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ABSTRACT

An isometric immersion of a Riemannian manifold M into a Riemannian manifold N gives rise in
a natural way to variety of immersions into the tangent bundle TN with a non-degenerate g-natural
metric G. In the paper we introduce and study an immersion into TN defined by the immersion
f : M −→ N itself and the normal bundle.
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1. Introduction

An isometric immersion of a Riemannian manifold M into a Riemannian manifold N gives rise in a natural
way to variety of immersions into the tangent bundle TN with a non-degenerate g-natural metric G. The
isometric immersion defined by the tangent bundle of the submanifold was introduced by the author in [11],
[12]. In the present paper we introduce and study an immersion f̃ : LM −→ TN defined by the immersion
f : M −→ N itself and the normal bundle.

In Preliminaries we recall basic facts on the decomposition of the tangent bundle and g-natural metrics. We
also present basic notions on submanifolds and give short resumé on van der Waerden-Bortolotti covariant
derivative. In Section 3 basic equations are presented. The main results are given in Section 4. We give the
condition sufficient for LM being totally geodesic submanifold of TN.

Throughout the paper all manifolds under consideration are Hausdorff and smooth. The metrics on the
base manifolds are Riemannian and the metrics on tangent spaces are non-degenerate. We adopt the Einstein
summation convention.

2. Preliminaries

2.1. Decomposition of the tangent space

Let π : TN −→ N be the tangent bundle of a Riemannian manifold N with the Levi-Civita connection ∇ on
N, π being the projection. Then at each point (x, u) ∈ TN the tangent space T(x,u)TN splits into direct sum of
two isomorphic spaces V(x,u)TN and H(x,u)TN, where

V(x,u)TN = Ker(dπ|(x,u)), H(x,u)TN = Ker(K|(x,u))

and K is the connection map [7], see also [15].
More precisely, if Z =

(
Zr ∂

∂xr + Z
r ∂
∂ur

)
|(x,u) ∈ T(x,u)TN, r = 1, ..., n, then the vertical and horizontal

projections of Z on TxN are given by

(dπ)(x,u) Z = Zr
∂

∂xr
|x, K(x,u)(Z) =

(
Z
r

+ usZtΓrst

) ∂

∂xr
|x,
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where Γrst are components of the Levi-Civita connection on N.
On the other hand, to each vector field X on N there correspond uniquely determined vector fields Xv and

Xh on TN such that

dπ|(x,u)(Xv) = 0, K|(x,u)(Xv) = X,

K|(x,u)(Xh) = 0, dπ|(x,u)(Xh) = X.

Xv and Xh are called the vertical lift and the horizontal lift of a given X to TN, respectively.
In local coordinates ((xr) , (ur)), r = 1, .., n, on TN, the horizontal and vertical lifts of a vector fieldX = Xr ∂

∂xr

on N to TN are vector fields given respectively by

Xh = Xr ∂

∂xr
− usXtΓrst

∂

∂ur
, Xv = Xr ∂

∂ur
. (2.1)

Recall that for a given isometric immersion f : M −→ N, we have two tangent bundles πN : TN −→ N and
πM : TM −→M, where the latter is the subbundle of the former. Let M, N be two Riemannian manifolds with
metrics gM and gN and Levi-Civita connections ∇M and ∇N respectively. Then TpTM and TpTN have at a
common point p their own decompositions into vertical and horizontal parts, i.e.

TpTM = VpTM ⊕HpTM = VM ⊕HM

and
TpTN = VpTN ⊕HpTN = VN ⊕HN ,

but neither VM ⊂ VN nor HM ⊂ HN need to hold along TM. See also [15]
Remark also that totally geodesic submanifolds of tangent bundle with g-natural metric are also studied in

[1] and [10].

2.2. Preliminaries on g-natural metrics

In [13] the class of g-natural metrics was defined. We have

Lemma 2.1. ([13], [2], [3]) Let (M, g) be a Riemannian manifold and G be a g-natural metric on TM. There exist
functions aj , bj :< 0,∞) −→ R, j = 1, 2, 3, such that for every X, Y, u ∈ TxM

G(x,u)(X
h, Y h) = (a1 + a3)(r2)gx(X,Y ) + (b1 + b3)(r2)gx(X,u)gx(Y, u),

G(x,u)(X
h, Y v) = G(x,u)(X

v, Y h) = a2(r2)gx(X,Y ) + b2(r2)gx(X,u)gx(Y, u),

G(x,u)(X
v, Y v) = a1(r2)gx(X,Y ) + b1(r2)gx(X,u)gx(Y, u),

where r2 = gx(u, u). For dimM = 1 the same holds for bj = 0, j = 1, 2, 3.

