded variation f : [a, b] → C that provide error bounds in ap-
proximating the composite operators Sk,g,a+,b−f and S̆k,g,a+,b−f in terms of the
double trapezoid rule

1

2

[
f (x) + f (b)

2
K (g (b)− g (x)) +

f (a) + f (x)

2
K (g (x)− g (a))

]
, x ∈ (a, b) .

Examples for the generalized left- and right-sided Riemann-Liouville fractional in-
tegrals of a function f with respect to another function g and a general exponential
fractional integral are also provided.
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2. Further Inequalities for Functions of BV

The following two parameters representation for the operators Sk,g,a+,b− and
S̆k,g,a+,b− hold [20]:

Lemma 2. Assume that the kernel k is defined either on (0,∞) or on [0,∞) with
complex values and integrable on any finite subinterval. Let f : [a, b] → C be an
integrable function on [a, b] and g be a strictly increasing function on (a, b) , having
a continuous derivative g′ on (a, b) . Then

Sk,g,a+,b−f (x) =
1

2
[γK (g (b)− g (x)) + λK (g (x)− g (a))] (34)

+
1

2

∫ x

a

k (g (x)− g (t)) g′ (t) [f (t)− λ] dt

+
1

2

∫ b

x

k (g (t)− g (x)) g′ (t) [f (t)− γ] dt

and

S̆k,g,a+,b−f (x) =
1

2
[λK (g (b)− g (x)) + γK (g (x)− g (a))] (35)

+
1

2

∫ x

a

k (g (t)− g (a)) g′ (t) [f (t)− γ] dt

+
1

2

∫ b

x

k (g (b)− g (t)) g′ (t) [f (t)− λ] dt

for x ∈ (a, b) and for any λ, γ ∈ C.

Proof. We have, by taking the derivative over t and using the chain rule, that

[K (g (x)− g (t))]
′

= K ′ (g (x)− g (t)) (g (x)− g (t))
′

= −k (g (x)− g (t)) g′ (t)

for t ∈ (a, x) and

[K (g (t)− g (x))]
′

= K ′ (g (t)− g (x)) (g (t)− g (x))
′

= k (g (t)− g (x)) g′ (t)

for t ∈ (x, b) .
Therefore, for any λ, γ ∈ C we have∫ x

a

k (g (x)− g (t)) g′ (t) [f (t)− λ] dt (36)

=

∫ x

a

k (g (x)− g (t)) g′ (t) f (t) dt− λ
∫ x

a

k (g (x)− g (t)) g′ (t) dt

= Sk,g,a+f (x) + λ

∫ x

a

[K (g (x)− g (t))]
′
dt

= Sk,g,a+f (x) + λ [K (g (x)− g (t))]|xa = Sk,g,a+f (x)− λK (g (x)− g (a))



56 SILVESTRU SEVER DRAGOMIR

and ∫ b

x

k (g (t)− g (x)) g′ (t) [f (t)− γ] dt (37)

=

∫ b

x

k (g (t)− g (x)) g′ (t) f (t) dt− γ
∫ b

x

k (g (t)− g (x)) g′ (t) dt

= Sk,g,b−f (x)− γ
∫ b

x

[K (g (t)− g (x))]
′
dt

= Sk,g,b−f (x)− γ [K (g (t)− g (x))]|bx = Sk,g,b−f (x)− γK (g (b)− g (x))

for x ∈ (a, b) .
If we add the equalities (36) and (37) and divide by 2 then we get the desired

result (34).
Moreover, by taking the derivative over t and using the chain rule, we have that

[K (g (b)− g (t))]
′

= K ′ (g (b)− g (t)) (g (b)− g (t))
′

= −k (g (b)− g (t)) g′ (t)

for t ∈ (x, b) and

[K (g (t)− g (a))]
′

= K ′ (g (t)− g (a)) (g (t)− g (a))
′

= k (g (t)− g (a)) g′ (t)

for t ∈ (a, x) .
For any λ, γ ∈ C we have∫ b

x

k (g (b)− g (t)) g′ (t) [f (t)− λ] dt (38)

=

∫ b

x

k (g (b)− g (t)) g′ (t) f (t) dt− λ
∫ b

x

k (g (b)− g (t)) g′ (t) dt

= Sk,g,x+f (b) + λ

∫ b

x

[K (g (b)− g (t))]
′
dt

= Sk,g,x+f (b)− λK (g (b)− g (x))

and ∫ x

a

k (g (t)− g (a)) g′ (t) [f (t)− γ] dt (39)

