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ABSTRACT

In this paper, we study f-biharmonic Legendre curves in S-space forms. Our aim is to find
curvature conditions for these curves and determine their types, i.e., a geodesic, a circle, a helix
or a Frenet curve of osculating order r with specific curvature equations. We also give a proper
example of f-biharmonic Legendre curves in the S-space form R*"¢(—3s), with m = 2 and s = 2.
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1. Introduction

Let us consider a smooth map ¢ : (M, g) — (N, k), where (M, g) and (N, h) are Riemannian manifolds. If ¢ is
a critical point of the f-bienergy functional

1
Pag(@) =5 [ £ v,

then it is called an f-biharmonic map. Here, f € C'(M,R), vy is the volume element and 7(¢) is the first tension
field of ¢ defined as 7(¢) = traceVde, (for further details, please refer to [15]). Using this definition, Y. L. Ou
calculated f-biharmonic equation given by (3.2) in Section 3, which gives opportunity to study f-biharmonic
curves in a variety of manifolds. The present author and Cihan Ozgiir studied f-biharmonic Legendre curves
in Sasakian space forms in [11]. This paper generalizes these results to S-space forms.

The paper is organised as follows. In Section 2, we give fundamentals of S-manifolds. We give main results
in Section 3, considering four different cases. At the end of this last section, we give a non-trivial example in
RS(—6), which satisfies our results.

2. S-space forms

Let (M, g) be a (2m + s)-dimensional framed metric manifold [21] with a framed metric structure (¢, &, 1%, 9),
a € {l,..,s}, thatis, pisa (1,1) tensor field defining a o-structure of rank 2m; &1, ..., & are vector fields; n', ..., n*
are 1-forms and g is a Riemannian metric on M such that forall X, Y € TM and o, 8 € {1, ..., s},

X =-X + Zln X)a, 1%(€) =0ap, ¢(a) =0, N*op=0 (2.1)
g(pX,Y) = g(X,Y) Zn (2.2)
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(M2m+s €, 0%, g) is also called framed p-manifold [16] or almost r-contact metric manifold [20]. If the Nijenhuis
tensor of ¢ equals —2dn* ® &, forall a € {1, ..., s}, then (¢, &,, 7%, g) is called S-structure [1].

For s = 1, a framed metric structure becomes an almost contact metric structure and an S-structure becomes
a Sasakian structure. If a framed metric structure on M is an S-structure, then we have [1]:

(Vxe)V = {g(eX, oY)l + 1 (V) X}, (2.4)
a=1
Véa = —p, a €{l,...,s}. (2.5)

In Sasakian case (s = 1), (2.5) can directly be calculated from (2.4) .

A plane section in T, M is a p-section if there exist a vector X € T,,M orthogonal to 1, ..., & such that {X, ¢ X'}
span the section. The sectional curvature of a ¢-section is called ¢-sectional curvature. In an S-manifold of
constant y-sectional curvature, the curvature tensor R of M is calculated as

R(X,Y)Z = Z% {n*(X)nP(2)*Y — (Y )0’ (2)p* X

—9(0X, 02 (Y)Es + 9(Y, 0 Z)n* (X)) 2.6)
+<832 {—g(oY, p2)p* X + g(pX, 0Z)p?Y }
THIX, 0Z)oY — g(Y, 0Z)pX + 29(X, 0Y )pZ},

for all X,Y,Z € TM [3]. An S-manifold of constant ¢-sectional curvature c is called an S-space form and it is
denoted by M(c). For s = 1, an S-space form transforms into a Sasakian space form [2].

A submanifold of an S-manifold is called an integral submanifold if n*(X) =0, a = 1, ..., s, for every tangent
vector X [14]. A 1-dimensional integral submanifold of an S-space form (M?™"¢ ¢, £,,n%, g) is called a
Legendre curve of M. Equally, a curve v : I — M = (M?*™5 o, &,,n%, g) is called a Legendre curve if n*(T) = 0,
for every a = 1, ...s, where T' denotes the tangent vector field of .

3. f-biharmonic Legendre curves in S-space forms

Let us consider an arc-length curve v : I — M in an n-dimensional Riemannian manifold (M, g). If there
exists orthonormal vector fields E, Es, ..., E, along ~ satisfying

El = 7/ = T7
VrE, = k1B,
VrE, = —ki1B1+ koL, (3.1)
VTET = _HrflErfla

then + is called a Frenet curve of osculating order r, where k1, ..., k,_1 are positive functionson I and 1 <r < n.
A Frenet curve of osculating order 1 is a called geodesic. A Frenet curve of osculating order 2is a circle if k; isa
non-zero positive constant. A Frenet curve of osculating order r > 3 is called a helix of order r, when k1, ..., ky—1
are non-zero positive constants; a helix of order 3 is simply called a helix.
An arclength parametrized curve v : (a,b) — (M, g) is called an f-biharmonic curve with a function f:
(a,b) — (0, 00) if the following equation is satisfied [17]:

F(VrVpVrT — R(T,NrT)T) + 2f'N V7T + f/VoT = 0. (3.2)

Now let (M?™+5 o &,,n%, g) be an S-space form and «y : I — M a Legendre Frenet curve of osculating order
r. If we differentiate
7 (T) = 0 (3.3)

and use (3.1), we find
n*(Ey) =0, a € {1,...,s}. (3.4)