Setting a1 = 1, a2 = a3 = bj = 0 we obtain the Sasaki metric, while setting a1 = b1 = 1
1+r2 , a2 = b2 = 0 = 0,

a1 + a3 = 1, b1 + b3 = 1 we get the Cheeger-Gromoll one.
Following [2] we put

1. a(t) = a1(t) (a1(t) + a3(t))− a22(t),

2. Fj(t) = aj(t) + tbj(t),

3. F (t) = F1(t) [F1(t) + F3(t)]− F 2
2 (t)

for all t ∈< 0,∞).

We shall often abbreviate: A = a1 + a3, B = b1 + b3.

Lemma 2.2. ([2], Proposition 2.7) The necessary and sufficient conditions for a g-natural metricG on the tangent bundle
of a Riemannian manifold (M, g) to be non-degenerate are

a(t) 6= 0, F (t) 6= 0

for all t ∈< 0,∞). If dimM = 1, this is equivalent to a(t) 6= 0 for all t ∈< 0,∞).
Moreover, (TM,G) is Riemannian one if and only if

a(t) > 0, F (t) > 0, a1(t) > 0, F1(t) > 0

hold for all t ∈< 0,∞).
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We also have

Proposition 2.1. ([4], [5]) Let (N, g) be a Riemannian manifold, ∇ its Levi-Civita connection and R its Riemann
curvature tensor. If G is a non-degenerate g-natural metric on TN, then the Levi-Civita connection ∇̃ of (TN,G) is
given at a point (x, u) ∈ TN by(

∇̃XhY h
)
(x,u)

= (∇XY )
h
(x,u) + h {A(u,Xx, Yx)}+ v {B(u,Xx, Yx)} ,

(
∇̃XhY v

)
(x,u)

= (∇XY )
v
(x,u) + h {C(u,Xx, Yx)}+ v {D(u,Xx, Yx)} ,

(
∇̃XvY h

)
(x,u)

= h {C(u, Yx, Xx)}+ v {D(u, Yx, Xx)} ,

(
∇̃XvY v

)
(x,u)

= h {E(u,Xx, Yx)}+ v {F(u,Xx, Yx)} ,

where A, B, C,D, E, F are some F-tensors defined on the product TN ⊗ TN ⊗ TN.

Remark 2.1. Expressions for A, B, C, D, E, F were presented for the first time in the original papers ([2], [3]).
Unfortunately, they contain some misprints and omissions. Therefore, for the correct form, we refer the reader
to ([4], [5]), see also ([8], [9]).

2.3. Submanifolds

Let M be a manifold isometrically immersed in a pseudo-Riemannian manifold N with metric g. Denote by
∇̃ and ∇ the Levi-Civita connections of the metric g on N and that of the induced metric on M and by D⊥ the
connection induced in the normal bundle T⊥M. Then the Gauss and Weingarten equations

∇̃XY = ∇XY +H(X,Y ),

∇̃Xη = −AηX +D⊥XY,

hold for all vectors fields X, Y tangent to M and all vector fields η normal to M. Here H(X,Y ) is the second
fundamental form which is symmetric and takes values in T⊥M whileAηX is the shape operator taking values
in TM. It is well known that Aη and H are related by

g(AηX,Y ) = g(η,H(X,Y )).

M is said to be totally geodesic if H(X,Y ) = 0 for all X, Y ∈ TM.
For the local immersion xr = xr(ya), r = 1, ..., n, a = 1, ...,m, the components of the Levi-Civita connection∇

of the induced metric gab = grsB
r
aB

s
b , B

r
a = ∂xr

∂ya , are

Γcab =
[
Bra.b + ΓrstB

s
aB

t
b

]
Bcr , Bcr = gcdBtdgtr,

where the dot denotes partial derivative with respect to yb.
Similarly, the components of the connection D⊥ are

Γxay =
[
Nr
y.a + ΓrstB

s
aN

t
y

]
Nx
r , Nx

r = gxyN t
ygtr,

where ηz = Nr
z

∂
∂xr , z = m+ 1, ..., n are unit vector fields normal to M.

2.3.1. Van der Waerden-Bortolotti covariant derivative Van der Waerden-Bortolotti covariant derivative ∇ is a
covariant differentiation of tensor fields of mixed types defined along a submanifoldM isometrically immersed
in a pseudo-Riemannian manifold (N, g) and can be considered as a direct sum ∇̃ ⊕ ∇⊕∇⊥ of the Levi-Civita
connections of the metric g on N , the one induced on M and of the metric induced in normal bundle T⊥M.
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If X̃, X and η are vector fields, respectively, tangent to N, tangent to M , normal to M and X̃∗, X∗, η∗ are
respective 1-forms, then,

(∇Y T )
(
X̃,X, η, X̃∗, X∗, η∗

)
= Y

(
T
(
X̃,X, η, X̃∗, X∗, η∗

))
−

T
(
∇̃Y X̃,X, η, X̃∗, X∗, η∗

)
− T

(
X̃,X, η, ∇̃Y X̃∗, X∗, η∗

)
−

T
(
X̃,∇YX, η, X̃∗, X∗, η∗

)
− T

(
X̃,X, η, X̃∗,∇YX∗, η∗

)
−

T
(
X̃,X,∇⊥Y η, X̃∗, X∗, η∗

)
− T

(
X̃,X, η, X̃∗, X∗,∇⊥Y η∗

)
for any vector field Y tangent to M and tensor field T of mixed type (3, 3).