=

∫ x

a

k (g (t)− g (a)) g′ (t) f (t) dt− γ
∫ x

a

k (g (t)− g (a)) g′ (t) dt

=

∫ x

a

k (g (t)− g (a)) g′ (t) f (t) dt− γ
∫ x

a

[K (g (t)− g (a))]
′
dt

=

∫ x

a

k (g (t)− g (a)) g′ (t) f (t) dt− γK (g (x)− g (a))

for x ∈ (a, b) .
If we add the equalities (38) and (39) and divide by 2 then we get the desired

result (35). �
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If g is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective then we can define the g-mean of two numbers
a, b ∈ I as

Mg (a, b) := g−1

(
g (a) + g (b)

2

)
.

If I = R and g (t) = t is the identity function, then Mg (a, b) = A (a, b) := a+b
2 ,

the arithmetic mean. If I = (0,∞) and g (t) = ln t, thenMg (a, b) = G (a, b) :=
√
ab,

the geometric mean. If I = (0,∞) and g (t) = 1
t , then Mg (a, b) = H (a, b) :=

2ab
a+b , the harmonic mean. If I = (0,∞) and g (t) = tp, p 6= 0, then Mg (a, b) =

Mp (a, b) :=
(
ap+bp

2

)1/p
, the power mean with exponent p. Finally, if I = R and

g (t) = exp t, then

Mg (a, b) = LME (a, b) := ln

(
exp a+ exp b

2

)
,

the LogMeanExp function.
Using the g-mean of two numbers we can introduce

Pk,g,a+,b−f := Sk,g,a+,b−f (Mg (a, b)) (40)

=
1

2

∫ Mg(a,b)

a

k

(
g (a) + g (b)

2
− g (t)

)
g′ (t) f (t) dt

+
1

2

∫ b

Mg(a,b)

k

(
g (t)− g (a) + g (b)

2

)
g′ (t) f (t) dt.

Using the representation (34) we have

Pk,g,a+,b−f = K

(
g (b)− g (a)

2

)
γ + λ

2
(41)

+
1

2

∫ Mg(a,b)

a

k

(
g (a) + g (b)

2
− g (t)

)
g′ (t) [f (t)− λ] dt

+
1

2

∫ b

Mg(a,b)

k

(
g (t)− g (a) + g (b)

2

)
g′ (t) [f (t)− γ] dt

for any λ, γ ∈ C.
Also, if

P̆k,g,a+,b−f := S̆k,g,a+,b−f (Mg (a, b)) (42)

=
1

2

∫ b

Mg(a,b)

k (g (b)− g (t)) g′ (t) f (t) dt

+
1

2

∫ Mg(a,b)

a

k (g (t)− g (a)) g′ (t) f (t) dt.
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then by (35) we get

P̆k,g,a+,b−f = K

(
g (b)− g (a)

2

)
γ + λ

2
(43)

+
1

2

∫ Mg(a,b)

a

k (g (t)− g (a)) g′ (t) [f (t)− γ] dt

+
1

2

∫ b

Mg(a,b)

k (g (b)− g (t)) g′ (t) [f (t)− λ] dt

for any λ, γ ∈ C.

Theorem 3. Assume that the kernel k is defined either on (0,∞) or on [0,∞)
with complex values and integrable on any finite subinterval. Let f : [a, b] → C
be a function of bounded variation on [a, b] and g be a strictly increasing function
on (a, b) , having a continuous derivative g′ on (a, b) . Then we have the double
trapezoid inequalities

|Sk,g,a+,b−f (x)

−1

2

[
f (x) + f (b)

2
K (g (b)− g (x)) +

f (a) + f (x)

2
K (g (x)− g (a))

]∣∣∣∣
≤ 1

4

[
K (g (x)− g (a))

x∨
a

(f) +K (g (b)− g (x))

b∨
x

(f)

]

≤ 1

4



max {K (g (b)− g (x)) ,K (g (x)− g (a))}
∨b
a (f) ;

[Kp (g (b)− g (x)) +Kp (g (x)− g (a))]
1/p
(

(
∨x
a (f))

q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;

