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ABSTRACT

An isometric immersion of a Riemannian manifold M into a Riemannian manifold N gives rise in
a natural way to variety of immersions into the tangent bundle TNV with a non-degenerate g-natural
metric G. In the paper we introduce and study an immersion into TN defined by the immersion
f: M — N itself and the normal bundle.
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1. Introduction

An isometric immersion of a Riemannian manifold M into a Riemannian manifold N gives rise in a natural
way to variety of immersions into the tangent bundle TN with a non-degenerate g-natural metric G. The
isometric immersion defined by the tangent bundle of the submanifold was introduced by the author in [11],
[12]. In the present paper we introduce and study an immersion j?: LM — TN defined by the immersion
f: M — N itself and the normal bundle.

In Preliminaries we recall basic facts on the decomposition of the tangent bundle and g-natural metrics. We
also present basic notions on submanifolds and give short resumé on van der Waerden-Bortolotti covariant
derivative. In Section 3 basic equations are presented. The main results are given in Section 4. We give the
condition sufficient for LM being totally geodesic submanifold of T'N.

Throughout the paper all manifolds under consideration are Hausdorff and smooth. The metrics on the
base manifolds are Riemannian and the metrics on tangent spaces are non-degenerate. We adopt the Einstein
summation convention.

2. Preliminaries

2.1. Decomposition of the tangent space

Let 7 : TN — N be the tangent bundle of a Riemannian manifold N with the Levi-Civita connection V on
N, m being the projection. Then at each point (z,u) € T'N the tangent space T{, ,,yT'N splits into direct sum of
two isomorphic spaces V(, )TN and H(, ., TN, where

Vv(m’u)TN = K@’I‘(dﬁ|(x7u)), H(m’u)TN = KeT(K‘(myu))

and K is the connection map [7], see also [15].

More precisely, if Z = (Z" a?cr —&-ZTa%T) l(z,u) € T(@,wyTN, r=1,...,n, then the vertical and horizontal
projections of Z on T, N are given by

r 9 2 s T
(@) 2 = 2" 5sler Ko (2) = (Z tu Ztl“st)
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where I', are components of the Levi-Civita connection on N.
On the other hand, to each vector field X on NNV there correspond uniquely determined vector fields X* and
X" on TN such that

dr|(z,u) (X")
K‘ (z,u) (Xh)

0, Klguw(X") =X,
0, d7T|(w)u)(Xh) = X.

X and X" are called the vertical lift and the horizontal lift of a given X to T'N, respectively.

Inlocal coordinates ((z"), (u")),r = 1,..,n,on T'N, the horizontal and vertical lifts of a vector field X = X" ag,‘
on N to T'N are vector fields given respectively by
0 0 0
Xh= X"~ X, —, XV=X"_——. 2.1
oz St Qur’ ou” 2.1)

Recall that for a given isometric immersion f : M — N, we have two tangent bundles 7 : TN — N and
w2 TM — M, where the latter is the subbundle of the former. Let M, N be two Riemannian manifolds with
metrics gy and gy and Levi-Civita connections V), and Vy respectively. Then 7,,7M and 7,TN have at a
common point p their own decompositions into vertical and horizontal parts, i.e.

T,TM = V,TM & H,TM = Va; ® Hy,

and
T,TN =V,TN @ H/TN = Vy @ Hy,

but neither V3, C Vv nor Hy; C Hy need to hold along T'M. See also [15]

Remark also that totally geodesic submanifolds of tangent bundle with g-natural metric are also studied in
[1] and [10].
2.2. Preliminaries on g-natural metrics

In [13] the class of g-natural metrics was defined. We have
Lemma 2.1. ([13], [2], [3]) Let (M, g) be a Riemannian manifold and G be a g-natural metric on T M. There exist
functions aj, b; :< 0,00) — R, j = 1,2, 3, such that for every X, Y, u € T, M

G oy (X" Y") = (a1 + a3)(r?) g2 (X, Y) + (b1 + bs) (r?) g (X, u) g (Y, w),

G(m,u) (Xha Yv) = G(m,u) (Xv7 Yh) = Qa2 (T2)gz (X; Y) + bo (T2)gm (Xa u)gm (}/7 ’LL),
G(w,u) (XU7 Yv) =a (7"2)91; (Xa Y) + b1 (T2)g$ (Xa u)gl (K u)a

where r? = g, (u,u). For dim M = 1 the same holds for b; = 0, j = 1,2, 3.