Let xk = xk(ya) be the local expression of the immersion, Bka = ∂xk

∂ya . Let ηx = Nr
x

∂
∂xr

, x = m+ 1, ..., n, be an
orthonormal set of vectors normal to M.

For the local coordinate vector fields ∂
∂xk tangent to N, ∂

∂ya tangent to M , ∂
∂vx normal to M and the respective

1-forms dxk, dya, dvx, denote by Γlhk, Γcab, Γzay components of the connections ∇̃, ∇ and ∇⊥. If

T = T kbyhax

∂

∂xk
⊗ dxh ⊗ ∂

∂yb
⊗ dya ⊗ ∂

∂vy
⊗ dvx,

then

∇cT kbyhax = ∂bT
kby
hax − ΓshrB

r
cT

kby
sax + ΓkrsB

r
cT

sby
hax−

ΓdcaT
kby
hdx + ΓbcdT

kdy
hax − ΓzcxT

kby
haz + ΓyczT

kbz
hax,

where h, k, r, s = 1, ..., n, a, b, c, d = 1, ...,m, m < n, and x, y, z = m+ 1, ..., n.
In particular, ∇aBrb and ∇aNr

x give rise to the components of the second fundamental form and the shape
operator:

∇bBra∂r =
(
Bra.b + ΓrstB

s
aB

t
b − ΓcabB

r
c

)
∂r = hzabN

r
z ∂r,

∇aNr
x∂r =

(
∂aN

r
x + ΓrstB

s
aN

t
x − ΓyaxN

r
y

)
∂r. (2.2)

In a free of coordinate notation we have respectively:

∇XY = ∇̃XY −∇XY,

∇Xη = ∇̃Xη −D⊥Xη.

See also [14] and [16].

2.3.2. Isometric immersion defined by normal bundle Let f : M −→ N be an isometric immersion of a Riemannian
manifold M into a Riemannian manifold N. Suppose that the following diagram commute

(π−1N (U), (xr, ur)) TN ←− − f̃ −− (
(
π⊥M
)−1

(V ), (ya, va)) T⊥M
|
|

|
|

πN π⊥M
|
↓

|
↓

(U, (xr)) N ←− − f −− (V, (ya)) M

,

where (U, (xr)) and (V, (ya)) are coordinate neighbourhoods on N and M respectively, while the local
expression for f is:

f : xr = xr(ya).

Let
ηx = Nr

x

∂

∂xr
, x = m+ 1, ..., n
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be a set of orthonormal vectors normal to M.
The coordinate neighbourhoods on TN and normal bundle T⊥M are defined respectively by

((xr), (ur)) , r = 1, ..., n,

((ya) , (vx)) , x = m+ 1, ..., n, a = 1, ...,m,

where (ur)r=1,...,n, are components of the vector u tangent to N at a point with coordinates (xr) and
(vx)x=m+1,...,n are components of the vector normal to M at a point xr = xr(ya).

If
f : M −→ N ; (ya) 7→ xr(ya)

then

f̃ : xr = xr(ya), ur = vxNr
x (2.3)

defines locally an immersion into TN.

2.3.3. Vectors tangent to LM The coordinate vector fields tangent to LM = f̃(TM⊥) are

∂

∂vx
= Nr

x

∂

∂ur
= (ηx)

v
,

∂

∂ya
= Bra

∂

∂xr
+ vz∂aN

r
z

∂

∂ur
(2.2)
=

Bra

(
∂

∂xr
− vzN t

zΓ
s
tr

∂

∂us

)
+ vz∇aNr

z

∂

∂ur
+ vzΓyazN

r
y

∂

∂ur
(2.3),(2.1)

=(
δ

δya

)h
+Mr

a

(
∂

∂xr

)v
+Nr

a

(
∂

∂xr

)v
= (

δ

δya

)h
+ (Ma)

v
+ (Na)

v
,

where Ma = vz∇aNr
z

∂
∂xr = vzMaz are tangent to M and Na = vzΓyazN

r
y

∂
∂xr = Ny

aN
r
y

∂
∂xr are normal to M.

Along M we also have

∇δau = ∇δa(vyηy) = ∇δa
(
vyNr

y

∂

∂xr

)
= Ma +Na.