[K (g (b)− g (x)) +K (g (x)− g (a))]
[

1
2

∨b
a (f) + 1

2

∣∣∣∨xa (f)−
∨b
x (f)

∣∣∣]
(44)

and∣∣∣S̆k,g,a+,b−f (x)

−1

2

[
f (x) + f (b)

2
K (g (b)− g (x)) +

f (a) + f (x)

2
K (g (x)− g (a))

]∣∣∣∣
≤ 1

4

[
K (g (x)− g (a))

x∨
a

(f) +K (g (b)− g (x))

b∨
x

(f)

]
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≤ 1

4



max {K (g (b)− g (x)) ,K (g (x)− g (a))}
∨b
a (f) ;

[Kp (g (b)− g (x)) +Kp (g (x)− g (a))]
1/p
(

(
∨x
a (f))

q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;

[K (g (b)− g (x)) +K (g (x)− g (a))]
[

1
2

∨b
a (f) + 1

2

∣∣∣∨xa (f)−
∨b
x (f)

∣∣∣]
(45)

for x ∈ (a, b) .

Proof. Using the identity (34) for λ = f(a)+f(x)
2 and γ = f(x)+f(b)

2 we have

Sk,g,a+,b−f (x) (46)

=
1

2

[
f (x) + f (b)

2
K (g (b)− g (x)) +

f (a) + f (x)

2
K (g (x)− g (a))

]
+

1

2

∫ x

a

k (g (x)− g (t)) g′ (t)

[
f (t)− f (a) + f (x)

2

]
dt

+
1

2

∫ b

x

k (g (t)− g (x)) g′ (t)

[
f (t)− f (x) + f (b)

2

]
dt

for x ∈ (a, b) .
Since f is of bounded variation, then∣∣∣∣f (t)− f (a) + f (x)

2

∣∣∣∣ =

∣∣∣∣f (t)− f (a) + f (t)− f (x)

2

∣∣∣∣
≤ 1

2
[|f (t)− f (a)|+ |f (x)− f (t)|] ≤ 1

2

x∨
a

(f)

and ∣∣∣∣f (t)− f (x) + f (b)

2

∣∣∣∣ =

∣∣∣∣f (t)− f (x) + f (t)− f (b)

2

∣∣∣∣
≤ 1

2
[|f (t)− f (x)|+ |f (b)− f (t)|] ≤ 1

2

b∨
x

(f)

for x ∈ (a, b) .
Using the equality (46) we have

|Sk,g,a+,b−f (x)

−1

2

[
f (x) + f (b)

2
K (g (b)− g (x)) +

f (a) + f (x)

2
K (g (x)− g (a))

]∣∣∣∣
≤ 1

2

∣∣∣∣∫ x

a

k (g (x)− g (t)) g′ (t)

[
f (t)− f (a) + f (x)

2

]
dt

∣∣∣∣
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+
1

2

∣∣∣∣∣
∫ b

x

k (g (t)− g (x)) g′ (t)

[
f (t)− f (x) + f (b)

2

]
dt

∣∣∣∣∣
≤ 1

2

∫ x

a

|k (g (x)− g (t))|
∣∣∣∣f (t)− f (a) + f (x)

2

∣∣∣∣ g′ (t) dt
+

1

2

∫ b

x

|k (g (t)− g (x))|
∣∣∣∣f (t)− f (x) + f (b)

2

∣∣∣∣ g′ (t) dt
≤ 1

4

[
x∨
a

(f)

∫ x

a

|k (g (x)− g (t))| g′ (t) dt+

b∨
x

(f)

∫ b

x

|k (g (t)− g (x))| g′ (t) dt
]

=: B (x) (47)

for x ∈ (a, b) .
We have, by taking the derivative over t and using the chain rule, that

[K (g (x)− g (t))]
′

= K′ (g (x)− g (t)) (g (x)− g (t))
′

= − |k (g (x)− g (t))| g′ (t)
for t ∈ (a, x) and

[K (g (t)− g (x))]
′

= K′ (g (t)− g (x)) (g (t)− g (x))
′

= |k (g (t)− g (x))| g′ (t)
for t ∈ (x, b) .
Then∫ x

a

|k (g (x)− g (t))| g′ (t) dt = −
∫ x

a

[K (g (x)− g (t))]
′
dt = K (g (x)− g (a))

and∫ b

x

|k (g (t)− g (x))| g′ (t) dt =

∫ b

x

[K (g (t)− g (x))]
′
dt = K (g (b)− g (x)) .