Setting a1 = 1, as = a3 = b; = 0 we obtain the Sasaki metric, while setting a; = b; =
a; + a3z =1, by + b3 = 1 we get the Cheeger-Gromoll one.
Following [2] we put

L. a(t) = ai(t) (as(t) + as(t)) — a3 (t),

2. Fj(t) = aj(t) —+ tbj(t),

3. F(t) = Fy(t) [Fy(t) + Fy(0)] — F2(t)
forall t €< 0,00).

1
37 a2 =by=0=0,

We shall often abbreviate: A = a; + a3, B = by + bs.

Lemma 2.2. ([2], Proposition 2.7) The necessary and sufficient conditions for a g-natural metric G on the tangent bundle
of a Riemannian manifold (M, g) to be non-degenerate are

alt) #0, F(t)#0

forallt €< 0,00). If dim M = 1, this is equivalent to a(t) # 0 for all t €< 0, c0).
Moreover, (T M, G) is Riemannian one if and only if

a(t) >0, F(t)>0, ai(t)>0, Fi(t)>0
hold for all t €< 0, 00).
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We also have

Proposition 2.1. ([4], [5]) Let (N, g) be a Riemannian manifold, V its Levi-Civita connection and R its Riemann
curvature tensor. If G is a non-degenerate g-natural metric on TN, then the Levi-Civita connection V of (T'N,G) is
given at a point (x,u) € TN by

(6thh> = (VXY)?;E,u) +h {A(uv X, Yw)} +v {B(u7 Xa» Y-L)} )

(z,u)

(%thv) = (VxY)ly0 +h{C(u, X0, Ya)} + 0 {D(u, X, Ya)} |

(zu)

(ngyh) = h{C(u, Yy, Xo)} + v {D(u, Yy, Xo)},

(,u)
(ﬁxvY")(W = W {E(u, X, Ya)} + 0 {F(u, X, Ya)} |
where A, B, C, D, E, F are some F-tensors defined on the product TN ® TN ® T N.
Remark 2.1. Expressions for A, B, C, D, E, F were presented for the first time in the original papers ([2], [3]).

Unfortunately, they contain some misprints and omissions. Therefore, for the correct form, we refer the reader

to ([4], [5]), see also ([8], [9]).

2.3. Submanifolds

Let M be a manifold isometrically immersed in a pseudo-Riemannian manifold N with metric g. Denote by

V and V the Levi-Civita connections of the metric gon N and that of the induced metric on M and by D+ the
connection induced in the normal bundle T+ M. Then the Gauss and Weingarten equations

VxY =VxY + H(X,Y),

%XW = —ApX + D)l(y’

hold for all vectors fields X, Y tangent to M and all vector fields n normal to M. Here H(X,Y) is the second
fundamental form which is symmetric and takes values in T+ M while A, X is the shape operator taking values
in TM. It is well known that A, and H are related by

9(A,X,Y) = g(n, H(X,Y)).

M is said to be totally geodesic if H(X,Y) =0forall X,Y € TM.
For the local immersion 2" = 2" (y®), r = 1,...,n, a = 1, ..., m, the components of the Levi-Civita connection V

of the induced metric g, = g,sB;B;, B], = gz:, are

Loy = [Bay +T0BiBy] BY,  B; = ¢“Bigur,

where the dot denotes partial derivative with respect to y°.
Similarly, the components of the connection D+ are

I, = [Ny +TLBINY N, NP = g™ Npgur,

-,z =m + 1,...,n are unit vector fields normal to M.