3. Basic equations

In this section we derive, using the equations of Gauss and Weingarten and the formulas for the Levi-Civita
connection on (TN,G) with a non-degenerate g-natural metric G, the basic equations for the immersion given
by (2.3) to be used throughout the paper. Hh + V v is a unique decomposition of a vector field normal to LM
into its horizontal and vertical parts, where H and V are vector fields along M, not necessary tangent to M. ∇
and ∇̃ denote the Levi-Civita connections of the metric g and g-natural non-degenerate metric G, respectively.
H̃ is the second fundamental form of the immersion (2.3). Finally, R stands for the Riemann curvature tensor
of g. The computations in this section were performed and checked with Mathematica software. In virtue of
Proposition 4.1, the pairs of equations in each subsection must satisfy

G(H̃(∂x, ∂y), Hh + V v)−G(ÃHh+V v∂x, ∂y) = 0. (3.1)

It also can be used to verify the correctness of computations.
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Equation 1

G(∇̃∂x∂y, Hh + V v) = G(H̃(∂x, ∂y), Hh + V v) =

G(∇̃ηvxη
v
y , H

h + V v) =

G(h{E(u, ηx, ηy)}+ v{F(u, ηx, ηy)}, Hh + V v) =

b2g(ηx, ηy)g(u,H) + (b1 − a′1)g(ηx, ηy)g(u, V )+

a′1g(ηx, V )g(u, ηy) + a′1g(ηy, V )g(u, ηx)+(
a′2 +

b2
2

)
(g(ηx, H)g(u, ηy) + g(ηy, H)g(u, ηx)) +

g(u, ηx)g(u, ηy)g(u, b′1V + 2b′2H). (3.2)

G(∇̃∂x(Hh + V v), ∂y) = G(−ÃHh+V v∂x, ∂y) =

G(h{C(u,H, ηx)}+ v{D(u,H, ηx)}+ h{E(u, ηx, V )}+ v{F(u, ηx, V )}, ηvy) =

(b1 − a′1)g(ηx, V )g(u, ηy) + a′1g(ηy, V )g(u, ηx) + a′1g(ηx, ηy)g(u, V )+(
a′2 −

b2
2

)
(g(ηy, H)g(u, ηx)− g(ηx, H)g(u, ηy)) +

b′1g(u, ηx)g(u, ηy)g(u, V ).

In virtue of the equality (3.1) the above two equations yield

g(u, ηx)g(ηy, T )− g(u, ηy)g(ηx, T ) = 0,

where T = (b′1 − 2a′1)V + (b′2 − 2a′2)H.

Equation 2

G(∇̃∂x∂a, Hh + V v) = G(H̃(∂x, ∂a), Hh + V v) =

G(∇̃ηvx(δha +Mv
a +Nv

a ), Hh + V v) =

G(h{C(u, δa, ηx)}+ v{D(u, δa, ηx)}, Hh + V v)+

G(h{E(u, ηx,Ma +Na)}+ v{F(u, ηx,Ma +Na)}, Hh + V v) =

− 1

2
a1R(H, δa, u, ηx) +A′g(H, δa)g(u, ηx) +

(
a′2 −

b2
2

)
g(V, δa)g(u, ηx)+

(b1 − a′1)g(u, V )g(Na, ηx) + b2g(u,H)g(Na, ηx)+

a′1g(u, ηx)g(V,Ma +Na) + a′1g(u,Na)g(V, ηx)+(
a′2 +

b2
2

)
[g(H,Ma +Na)g(u, ηx) + g(H, ηx)g(u,Na)] +

g(u, b′1V + 2b′2H)g(u, ηx)g(u,Na). (3.3)

G(∇̃∂x(Hh + V v), ∂a) = G(−ÃHh+V v∂x, ∂a) =

G(∇̃∂x(Hh + V v), δha +Mv
a +Nv

a ) =

G(h{C(u,H, ηx)}+ v{D(u,H, ηx)}, δha +Mv
a +Nv

a )+

G(h{E(u, ηx, V )}+ v{F(u, ηx, V )}, δha +Mv
a +Nv

a ) =
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http://www.iej.geo.com


On a Class of Submanifolds in a Tangent Bundle

1

2
a1R(H, δa, u, ηx) + (b1 − a′1)g(u,Na)g(V, ηx) + a′1g(u, ηx)g(V,Ma +Na)+

a′1g(u, V )g(Na, ηx) +

(
a′2 +

b2
2

)
g(u, ηx)g(V, δa)+(

a′2 −
b2
2

)
[g(H,Ma +Na)g(u, ηx)− g(H, ηx)g(u,Na)] +

A′g(H, δa)g(u, ηx) + b′1g(u, ηx)g(u,Na)g(u, V ). (3.4)

Hence, in virtue of (3.1), we get

g(u, b1V + b2H)g(Na, ηx) + 2g(u, ηx)g(A′H + a′2V, δa)+

2g(u, ηx)g(a′1V + a′2H,Ma +Na)+

g(u,Na) [g(b1V + b2H, ηx) + 2g(u, ηx)g(b′1V + b′2H,u)] = 0.