Therefore

B (x) =
1

4

[
x∨
a

(f)

∫ x

a

|k (g (x)− g (t))| g′ (t) dt+

b∨
x

(f)

∫ b

x

|k (g (t)− g (x))| g′ (t) dt
]

=
1

4

[
K (g (x)− g (a))

x∨
a

(f) +K (g (b)− g (x))

b∨
x

(f)

]
.

The last part of (44) is obvious by making use of the elementary Hölder type
inequalities for positive real numbers c, d, m, n ≥ 0

mc+ nd ≤


max {m,n} (c+ d) ;

(mp + np)
1/p

(cq + dq)
1/q with p, q > 1, 1

p + 1
q = 1.

Using the identity (35) for λ = f(x)+f(b)
2 and γ = f(x)+f(a)

2 we also have∣∣∣S̆k,g,a+,b−f (x)
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−1

2

[
f (x) + f (b)

2
K (g (b)− g (x)) +

f (x) + f (a)

2
K (g (x)− g (a))

]∣∣∣∣
≤ 1

2

∫ x

a

|k (g (t)− g (a))|
∣∣∣∣f (t)− f (x) + f (a)

2

∣∣∣∣ g′ (t) dt
+

1

2

∫ b

x

|k (g (b)− g (t))|
∣∣∣∣f (t)− f (x) + f (b)

2

∣∣∣∣ g′ (t) dt
≤ 1

4

x∨
a

(f)

∫ x

a

|k (g (t)− g (a))| g′ (t) dt+
1

4

b∨
x

(f)

∫ b

x

|k (g (b)− g (t))| g′ (t) dt

=: C (x) .

We also have, by taking the derivative over t and using the chain rule, that

[K (g (b)− g (t))]
′

= K′ (g (b)− g (t)) (g (b)− g (t))
′

= − |k (g (b)− g (t))| g′ (t)
for t ∈ (x, b) and

[K (g (t)− g (a))]
′

= K′ (g (t)− g (a)) (g (t)− g (a))
′

= |k (g (t)− g (a))| g′ (t)
for t ∈ (a, x) .
Therefore ∫ x

a

|k (g (t)− g (a))| g′ (t) dt = K (g (x)− g (a))

and ∫ b

x

|k (g (b)− g (t))| g′ (t) dt = K (g (b)− g (x))

giving that

C (x) =
1

4

x∨
a

(f)K (g (x)− g (a)) +
1

4

b∨
x

(f)K (g (b)− g (x))

for x ∈ (a, b) , and the inequality (45) is thus proved. �

Corollary 4. With the assumptions of Theorem 3 we have∣∣∣∣Pk,g,a+,b−f −
1

2
K

(
g (b)− g (a)

2

)[
f (Mg (a, b)) +

f (a) + f (b)

2

]∣∣∣∣ (48)

≤ 1

4
K

(
g (b)− g (a)

2

) b∨
a

(f)

and ∣∣∣∣P̆k,g,a+,b−f −
1

2
K

(
g (b)− g (a)

2

)[
f (Mg (a, b)) +

f (a) + f (b)

2

]∣∣∣∣ (49)

≤ 1

4
K

(
g (b)− g (a)

2

) b∨
a

(f) .
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If we take x = a+b
2 in (44) and (45), then we get

∣∣∣∣∣Sk,g,a+,b−f

(
a+ b

2

)
−
f
(
a+b

2

)
+ f (b)

4
K

(
g (b)− g

(
a+ b

2

))

−
f (a) + f

(
a+b

2

)
4

K

(
g

(
a+ b

2

)
− g (a)

)∣∣∣∣∣
≤ 1

4

K(g(a+ b

2

)
− g (a)

) a+b
2∨
a

(f) +K

(
g (b)− g

(
a+ b

2

)) b∨
a+b
2

(f)



≤ 1

4



max
{
K
(
g (b)− g

(
a+b

2

))
,K
(
g
(
a+b

2

)
− g (a)

)}∨b
a (f) ;

[
Kp
(
g (b)− g

(
a+b

2

))
+Kp

(
g
(
a+b

2

)
− g (a)

)]1/p((∨ a+b
2

a (f)
)q

+
(∨b

a+b
2

(f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;[
K
(
g (b)− g

(
a+b

2

))
+K

(
g
(
a+b

2

)
− g (a)