2.3.1. Van der Waerden-Bortolotti covariant derivative Van der Waerden-Bortolotti covariant derivative V is a
covariant differentiation of tensor fields of mixed types defined along a submanifold M isometrically immersed
in a pseudo-Riemannian manifold (XN, g) and can be considered as a direct sum V &V & VL of the Levi-Civita
connections of the metric g on N, the one induced on M and of the metric induced in normal bundle 7M.
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If X, X and 7 are vector fields, respectively, tangent to N, tangent to M, normal to M and X*, X*, n* are
respective 1-forms, then,

(VyT) ()Z',X,n,)?ﬂX*,n*) =Y (T ()Z',X,m)?*,X*,n*)) —
T (ﬁyi,x,n,f(*,x*,n*) _T ()?,X,nﬁy)?*,x*,n*) -
T (X’,VYX,n,)?*,X*,n*) T ()Z',X,n,)?*,vyx*,n*) -
T ()~(,X, V#n,)?*,X*,n*) _T ()?,X,n,)?*,X*,V%/n*>

for any vector field Y tangent to M and tensor field T' of mixed type (3, 3).

Let 2% = 2% (y*) be the local expression of the immersion, B = gif. Let n, = N;&%, r=m+1,..,n, be an
orthonormal set of vectors normal to M.
For the local coordinate vector fields -2 tangent to N, a%a tangent to M, 52 normal to M and the respective

1-forms dz*, dy®, dv”, denote by T'},,, I'¢,, Tz, components of the connections V,Vand V. If

0 0 0
T:Tfsg@®dxh®87ﬁ®dya®@®dvx,

then

Vchby _ akaby _ s Bﬁkay + FESBZTS}W_

hax hazx hr~c+ sax hazx
d mkby b pkdy z rkby y mkbz
PcaThdw + FCdT - PCIT + FczT

hax haz hax»

where h,k,r,s =1,...,n,a,b,c,d=1,....m,m <n,and z,y,z=m+1,...,n.
In particular, ﬁaBg and V,N? give rise to the components of the second fundamental form and the shape
operator:
VB0, = (B, + 5, BiBy — T5,BL) 8, = h,N.O,,

VuNJd, = (8,N; + T, BIN! —TY,N7) &, (22)

In a free of coordinate notation we have respectively:
VxY =VxY - VxY,
Vxn = Vxn - Dx.
See also [14] and [16].

2.3.2. Isometric immersion defined by normal bundle Let f : M — N be an isometric immersion of a Riemannian
manifold M into a Riemannian manifold N. Suppose that the following diagram commute

<ml(U>,<xlhu’“>> TN +—— [ —— <(m)‘1<V>,<|ya,va>> T M
| |
T™™N 7T|j‘/[ )
|
$ 4
(U. (") N —— f - (V, (y") M

where (U, (z")) and (V,(y*)) are coordinate neighbourhoods on N and M respectively, while the local
expression for f is:

Let
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be a set of orthonormal vectors normal to M.
The coordinate neighbourhoods on TN and normal bundle T+ M are defined respectively by

((y"), (v%)), z=m+1,..,n, a=1,..,m,

where (u"),=1,... n, are components of the vector u tangent to N at a point with coordinates (z") and
(V") g=m+1,...,n are components of the vector normal to M at a point " = z" (y®).
If

feM— N;  (y*) = 2"(y")
then
fra"=a"(y"), u =v"N] (2.3)
defines locally an immersion into T'N.
2.3.3. Vectors tangent to LM The coordinate vector fields tangent to LM = f(TM L) are

0 , 0 v
%—wa—(%) )

(2.3),(2.1)

0 0 0 0
B" ZNtFG z NT zry NT
“<3m " gur )”V Sour T e gy

5 h . 9 v . ) v
()~ (5) =% () -

() + 0my + v

NyN’“

Y 9o are normal to M.