Equation 3

G(∇̃∂a∂x, Hh + V v) = G(H̃(∂a, ∂x), Hh + V v) =

G(∇̃(δha+M
v
a+Nv

a )(ηx)v, Hh + V v) =

G((∇δaηx)
v

+ h{C(u, δa, ηx)}+ v{D(u, δa, ηx)}, Hh + V v)+

G(h{E(u, ηx,Ma +Na)}+ v{F(u, ηx,Ma +Na)}, Hh + V v).

Since H̃(∂a, ∂x) is symmetric, comparing the last equation with (3.3), we obtain

G
(
(∇δaηx)

v
, Hh + V v

)
= 0. (3.5)

G(∇̃∂a(Hh + V v), ∂x) = G(−ÃHh+V v∂a, ∂x) =

G(∇̃(δha+M
v
a+Nv

a )(H
h + V v), ηvx) =

G((∇δaH)
h

+ h{A(u, δa, H)}+ v{B(u, δa, H)}, ηvx)+

G((∇δaV )
v

+ h{C(u, δa, V )}+ v{D(u, δa, V )}, ηvx)+

G(h{C(u,H,Ma +Na)}+ v{D(u,H,Ma +Na)}, ηvx)+

G(h{E(u,Ma +Na, V )}+ v{F(u,Ma +Na, V )}, ηvx) =

1

2
a1R(H, δa, u, ηx) + a1g(ηx,∇δaV ) + b1g(u, ηx)g(u,∇δaV )+

a2g(ηx,∇δaH) + b2g(u, ηx)g(u,∇δaH)−A′g(u, ηx)g(H, δa)+

(b1 − a′1)g(u, ηx)g(V,Ma +Na) + a′1g(u,Na)g(V, ηx) + a′1g(u, V )g(Na, ηx)+(
a′2 −

b2
2

)
[g(H, ηx)g(u,Na)− g(H,Ma +Na)g(u, ηx)− g(u, ηx)g(V, δa)] +

b′1g(u, V )g(u,Na)g(u, ηx). (3.6)

Equation 4 Body Math

G(∇̃∂a∂b, Hh + V v) = G(H̃(∂a, ∂b), H
h + V v) =

G(∇̃(δha+M
v
a+Nv

a )(δ
h
b +Mv

b +Nv
b ), Hh + V v) =

G((∇δaδb)
h

+ h {A(u, δa, δb)}+ v {B(u, δa, δb)}+

(∇δa(Mb +Nb))
v

+ h {C(u, δa,Mb +Nb)}+ v {D(u, δa,Mb +Nb)}+

h {C(u, δb,Ma +Na)}+ v {D(u, δb,Ma +Na)}+

h {E(u,Ma +Na,Mb +Nb)}+ v {F(u,Ma +Na,Mb +Nb)} , Hh + V v) =
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− a2R(H, δb, u, δa)−
1

2
a1R(H, δa, u,Mb +Nb)−

1

2
a1R(H, δb, u,Ma +Na)− 1

2
a1R(u, V, δa, δb)+

g(AH + a2V,∇δaδb) + g(BH + b2V, u)g(u,∇δaδb)+
1

2
Bg(H,u) (g(Ma, δb) + g(Mb, δa)) +

g(a1V + a2H,∇δa(Mb +Nb)) + g(b2H + b1V, u)g(u,∇δa(Mb +Nb))+

+ g(b2H + (b1 − a′1)V, u)(g(Ma,Mb) + g(Na, Nb))+

A′ [g(H, δa)g(u,Nb) + g(H, δb)g(u,Na)− g(V, u)g(δa, δb)] +

a′1g(u,Na)g(V,Mb +Nb) + a′1g(u,Nb)g(V,Ma +Na)+(
a′2 −

b2
2

)
{g(u,Nb)g(V, δa) + g(u,Na)g(V, δb)− g(u, V ) [g(Mb, δa) + g(Ma, δb)]}+(
a′2 +

b2
2

)
(g(H,Ma +Na)g(u,Nb) + g(H,Mb +Nb)g(u,Na)) +

g(u, b′1V + 2b′2H)g(u,Na)g(u,Nb). (3.7)