)][
1
2

∨b
a (f) + 1

2

∣∣∣∨ a+b
2

a (f)−
∨b

a+b
2

(f)
∣∣∣]

(50)

and

∣∣∣∣∣S̆k,g,a+,b−f

(
a+ b

2

)
−
f
(
a+b

2

)
+ f (b)

4
K

(
g (b)− g

(
a+ b

2

))

−
f (a) + f

(
a+b

2

)
4

K

(
g

(
a+ b

2

)
− g (a)

)∣∣∣∣∣
≤ 1

4

K(g(a+ b

2

)
− g (a)

) a+b
2∨
a

(f) +K

(
g (b)− g

(
a+ b

2

)) b∨
x

(f)
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≤ 1

4



max
{
K
(
g (b)− g

(
a+b

2

))
,K
(
g
(
a+b

2

)
− g (a)

)}∨b
a (f) ;

[
Kp
(
g (b)− g

(
a+b

2

))
+Kp

(
g
(
a+b

2

)
− g (a)

)]1/p((∨ a+b
2

a (f)
)q

+
(∨b

a+b
2

(f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;[
K
(
g (b)− g

(
a+b

2

))
+K

(
g
(
a+b

2

)
− g (a)

)][
1
2

∨b
a (f) + 1

2

∣∣∣∨ a+b
2

a (f)−
∨b

a+b
2

(f)
∣∣∣]

(51)

for x ∈ (a, b) .
We use the classical Lebesgue p-norms defined as

‖h‖[c,d],∞ := essup
s∈[c,d]

|h (s)|

and

‖h‖[c,d],p :=

(∫ d

c

|h (s)|p ds
)1/p

, p ≥ 1.

Using Hölder’s integral inequality we have for t > 0 that

K (t) =

∫ t

0

|k (s)| ds ≤


t ‖k‖[0,t],∞ if k ∈ L∞ [0, t]

t1/p ‖k‖[0,t],q if k ∈ Lq [0, t] , p, q > 1, 1
p + 1

q = 1.

Therefore by the first inequality in (44) and (45) we get for p, q > 1, 1
p + 1

q = 1

|Sk,g,a+,b−f (x)

−1

2

[
f (x) + f (b)

2
K (g (b)− g (x)) +

f (a) + f (x)

2
K (g (x)− g (a))

]∣∣∣∣
≤ 1

4

x∨
a

(f)


(g (x)− g (a)) ‖k‖[0,g(x)−g(a)],∞

(g (x)− g (a))
1/p ‖k‖[0,g(x)−g(a)],q

+
1

4

b∨
x

(f)


(g (b)− g (x)) ‖k‖[0,g(b)−g(x)],∞

(g (b)− g (x))
1/p ‖k‖[0,g(b)−g(x)],q

(52)

and∣∣∣S̆k,g,a+,b−f (x)

−1

2

[
f (x) + f (b)

2
K (g (b)− g (x)) +

f (a) + f (x)

2
K (g (x)− g (a))

]∣∣∣∣
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≤ 1

4

x∨
a

(f)


(g (x)− g (a)) ‖k‖[0,g(x)−g(a)],∞

(g (x)− g (a))
1/p ‖k‖[0,g(x)−g(a)],q

+
1

4

b∨
x

(f)


(g (b)− g (x)) ‖k‖[0,g(b)−g(x)],∞

(g (b)− g (x))
1/p ‖k‖[0,g(b)−g(x)],q

(53)

for x ∈ (a, b) .
From (48) and (49) we also have for p, q > 1, 1

p + 1
q = 1 that∣∣∣∣Pk,g,a+,b−f −

1

2
K

(
g (b)− g (a)

2

)[
f (Mg (a, b)) +

f (a) + f (b)

2

]∣∣∣∣
≤ 1

4

b∨
a

(f)


(
g(b)−g(a)

2

)
‖k‖[0, g(b)−g(a)2 ],∞(

g(b)−g(a)
2

)1/p

‖k‖[0, g(b)−g(a)2 ],q

(54)

and∣∣∣∣P̆k,g,a+,b−f −
1

2
K

(
g (b)− g (a)

2

)[
f (Mg (a, b)) +

f (a) + f (b)

2

]∣∣∣∣
≤ 1

4

b∨
a

(f)


(
g(b)−g(a)

2

)
‖k‖[0, g(b)−g(a)2 ],∞(

g(b)−g(a)
2

)1/p

‖k‖[0, g(b)−g(a)2 ],q .