where M, = v*V,N! 52 = v*M,, are tangent to M and N, = v*T¥ N; 5o

Along M we also have

0
Vs, u= Vs, (vYny,) = Vs, <vyNT ) =M, + N,.

Y oz

3. Basic equations

In this section we derive, using the equations of Gauss and Weingarten and the formulas for the Levi-Civita
connection on (T'N, () with a non-degenerate g-natural metric GG, the basic equations for the immersion given
by (2.3) to be used throughout the paper. H" + V" is a unique decomposition of a vector field normal to LM
into its horizontal and vertical parts, where H and V are vector fields along M, not necessary tangent to M. V
and V denote the Levi-Civita connections of the metric g and g-natural non-degenerate metric G, respectively.
H is the second fundamental form of the immersion (2.3). Finally, R stands for the Riemann curvature tensor
of g. The computations in this section were performed and checked with Mathematica software. In virtue of
Proposition 4.1, the pairs of equations in each subsection must satisfy

G(H(8,,0,), H" + V) — G(Agn iy 0, 0,) = 0. (3.1)

It also can be used to verify the correctness of computations.
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Equation 1

G(Vo, 8y, H" + V) = G(H(D,,0,), H' + V') =

G(Vyent, H" + V) =

G(h{E(u7 Nz ny)} + U{F(u’ Nz ny)}’ H" + VU) =

v
Yy

b2g(nz,my)g(u, H) + (b1 — a})g(nz,my)g(u, V)+
a g, V) g(u,ny) 4 ayg(ny, V)g(u, e )+

<a'z + b2> (9(nzy H)g(u,my) + g(ny, H)g(u,n)) +

9
g(u,nz)g(u,my)g(u, b1V + 205 H).  (3.2)

G(Vo, (H" +V?),8,) = G(=Agnveds,dy) =
G(h{C(u, H,nz)} + v{D(u, H,12)} + M{E(u, 0z, V) } + v{F(u, 12, V)}, 775) =

(by — a})g(ne, V)g(u,my) + atg(ny, V)g(u, ne) + a1 g(ne, ny)g(u, V)+

/_b2

(6= % ) (o Hhat) = gt D) +

b19(u, m2)g(u,my)g(u, V).

In virtue of the equality (3.1) the above two equations yield

9(u,m2)g(0y, T) — g(u,my)9(nz, T') = 0,
where T' = (b) — 2a})V + (b — 2a5)H.

Equation 2

G(Vo,00, H" + V¥) = G(H(8,,0,), H" + V) =
G(Vy (8% + MY + N2), H" 4 V) =
G(h{C(u,64,m)} + v{D(u,80,n2)}, H" + V") +
G(h{E(u, 1z, Mo + No)} + 0{F (u, 00, Mo + No)}, H" +V°) =

1 b
- Q. B + A, ) ) + (o= ) oVt )+

(b1 — a})g(u, V)g(Ng,ns) + bag(u, H)g(Ng, nz)+
allg(ua m)g(V, M, + Na) + allg(u, Na)g(V, le)+

(s + % ) 0. M4 o)+ N2 +

g(u, by V + 205, H)g(u, nz)g(u, No).  (3.3)

G(Vo,(H" +V"),04) = G(=App 42 0x,00) =
G(Vo, (H" + V), 6" + MY + N?) =
G(h{C(u,H,nz)} + v{D(u, H,n,)},0" + M? + N’)+
G(ME(u,n., V)} + v{F(u, 1., V)}, 6" + M? + N?) =
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1
ialR(Hv 5a7u7771') + (bl - all)g(uv Na)g(‘/v 771’) + aﬁg(uﬂh)g(vv My + Na)+

b
ot V) Norm) + (a2 ) . )alV6)+

(a; - bQ) (g(H, My + Na)g(usmy) — g(H, nu)g(u, No)] +

2
A'g(H,64)9(u,nz) + b1g(u,12)g(u, Na)g(u, V). (3.4)
Hence, in virtue of (3.1), we get
9(u, 01V + b2 H)g(Nay 1) + 29(u, 112)g(A'H + a5V, 80)+

2g(u,n.)g(ayV + ayH, My + N, )+
g(u, No) [g(01V + baH, 1) 4 2g(u, 1) g(01V + by H, u)] = 0.