Body Math

G(∇̃∂a(Hh + V v), ∂b) = G(−ÃHh+V v∂a, ∂b) =

G(∇̃(δha+M
v
a+Nv

a )(H
h + V v), ηvb ) =

a2R(H, δb, u, δa)+

1

2
a1R(H, δa, u,Mb +Nb) +

1

2
a1R(H, δb, u,Ma +Na) +

1

2
a1R(u, V, δa, δb)+

Ag(δb,∇δaH) + a2g(δb,∇δaV ) + a2g(Mb +Nb,∇δaH) + a1g(Mb +Nb,∇δaV )+

1

2
Bg(H,u) (g(Ma, δb)− g(Mb, δa)) +

g(u,Nb)(b2g(u,∇δaH) + b1g(u,∇δaV ))+

A′(−g(H, δa)g(u,Nb) + g(H, δb)g(u,Na) + g(V, u)g(δa, δb))+

(b1 − a′1)g(u,Nb)g(V,Ma +Na) + a′1g(u,Na)g(V,Mb +Nb)+

a′1g(V, u) [g(Ma,Mb) + g(Na, Nb)] +(
a′2 −

b2
2

)
(g(u, V )g(Mb, δa)− g(u,Nb)g(V, δa))+(

a′2 +
b2
2

)
(g(u, V )g(Ma, δb) + g(u,Na)g(V, δb))+(

a′2 −
b2
2

)
[g(−H,Ma +Na)g(u,Nb) + g(H,Mb +Nb)g(u,Na)] +

b′1g(u, V )g(u,Na)g(u,Nb).

Applying (3.1), we find

0 = g(AH + a2V,∇δaδb)+
g(BH + b2V, u)g(u,∇δaδb) + g(a2H + a1V,∇δa(Mb +Nb))+

a2g(Mb +Nb,∇δaH) + a1g(Mb +Nb,∇δaV )+

Ag(δb,∇δaH) + a2g(δb,∇δaV ) + g(BH + b2V, u)g(Ma, δb)+

g(u, b2H + b1V )g(u,∇δa(Mb +Nb)+

g(u,Nb) [b1g(u,∇δaV ) + b2g(u,∇δaH) + g(b2H + b1V,Ma +Na)] +

g(u, b2H + b1V ) [g(Ma,Mb) + g(Na, Nb)] + 2g(u,Na)×
[g(A′H + a′2V, δb) + g(a′2H + a′1V,Mb +Nb) + g(u,Nb)g(b′2H + b′1V, u)] .
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4. Main results

The first proposition of this section establishes a number of various relations that allow us to show that the
right hand sides of the pairs of equations in each subsection of the former section satisfy (3.1). The results
are presented in Proposition 4.1. Theorem 4.1 states the condition sufficient for the space normal to LM being
spanned by lifts of vectors tangent to M. The main results are presented in Theorems 4.2 and 4.3.

Proposition 4.1. Let f̃ be the immersion given by (2.3) defined by the isometric immersion f : M → (N, g) into a
Riemannian manifold. Suppose, moreover, that TN is endowed with non-degenerate g-natural metric G. Then in the
notation as above the following identities are satisfied.

1.
g(ηx, S) = 0, (4.1)

where S = a2H + a1V + g(u, b2H + b1V )u.

2.
g(u, S) = g(Na, S) = 0. (4.2)

3.
g(∇δaηx, S) = 0. (4.3)

4.
g(ηx,∇δaS) = 0. (4.4)

5.
g(u,∇δaS) = g(Nb,∇δaS) = 0. (4.5)

6.
g(∇δau, S) = g(∇δaNb, S) = 0. (4.6)

7.
g(δa, AH + a2V ) = g(Ma, a2H + a1V ) = 0. (4.7)

8.
g(δa, A

′H + a′2V ) = g(Ma, a
′
2H + a′1V ) = 0. (4.8)

9.
g(Mb,Ma) + g(u,∇δaMb) = 0. (4.9)

10.
g(Mb, δa) + g(u,∇δbδa) = 0. (4.10)

11.
g(∇δaηx, δb) + g(ηx,∇δaδb) = 0. (4.11)

Moreover, if M is not a hypersurface of N, then

12.
Xu = g(u, b2H + b1V ) = 0. (4.12)

13.
Xηx = g(ηx, b2H + b1V ) = 0. (4.13)

14.
Yηx = g(ηx, b

′
2H + b′1V ) = 0. (4.14)

15.
Yu = g(u, b′2H + b′1V ) = 0. (4.15)
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16.
Zηx = g(ηx, a

′
2H + a′1V ) = 0, Zu = g(u, a′2H + a′1V ) = 0. (4.16)

17.
g(ηx, a2H + a1V ) = 0. (4.17)

Finaly

18.
S = a2H + a1V.

Proof. (4.1) results from

G(∂x, H
h + V v) = G(ηvx, H

h + V v) = 0.

Then (4.2) is obvious since u = vyNr
y∂r = vyηy and Na = Ny

a ηy are normal to M. Now (4.3) is a consequence of
(3.5), whence, by (4.1), (4.4) results.