(55)

3. Applications for Generalized Riemann-Liouville Fractional
Integrals

If we take k (t) = 1
Γ(α) t

α−1, where Γ is the Gamma function, then

Sk,g,a+f (x) = Iαa+,gf(x) :=
1

Γ (α)

∫ x

a

[g (x)− g (t)]
α−1

g′ (t) f (t) dt

for a < x ≤ b and

Sk,g,b−f (x) = Iαb−,gf(x) :=
1

Γ (α)

∫ b

x

[g (t)− g (x)]
α−1

g′ (t) f (t) dt

for a ≤ x < b, which are the generalized left- and right-sided Riemann-Liouville
fractional integrals of a function f with respect to another function g on [a, b] as
defined in [23, p. 100].
We consider the mixed operators

Iαg,a+,b−f (x) :=
1

2

[
Iαa+,gf(x) + Iαb−,gf(x)

]
(56)
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and

Ĭαg,a+,b−f (x) :=
1

2

[
Iαx+,gf (b) + Iαx−,gf(a)

]
(57)

for x ∈ (a, b) .
We observe that for α > 0 we have

K (t) =
1

Γ (α)

∫ t

0

sα−1ds =
tα

αΓ (α)
=

tα

Γ (α+ 1)
, t ≥ 0.

If we use the inequalities (44) and (45) we get

∣∣Iαg,a+,b−f (x)

− 1

2Γ (α+ 1)

[
f (x) + f (b)

2
(g (b)− g (x))

α
+
f (a) + f (x)

2
(g (x)− g (a))

α

]∣∣∣∣
≤ 1

4Γ (α+ 1)

[
(g (x)− g (a))

α
x∨
a

(f) + (g (b)− g (x))
α

b∨
x

(f)

]

≤ 1

4Γ (α+ 1)

×



[
g(b)−g(a)

2 +
∣∣∣g (x)− g(b)+g(a)

2

∣∣∣]α∨ba (f) ;

[(g (b)− g (x))
pα

+ (g (x)− g (a))
pα

]
1/p
(

(
∨x
a (f))

q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;

[(g (b)− g (x))
α

+ (g (x)− g (a))
α

]
[

1
2

∨b
a (f) + 1

2

∣∣∣∨xa (f)−
∨b
x (f)

∣∣∣]
(58)

and

∣∣∣Ĭαg,a+,b−f (x)

− 1

2Γ (α+ 1)

[
f (x) + f (b)

2
(g (b)− g (x))

α
+
f (a) + f (x)

2
(g (x)− g (a))

α

]∣∣∣∣
≤ 1

4Γ (α+ 1)

[
(g (x)− g (a))

α
x∨
a

(f) + (g (b)− g (x))
α

b∨
x

(f)

]

≤ 1

4Γ (α+ 1)
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×



[
g(b)−g(a)

2 +
∣∣∣g (x)− g(b)+g(a)

2

∣∣∣]α∨ba (f) ;

[(g (b)− g (x))
pα

+ (g (x)− g (a))
pα

]
1/p
(

(
∨x
a (f))

q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;

[(g (b)− g (x))
α

+ (g (x)− g (a))
α

]
[

1
2

∨b
a (f) + 1

2

∣∣∣∨xa (f)−
∨b
x (f)

∣∣∣]
(59)

for x ∈ (a, b) .
From (48) and (49) we get∣∣∣∣Iαg,a+,b−f (Mg (a, b))− (g (b)− g (a))

α

2α+1Γ (α+ 1)

[
f (Mg (a, b)) +

f (a) + f (b)

2

]∣∣∣∣
≤ 1

2α+2Γ (α+ 1)
(g (b)− g (a))

α
b∨
a

(f) (60)

and∣∣∣∣Ĭαg,a+,b−f (Mg (a, b))− (g (b)− g (a))
α

2α+1Γ (α+ 1)

[
f (Mg (a, b)) +

f (a) + f (b)

2

]∣∣∣∣
≤ 1

2α+2Γ (α+ 1)
(g (b)− g (a))

α
b∨
a

(f) . (61)