Equation 3

G(Vo,0p, H" + V) = G(H(8,,0,), H" + V?) =

G(Vsryary+n2)(12)" H" + V") =

G((Vs,m0)" + h{C(u, 80, m0)} + 0{D(u, 8ay )}, H" + V)4
G(M{E(u, ne, Mo + No)} + v{F(u, 0y, My + No)}, H' + V7).
Since H(d,, d,) is symmetric, comparing the last equation with (3.3), we obtain

G ((Vs,ne)" H" + V") = 0. (3.5)

G(Vo,(H" +V?),8,) = G(—Agn yy00a, 0y) =
G(%(53+M5+N;)(Hh +V),n) =
G((Vs, H)" + h{A(u, 64, H)} + v{B(u,6,, H)}, n%)+
G((Vs, V)" + h{C(u,84,V)} + v{D(u, 84, V) },n")+
G(h{C(u, H’ Ma + Na)} + U{D(’U,7 H7 Ma + Na)}7 77;)—’_
G(M{E(u, My + No, V) } 4+ v{F(u, My + No, V) },1;) =
1
ialR(H7 O, U, M) + a19(Ne, V5, V) + big(u, mz)g(u, Vs, V)+
a29(Ne, Vs, H) + bag(u,1:)g(u, Vs, H) — A'g(u,n:)g(H, 64 )+
(by — ah)g(u,m:)g(V, My + No) + atg(u, No)g(V, 1) + a19(w, V)g(Na, 1)+
b
(= 2 ) b)) = Mo+ Nadamc) eV )]+

b19(u, V)g(u, Na)g(u,ns). (3.6)
Equation 4 Body Math

G(Vo, 0y, H' + VV) = G(H(0,,0,), H" + V) =
G(€(6g+M;+Ng)(5l}} + My + N{j), H" + Vv) =
G((Vs,8)" + h {A(u,84,6)} + v {B(u, 64, 0)} +
(Vs, (My+ Np))" + h{C(u,dq, My + Np)} + v {D(u, dq, My + Np)} +
h{C(u, 8, My + No)} + v {D(u,d, M, + No)} +
hA{E(u, My + No, My + Ny)} + v {F(u, My + No, My + N)} , H' + V) =
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- CLZR(Ha 5b7ua 6 )7

1
falR(H Oy, My + Np) — falR(H Op,u, My + N, a1 R(u,V, 04, 0p)+

1
3¢
Vs, 00)+
S Bo(H,u) (9(Ma,83) + 9(My, 5,)) +

g(a1V + asH, Vs, (My 4+ Np)) 4+ g(bo H 4+ b1V, u)g(u, Vs, (M + Np))+
+ g(boaH + (b1 — ay)V,u)(9(Ma, My) + g(Na, No))+
A'[g(H, 8a)g(u, Ny) + g(H, dp)g(u, Na) — g(V,u)g(8a; 0p)] +
atg(u, Na)g(V, My + Np) + ay g(u, Np)g(V, My + N )+

(a; . b;) {g(u, No)g(V.6a) + g(u, Na)g(V,8) = g(u, V) [g(My, 60) + g(Ma, )]} +

) —

9(AH + a3V, Vs,0) + g(BH + b2V, u)g(u,
a)

(

< b+ b;) (g(H, M, + Na)g(U,Nb) —l—g(H, My + Nb)g(u; Na)) +

9(u, 0V + 205 H)g(u, No)g(u, Np). (3.7)
Body Math

G(Vo,(H" +V"),8,) = G(—Apgn 4 v00a, 0y) =

G(v(sg+Mg+N;)(Hh +V¥),m) =
GZR(H> 6b7u76a)+

1 1 1
ialR(H, Oaytt, My + Np) + ialR(H7 Op, uy My + Ny) + ialR(u, V,04,05)
Ag(0p, Vs, H) + az29(6y, V5,V) + asg(My + Ny, Vs, H) + arg(My + Ny, Vs, V)
1
2 B(H,u) (o(Ma ) — 9(M. ) +

g(uv Nb)(bQ.g(u7 V(LLH) + blg(ua V&aV))+
9(H,64)9(u, Ny) 4 g(H, 8)g(u, Na) + g(V,1u)g(da, 0p) )+
(br — ah)g(u, Ny)g(V, Mo + No) + ayg(u, No)g(V, My + Np)+