Once again, by orthogonality of u and Na with respect to M, we have (4.5). Consequently, in virtue of (4.2),
we obtain (4.6).

Observe that the identity

(3.4)− (3.6) + g(ηx,∇δaS)−
∑
y

∂

∂vy
g(ηx, S)Ny

a = 0 (4.18)

gives
g(δa, A

′H + a′2V ) + g(Ma, a
′
2H + a′1V ) = 0.

On the other hand, relations

G(∂a, H
h + V v) = G(δha +Mv

a +Nv
a , H

h + V v) = 0

and (4.2) yield
g(δa, AH + a2V ) + g(Ma, a2H + a1V ) = 0. (4.19)

Differentiating (4.19) with respect to vx and using (4.18) we find

g(Max, a2H + a1V ) = 0,

where Max = ∇δaNr
x∂r. Consequently, (4.19) yields (4.7). Hence, by differentiating with respect to vx, (4.8)

results.
Since Ma, δa are tangent to M and u, ηx are normal, by covariant differentiation of g(u,Ma) = 0, g(u, δa) = 0,

g(ηx, δa) = 0 we get (4.9) - (4.11).
Differentiating (4.1) with respect to vy we get

g(ηx, ηy)Xu + 2g(ηx, u)g(u, ηy)Yu + g(ηx, u)Xηy + 2g(u, ηy)Zηx = 0,

where Xu = g(u, b2H + b1V ), Xηx = g(ηx, b2H + b1V ), Yu = g(u, b′2H + b′1V ), Zu = g(u, a′2H + a′1V ) and Zηx =
g(ηx, a

′
2H + a′1V ).

Transvecting in turn with vx, vy, vxvy and, finally, contracting wit gxy we get for each x = m+ 1, ..., n a system
of four equations:

vxXu + 2r2vxYu + r2Xηx + 2vxZu = 0,

vxXu + 2r2vxYu + vxXu + 2r2Zηx = 0,

r2(Xu + r2Yu + Zu) = 0,

(n−m+ 1)Xu + 2r2Yu + 2Zu = 0, (4.20)

where vx = g(u, ηx). Solving it with respect to X, Xηx , Y, Zηx we obtain

Xu = Xηx = 0, Yu = −Zu
r2
, Zηx = −vxZu

r2
(4.21)

for any u = vxηx 6= 0. By continuity, Xu = Xηx = 0 hold for any u. Then ∂
∂vzXηx = Yηxg(ηz, u) = 0 for all u 6= 0,

whence, in virtue of continuity, Yηx = 0 for any u. Consequently, we have Yu = 0. Now, Zu = 0 follows from
(4.20) and Zηx = 0 results from (4.21). Finally, (4.17) is a consequence of (4.1) and (4.12). Thus the lemma is
proved.
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Theorem 4.1. Let (x, u) be a point of LM immersed in TN. If codimM > 1 and

a2b1 − a1b2 6= 0 (4.22)

at t = g(u, u), then the normal space at (x, u) ∈ LM is spanned by lifts of vectors tangent to M.

Proof. It results from the identities (4.17) and (4.13). Note that other conditions, similar to that of (4.22) can be
deduced in the same way from (4.17), (4.16), (4.13) and (4.14).

We shall prove that the conditions codimM > 1 and (4.22) are essential in that sense that there exist immersion
f : M −→ N, M being a hypersurface of N, and a metric G on TN satisfying a2b1 − a1b2 = 0 such that the
normal component of at least one of the vectors H, V does not vanish.

Example 4.1. Let f : S1 −→
(
R2, Euclid metric

)
be the immersion given by f(t) = [cos t, sin t]. The vector

tangent to S1 is s = [− sin t, cos t] and the normal one is n = [cos t, sin t]. Then

sv = [0, 0,− sin t, cos t], sh = [− sin t, cos t, 0, 0],

nv = [0, 0, cos t, sin t], nh = [cos t, sin t, 0, 0].

The vectors tangent to L
(
S1
)

are
∂

∂t
= sh + vsv,

∂

∂v
= nv.

Suppose
Hh + V v = αsh + βnh + γsv + δnv

and consider a non-degenerate g-natural metric on TR2 such that B = b1 = b2 = 0.
Then

G(
∂

∂v
,Hh + V v) = G(nv, Hh + V v) = a2g(n, H) + a1g(n, V ) = a2β + a1δ

and
G(

∂

∂t
,Hh + V v) = G(sh, Hh + V v) = Ag(s, H) + a2g(s, V ) = Aα+ a2γ.

We put

α = −a2 + va1
A+ va2

γ 6= 0, β = −a1
a2
δ 6= 0.

The restriction on codimension can be omitted as the next proposition shows.