4. Example for an Exponential Kernel

For α, β ∈ R we consider the kernel k (t) := exp [(α+ βi) t] , t ∈ R. We have

K (t) =
exp [(α+ βi) t]− 1

(α+ βi)
, if t ∈ R

for α, β 6= 0.
Also, we have

|k (s)| := |exp [(α+ βi) s]| = exp (αs) for s ∈ R

and

K (t) =

∫ t

0

exp (αs) ds =
exp (αt)− 1

α
if 0 < t,

for α 6= 0.
Let f : [a, b] → C be a function of bounded variation on [a, b] and g be a

strictly increasing function on (a, b) , having a continuous derivative g′ on (a, b) .
We consider the operator

Hα+βi
g,a+,b−f (x) :=

1

2

∫ x

a

exp [(α+ βi) (g (x)− g (t))] g′ (t) f (t) dt (62)
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+
1

2

∫ b

x

exp [(α+ βi) (g (t)− g (x))] g′ (t) f (t) dt

for x ∈ (a, b) .
If g = lnh where h : [a, b] → (0,∞) is a strictly increasing function on (a, b) ,

having a continuous derivative h′ on (a, b) , then we can consider the following
operator as well

κα+βi
h,a+,b−f (x) (63)

:= Hα+βi
lnh,a+,b−f (x)

=
1

2

[∫ x

a

(
h (x)

h (t)

)α+βi
h′ (t)

h (t)
f (t) dt+

∫ b

x

(
h (t)

h (x)

)α+βi
h′ (t)

h (t)
f (t) dt

]
,

for x ∈ (a, b) .
Using the inequality (44) we have for x ∈ (a, b)∣∣∣∣Hα+βi

g,a+,b−f (x)− 1

2

f (x) + f (b)

2

exp [(α+ βi) (g (b)− g (x))]− 1

(α+ βi)

−f (a) + f (x)

2

exp [(α+ βi) (g (x)− g (a))]− 1

(α+ βi)

∣∣∣∣
≤ 1

4

[
exp (α (g (x)− g (a)))− 1

α

x∨
a

(f) +
exp (α (g (b)− g (x)))− 1

α

b∨
x

(f)

]

≤ 1

4



max
{

exp(α(g(x)−g(a)))−1
α , exp(α(g(b)−g(x)))−1

α

}∨b
a (f) ;

[(
exp(α(g(x)−g(a)))−1

α

)p
+
(

exp(α(g(b)−g(x)))−1
α

)p]1/p
×
(

(
∨x
a (f))

q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;[
exp(α(g(x)−g(a)))+exp(α(g(b)−g(x)))−2

α

]
×
[

1
2

∨b
a (f) + 1

2

∣∣∣∨xa (f)−
∨b
x (f)

∣∣∣]

(64)

and if we take g = lnh where h : [a, b]→ (0,∞) is a strictly increasing function on
(a, b) , having a continuous derivative h′ on (a, b) , then we get∣∣∣∣∣∣∣κα+βi

h,a+,b−f (x)− 1

2

f (x) + f (b)

2

(
h(b)
h(x)

)α+βi

− 1

(α+ βi)
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−f (a) + f (x)

2

(
h(x)
h(a)

)α+βi

− 1

(α+ βi)


∣∣∣∣∣∣∣

≤ 1

4


(
h(x)
h(a)

)α
− 1

α

x∨
a

(f) +

(
h(b)
h(x)

)α
− 1

α

b∨
x

(f)



≤ 1

4



max

{
(h(x)h(a) )

α−1

α ,
( h(b)h(x) )

α−1

α

}∨b
a (f) ;

[(
(h(x)h(a) )

α−1

α

)p
+

(
( h(b)h(x) )

α−1

α

)p]1/p (
(
∨x
a (f))

q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;[
(h(x)h(a) )

α
+( h(b)h(x) )

α−2

α

] [
1
2

∨b
a (f) + 1

2

∣∣∣∨xa (f)−
∨b
x (f)

∣∣∣] .
(65)

If we take if we take xh := h−1
(√

h (a)h (b)
)

= h−1 (G (h (a) , h (b))) ∈ (a, b) ,

where G is the geometric mean, then from (65) we get∣∣∣∣∣∣∣∣κ̄
α+βi
h,a+,b−f −

(
h(b)
h(a)

)α+βi
2 − 1

2 (α+ βi)

[
f
(
h−1 (G (h (a) , h (b)))

)
+
f (a) + f (b)

2

]∣∣∣∣∣∣∣∣
≤ 1

4

(
h(b)
h(a)

)α
2 − 1

α

b∨
a

(f) , (66)

where κ̄α+βi
h,a+,b−f = κα+βi

h,a+,b−f (xh) .