Al(—

arg(V,u) [9(Ma, My) + g(Na, Ny)] +
(= 2 ) (o V2o, — gt NV +
(1 + 2 ) 000V 8 + o, NV, )+
(s = 5 ) (- F1 00+ N N6 + 9 M+ N, o) +

b1g(u, V)g(u, Na)g(u, Ny).
Applying (3.1), we find

0= g(AH + asV, V(;aéb)—i-

g(BH + b2V, u)g(u, Vs, ) + glazH + a1V, Vs, (My, + Np))+
a2g(My + Ny, Vs, H) + a19(My + Ny, Vs, V) +
Ag(0y, V5, H) + azg(d, Vs, V) + g(BH + b2V, u)g(Mq, 0p)+
g(u,boH + b1V)g(u, Vs, (My + Np)+
g(u, Ny) [brg(u, Vs, V) +bag(u, Vs, H) + g(b2H + b1V, My + Ny )| +
9(u, b2 H +01V') [g(Ma, M) + g(Na, Np)] + 2g(u, No) X
[9(A"H + a5V, 6) + g(anH + a}V, My + Ny) + g(u, No)g(by H + b3V, )] .
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4. Main results

The first proposition of this section establishes a number of various relations that allow us to show that the
right hand sides of the pairs of equations in each subsection of the former section satisfy (3.1). The results
are presented in Proposition 4.1. Theorem 4.1 states the condition sufficient for the space normal to LM being
spanned by lifts of vectors tangent to M. The main results are presented in Theorems 4.2 and 4.3.

Proposition 4.1. Let f be the immersion given by (2.3) defined by the isometric immersion f: M — (N,g) into a
Riemannian manifold. Suppose, moreover, that TN is endowed with non-degenerate g-natural metric G. Then in the
notation as above the following identities are satisfied.

1.

9(nz,5) = 0, (4.1)
where S = asH + a1V + g(u,ba H + b1V )u.

2.
g(u,S) = g(N,,S) =0. (4.2)

3.
9(Vs,1z,5) = 0. (4.3)

4.
9Nz, Vs, S) = 0. (4.4)

5.
9(u, Vs, S) = g(Np, Vs, S) = 0. (4.5)

6.
9(Vs,u,S) =g(Vs, Ny, S) = 0. (4.6)

7.
9(0a, AH + a3V) = g(Mg,a2H + a1 V) = 0. 4.7)

8.
900, A'H + ayV) = g(M, abH + a4 V) = 0. 4.8)

9.
g(M(,, Ma) + g(u, V(saMb) =0. (49)

10.
g(My, 64) + g(u, Vs, d,) = 0. (4.10)

11.
9(Vs, Nz, 00) + 9(0z, V5,0) = 0. (4.11)

Moreover, if M is not a hypersurface of N, then

12.
Xy =g(u,boH +b,V) = 0. (4.12)

13.
X, =9z, boH +0,V) =0. (4.13)

14.
Y, = g(ne, byH + b1 V) = 0. (4.14)

15.
Y. = g(u,bbH + V) = 0. (4.15)
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16.
Zy, = 9z, a5H +a1V) =0, Z, =g(u,abH +a}V)=0. 4.16)
17.
9Nz, a2H +a1V) = 0. (4.17)
Finaly
18.
S = ClQH + alV.