Proposition 4.2. If a2 = b2 = 0 for all t ∈< 0,∞), then the normal bundle of LM at a point (x, u), x ∈M, u ∈ TxM,
is spanned by the vectors ηhy and δva − a1

A (∇δau)h.

Proof. Direct calculation. Property (4.10) is applied.

Applying Proposition 4.1 to (3.2), (3.3) and (3.7) we obtain

Theorem 4.2. LetM, codimM > 1, be a submanifold isometrically immersed in a manifoldN . Then along LM we have:

1.

G̃
[
Hh + V v, ∇̃∂x∂y

]
= G̃

[
Hh + V v, H̃(∂x, ∂y)

]
=

g

[
H,

b2
2
g (u, ηx) ηy +

b2
2
g (u, ηy) ηx + a′2g (ηx, ηy)u+ b′2g (u, ηx) g (u, ηy)u

]
,

2.

G̃
[
Hh + V v, ∇̃∂x∂b

]
= G̃

[
Hh + V v, H̃(∂x, ∂a)

]
=

g

[
H,

1

2
a1R(u, ηx)δa

]
+

g

[
H,

b2
2
g(u,Na)ηx +

b2
2
g(u, ηx)(Ma +Na) + a′2g(Na, ηx)u+ b′2g (u, ηx) g (u,Na)u

]
−

g

[
V,
b2
2
g(u, ηx)δa

]
,
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3.

G̃
[
Hh + V v, ∇̃∂a∂b

]
= G̃

[
Hh + V v, H̃(∂a, ∂b)

]
=

g[AH + a2V,∇δaδb]− a2R(H, δb, u, δa)−
a1
2

[R(H, δa, u,Mb +Nb) +R(H, δb, u,Ma +Na) +R(u, V, δa, δb] +

g [a2H + a1V,∇δa(Mb +Nb)]−
g(u, V ) [A′g(δa, δb) + a′1 (g(Ma,Mb) + g(Na, Nb)) + 2a2g(Ma, δb)]−

1

2
b2 [g(u,Na)g(V, δb) + g(u,Nb)g(V, δa)] +

g

[
H,

b2
2
g(u,Na) (Mb +Nb) +

b2
2
g(u,Nb) (Ma +Na)

]
+

b′2g(u,H)g(u,Na)g(u,Nb)

for a nondegenerate g-natural metric G̃.

Proof. Straightforward computation.

Remark 4.1. The third equation of the last Proposition can be written as

G̃
[
Hh + V v, ∇̃∂a∂b

]
= G̃

[
Hh + V v, H̃(∂a, ∂b)

]
=

G[Hh + V v, (∇δaδb)h + (∇δa∇δbu)v]− g(BH + b2V, u)g(u,∇δa∇δbu)−

a2R(H, δb, u, δa)− a1
2

[R(H, δa, u,Mb +Nb) +R(H, δb, u,Ma +Na) +R(u, V, δa, δb] +

g(u, V ) [A′g(δa, δb) + a′1 (g(Ma,Mb) + g(Na, Nb)) + 2a2g(Ma, δb)]−
1

2
b2 [g(u,Na)g(V, δb) + g(u,Nb)g(V, δa)] +

g

[
H,

b2
2
g(u,Na) (Mb +Nb) +

b2
2
g(u,Nb) (Ma +Na)

]
+

b′2g(u,H)g(u,Na)g(u,Nb).

Definition 4.1. A distribution D on a manifold M is said to be totally geodesic if it is invariant with respect to
covariant differentiation, i.e. ∇XY ∈ D for all X,Y ∈ D.

Theorem 4.3. Let M, codimM > 1, be a submanifold isometrically immersed in a manifold (N, g). Suppose that LM is
a submanifold isometrically immersed by (2.3) in TN with non-degenerate g-natural metric G.

1. If either the normal bundle of LM is spanned by vectors of the form Hh + V v, where H and V are tangent to M or
b2 = a′2 = 0 along M, then vector fields {∂x}, x = m+ 1, ..., n define on LM the totally geodesic distribution that
is involutive.

2. If

(a) a1 = 0, b2 = 0, a2 = const 6= 0 along M or
(b) N is a space of constant curvature and a′2 = 0, b2 = 0 along M ,

then LM is mixed totally geodesic.
Here, along M,

∇δau = ∇δa(vyηy) = ∇δa
(
vyNr

y

∂

∂xr

)
= Ma +Na.

Proof. In virtue of the assumptions, the first equation of Theorem 4.2 yields G̃
[
Hh + V v, H̃(∂x, ∂y)

]
= 0. Hence

∇̃∂x∂y is tangent to LM. Since ∂x = ηvx are vertical vector fields, the distribution is involutive. This proves the
first point. The proof of the second one is obvious.
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