Let f : [a, b]→ C be an integrable function on [a, b] and g be a strictly increasing
function on (a, b) , having a continuous derivative g′ on (a, b) . Also define

H̆αg,a+,b−f (x) (67)

:=
1

2

∫ b

x

exp [α (g (b)− g (t))] g′ (t) f (t) dt

+
1

2

∫ x

a

exp [α (g (t)− g (a))] g′ (t) f (t) dt

for any x ∈ (a, b) .
If g = lnh where h : [a, b] → (0,∞) is a strictly increasing function on (a, b) ,

having a continuous derivative h′ on (a, b) , then we can consider the following
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operator as well

κ̆αh,a+,b−f (x) (68)

:= H̆αlnh,a+,b−f (x)

=
1

2

[∫ b

x

(
h (b)

h (t)

)α
h′ (t)

h (t)
f (t) dt+

∫ x

a

(
h (t)

h (a)

)α
h′ (t)

h (t)
f (t) dt

]
,

for any x ∈ (a, b) .
Using the inequality (45) we have for x ∈ (a, b) that∣∣∣∣H̆α+βi

g,a+,b−f (x)− 1

2

[
f (x) + f (b)

2

exp [(α+ βi) (g (b)− g (x))]− 1

(α+ βi)

−f (a) + f (x)

2

exp [(α+ βi) (g (x)− g (a))]− 1

(α+ βi)

]∣∣∣∣
≤ 1

4

[
exp (α (g (x)− g (a)))− 1

α

x∨
a

(f) +
exp (α (g (b)− g (x)))− 1

α

b∨
x

(f)

]

≤ 1

4



max
{

exp(α(g(x)−g(a)))−1
α , exp(α(g(b)−g(x)))−1

α

}∨b
a (f) ;

[(
exp(α(g(x)−g(a)))−1

α

)p
+
(

exp(α(g(b)−g(x)))−1
α

)p]1/p
×
(

(
∨x
a (f))

q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;[
exp(α(g(x)−g(a)))+exp(α(g(b)−g(x)))−2

α

]
×
[

1
2

∨b
a (f) + 1

2

∣∣∣∨xa (f)−
∨b
x (f)

∣∣∣]

(69)

and if we take g = lnh where h : [a, b]→ (0,∞) is a strictly increasing function on
(a, b) , having a continuous derivative h′ on (a, b) , then we get∣∣∣∣∣∣∣κ̆α+βi

h,a+,b−f (x)− 1

2

f (x) + f (b)

2

(
h(b)
h(x)

)α+βi

− 1

(α+ βi)

−f (a) + f (x)

2

(
h(x)
h(a)

)α+βi

− 1

(α+ βi)


∣∣∣∣∣∣∣

≤ 1

4


(
h(x)
h(a)

)α
− 1

α

x∨
a

(f) +

(
h(b)
h(x)

)α
− 1

α

b∨
x

(f)
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≤ 1

4



max

{
(h(x)h(a) )

α−1

α ,
( h(b)h(x) )

α−1

α

}∨b
a (f) ;

[(
(h(x)h(a) )

α−1

α

)p
+

(
( h(b)h(x) )

α−1

α

)p]1/p (
(
∨x
a (f))

q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;[
(h(x)h(a) )

α
+( h(b)h(x) )

α−2

α

] [
1
2

∨b
a (f) + 1

2

∣∣∣∨xa (f)−
∨b
x (f)

∣∣∣] .
(70)

If we take if we take xh = h−1 (G (h (a) , h (b))) ∈ (a, b) , where G is the geometric
mean, then from (65) we get∣∣∣∣∣∣∣∣¯̀

α+βi
h,a+,b−f −

(
h(b)
h(a)

)α+βi
2 − 1

2 (α+ βi)

[
f
(
h−1 (G (h (a) , h (b)))

)
+
f (a) + f (b)

2

]∣∣∣∣∣∣∣∣
≤ 1

4

(
h(b)
h(a)

)α
2 − 1

α

b∨
a

(f) , (71)

where ¯̀α+βi
h,a+,b−f = κ̆α+βi

h,a+,b−f (xh) .
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