Proof. (4.1) results from

GOy, H" + V) = G(nY, H" + V) = 0.
Then (4.2) is obvious since u = v¥ Ny 0, = v¥n, and N, = N}, are normal to M. Now (4.3) is a consequence of
(3.5), whence, by (4.1), (4.4) results.
Once again, by orthogonality of » and N, with respect to M, we have (4.5). Consequently, in virtue of (4.2),
we obtain (4.6).
Observe that the identity

(34) — (36) + 900, V5,8) = 3 o g(n2, SINE = 0 (®.18)

gives
900, A'H + abV) + g(Mgy,ab H + a} V) = 0.
On the other hand, relations
G0y, H' + V) = G(6" + MP + N, H" + V) =0
and (4.2) yield
9(0a, AH + a3V') 4+ g(My,a2H + a1 V) = 0. (4.19)
Differentiating (4.19) with respect to v* and using (4.18) we find

g(Ma:maQH + (L1V) =0,

where M,, = V5, N.0,. Consequently, (4.19) yields (4.7). Hence, by differentiating with respect to v*, (4.8)
results.

Since M,, ¢, are tangent to M and u, 1, are normal, by covariant differentiation of g(u, M,) = 0, g(u, d,) = 0,
9(Nz, 0q) = 0 we get (4.9) - (4.11).

Differentiating (4.1) with respect to v¥ we get

(M My) X + 2902, w)g(u, ny) Yo + g0, w) Xy, + 29(u, ny) 2y, = 0,

where X, = g(u,boH +01V), X,,, = (12, boH +b01V), Yy = g(u, bbH + V), Z, = g(u,abH +a}V) and Z, =
9z, ayH + ay V).

Transvecting in turn with v”, v¥, v®v¥ and, finally, contracting wit ¢*¥ we get for each x = m + 1, ..., n a system
of four equations:

Ve X + 2r°0, Yy, + 12X, + 20,2, 0,
Ve X + 2720, Yy, + v, Xy + 2rzan = 0,
r?( Xy +7*Y,+2Z,) = 0,
(n—m+1X, +2r%Y, +22, = 0, (4.20)
where v, = g(u, ;). Solving it with respect to X, X, , Y, Z, we obtain
Z Vo Z,
X, =X,, =0, Yu:—r—;, Z,, = — 9;2“ 4.21)

for any u = v®1, # 0. By continuity, X,, = X,,, = 0 hold for any u. Then ;2 X, =Y, g(n.,u) = 0 for all u # 0,
whence, in virtue of continuity, Y, = 0 for any u. Consequently, we have Y,, = 0. Now, Z, = 0 follows from
(4.20) and Z,,, = 0 results from (4.21). Finally, (4.17) is a consequence of (4.1) and (4.12). Thus the lemma is
proved. O
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Theorem 4.1. Let (x,u) be a point of LM immersed in TN. If codimM > 1 and
CLle - a1b2 7é 0 (422)
at t = g(u,u), then the normal space at (x,u) € LM is spanned by lifts of vectors tangent to M.

Proof. It results from the identities (4.17) and (4.13). Note that other conditions, similar to that of (4.22) can be
deduced in the same way from (4.17), (4.16), (4.13) and (4.14). O

We shall prove that the conditions codimM > 1 and (4.22) are essential in that sense that there exist immersion
f:M — N, M being a hypersurface of N, and a metric G on T'N satisfying asb; — a1b2 = 0 such that the
normal component of at least one of the vectors H, V' does not vanish.

Example 4.1. Let f:S' — (R?, Euclid metric) be the immersion given by f(t) = [cost,sint]. The vector

tangent to S' is s = [—sint, cost] and the normal one is n = [cost,sint]. Then
s’ = 10,0, —sint, cost], sh = [—sint, cost,0,0],
n’ = (0,0, cost,sint], n" = [cost,sint,0,0].
The vectors tangent to L (S') are
9 h v 9 v
% s” +vs, F n.

Suppose
H" + V' = as" + pn" + 4s¥ + én”

and consider a non-degenerate g-natural metric on TR? such that B=0b; = by =0.

Then 5
Gl H" + V") = G, H" + V") = azg(n, H) + a19(n,V) = a2 + 10
and 5
G(aj[“ +VY) =G(sh H" + V?) = Ag(s, H) + azg(s, V) = Aa + agy.
We put
04:-%7#0, Bz—%é;ﬁo.

The restriction on codimension can be omitted as the next proposition shows.

Proposition 4.2. If a; = by =0 for all t €< 0, c0), then the normal bundle of LM at a point (z,u), x € M, w € T, M,
is spanned by the vectors 0 and 65 — % (Vs,u)".

Proof. Direct calculation. Property (4.10) is applied. O
Applying Proposition 4.1 to (3.2), (3.3) and (3.7) we obtain

Theorem 4.2. Let M, codimM > 1, be a submanifold isometrically immersed in a manifold N. Then along LM we have:

1.

G [Hh + V”,%way} =G [Hh + V”,fi(az,ay)} —

by by
g [H 59 (u, ) ny + 59 (w,1y) e + ang (e, 1y) w + byg (u, ) g (u,my) wl

G [Hh + V”,%zab} =G [Hh + V”,f](&)z,aa)] -
g {H ;mR(u,m)éa} +

b b
g {H 529(1@ No)nz + Egg(u, N2)(Ma + Ng) + a59(Na, nz)u + byg (u,nz) g (u, No) U} -

b
g {V, gg(u, m)éa] ;
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G [Hh v %aa,,} e [Hh YV H (B, ab)] -
glAH + a3V, Vs, 0] — aaR(H, b, u, d4)—
% [R(H, 50, u, My + Ny) + R(H, 8,1, My + No) + R(u, V, 84, 5] +
glasH + a1V, Vs, (My + Ny)| —
g(u, V) [A'g(0a, ) + a} (9(Ma, My) 4+ g(Na, Ny)) 4 2a29(Ma, 6)] —

£ (9, NJo(V,8) + glos, No)a(V. 6] +

b b
g H,gg(u,Na) (Mb—&-Nb)%-gg(wa) (M, + N,)| +

59(u, H)g(u, No)g(u, Np)

for a nondegenerate g-natural metric G.
Proof. Straightforward computation. O

Remark 4.1. The third equation of the last Proposition can be written as

G [Hh e %aab} —-G [Hh L VY, H(D,, ab)} -
GIH" + V", (V5,00)" + (Vs,Vs,u)°] — g(BH + baV,u)g(u, Vs, Vs,u)—
asR(H, 6, u,8,) — % [R(H, 64,1, My + Ny) + R(H, 8y, u, My + No) + R(u, V, 64, 0] +
g(u, V) [A'g(8a,0p) + a) (9(Ma, My) + g(Na, Np)) + 2a29(Ma, 0)] —

302 L9, Ng(V,8) + 9o, Ni)o(V. )] +

b b
g | H, 29w, Na) (My + Ny) + = g(u, No) (Mo + No) | +

byg(u, H)g(u, Na)g(u, Ny).

Definition 4.1. A distribution D on a manifold M is said to be totally geodesic if it is invariant with respect to
covariant differentiation, i.e. VxY € D forall X,Y € D.

Theorem 4.3. Let M, codimM > 1, be a submanifold isometrically immersed in a manifold (N, g). Suppose that LM is
a submanifold isometrically immersed by (2.3) in T N with non-degenerate g-natural metric G.

1. If either the normal bundle of LM is spanned by vectors of the form H" + V', where H and V are tangent to M or
by = ab = 0along M, then vector fields {0, }, x = m + 1, ...,n define on LM the totally geodesic distribution that
is involutive.

2. If

(a) a1 =0,bs =0, ag = const # 0 along M or

(b) N is a space of constant curvature and al, = 0, by = 0 along M,

then LM is mixed totally geodesic.
Here, along M,

0
Vs, u= Vs, (v¥n,) = Vs, (vyNT> =M, + N,.

Y axr

Proof. In virtue of the assumptions, the first equation of Theorem 4.2 yields G [H h 4V H(O,, ay)} = 0. Hence

681 0, is tangent to LM. Since 0, = n? are vertical vector fields, the distribution is involutive. This proves the
first point. The proof of the second one is obvious. O
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