Using equations (2.1), (2.2), (2.3), (2.6), (3.1) and (3.4), we calculate

VrVrT = —k2E; + K\ By + k1Ko F3,
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VTVTVTT = 73/‘61%’1E1 + (/43/1/ — Iﬁ?i’ — Iillﬁg) E2
+ (2/‘6’1,%2 + Iilﬁé) E3 + k1koksEy,
(c+ 3s)
4
(see [19]). If the left-hand side of (3.2) is denoted by f.73, we find that

R(T, VTT)T = —K1

c—s
E> — 3k ( 1 )g(LpT, Es) T,

1"

3 = VoVyeVeT — R(T,V:T)T + QfTVTVTT + fTVTT

/
(—3/<cmll — 2/%];) B

! i
+<Kﬁ'n§n1n§+m(cz )+2n'1j}+mj;>E2 (3.5)
!/

+(2K K2 + K1k, + 2&1/{27)E3 + KikoksEy

CcC— S
+3m( 1 )g(wT,Ez)wT-

Let k = min {r,4}. From (3.5), the curve v is f-biharmonic if and only if 73 = 0, i.e.,
() c=sor¢T L Eyor ¢T € span{FEs, ..., E;}; and
(2) g(r3,E;) =0, foralli =1,k
Thus, we can state the followmg main theorem:

Theorem 3.1. Let v be a non-geodesic Legendre Frenet curve of osculating order r in an S-space form
(M*m+s o €,,n%, g), « € {1,...,s} and k = min {r,4}. Then v is f- biharmonic if and only if

() c=sor¢T L Eyor T € span{Es, ..., Ey}; and

(2) the first k of the following equations are satisfied (replacing ry, = 0):

3k +2m L =0,
K3+ i3 = i 4 S [g(oT, By))? + ”1 + Lol

wh + 2 g (T, EQ) (¢T, Bs) + 225 + 26,51 = 0,
Koz + 2 g(OT, By)g(¢T, Ey) = 0.

From Theorem 3.1, one can easily see that a curve v with constant geodesic curvature «; is f-biharmonic if
and only if it is biharmonic. Since we studied biharmonic curves in S-space forms in [19], we study curves with
non-constant x; in this paper. We call non-biharmonic f-biharmonic curves proper f-biharmonic.

Now we investigate results of Theorem 3.1 in four cases.

Casel. c = s.
In this case + is proper biharmonic if and only if

3k) + 21 L f =0, (3.6)
n1+n2fs+ Sy Lgenl,
H2+2KZ2 7 —|—2/€2K1 =0,
KoRk3 = 0.
Theorem 3.2. Let y be a Legendre Frenet curve in an S-space form (M>*™%, ¢, &,,n% g), a« € {1,...,s}, c= s and
(2m + s) > 3. Then ~y is proper f-biharmonic if and only if either
(2) ~y is of osculating order r = 2 with f = cm;?’/Q and k, satisfies

1 2
t+ ﬁ arctan < s+ catn ) +c4 =0, (3.7)

2\/s\/—K? — c3k1 — §

where ¢; > 0, cs < —2+/s and ¢, are arbitrary constants, t is the arc-length parameter and

%(_\/@_ c3) < ka(t) < %(\/cg——zls— c3); OF (3.8)
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(i2) v is of osculating order r = 3 with f = le_g/z/ :—f = ¢y and k, satisfies

1 2
t + —— arctan S+ sk +c4 =0, (3.9)
2y/s 2v/s\/—(1+ 3)k} — cakg — s

where c; > 0, ca > 0, c3 < —2+/s(1 + ¢3) and c4 are arbitrary constants, t is the arc-length parameter and

1 1

m(— cf —4s(l+c3) —e3) < ri(t) < 2(17“%)( 3 —4s(1+ c3) — c3). (3.10)

Proof. From the first equation of (3.6), it is easy to see that f = ¢; /{3/ % for an arbitrary constant ¢; > 0. So, we

find )
[ =3k f7 15 (k) 3 kY

f o 2 Iill f B 4 K1 2/"»’1' (311)
If ko =0, then v is of osculating order » = 2 and the first two of equations (3.6) must be satisfied. Hence the
second equation and (3.11) give us the ODE

3(k))? — 2k K] = 4KT(KS — 5). (3.12)

Let k1 = k1(t), where t denotes the arc-length parameter. If we solve (3.12) considering s is a positive integer,
we find (3.7). Since (3.7) must be well-defined, —x% — c3x; — s > 0. Since k1 > 0, we have c3 < —2/s and (3.8).
If ko = constant # 0, we find f is a constant. Hence v is not proper f-biharmonic in this case. Let xy #
constant. From the fourth equation, we have k3 = 0. So, 7 is of osculating order r = 3. The third equation
of (3.6) gives us "2 = ¢y, where c; > 0 is a constant. If we write these equations in the second equation of (3.6),
we have the ODE'
3(k))? — 2m1 k] = 4R3[(1 + c3)K3 — 5]

which has the general solution (3.9) under the condition c3 < —24/s(1 + ¢2) and (3.10) must be satisfied. O

If we take s = 1, we obtain Theorem 3.2 in [11].

Remark 3.1. If 2m + s = 3, thenm = s = 1. So M is a 3-dimensional Sasakian space form. Since a Legendre curve
in a Sasakian 3-manifold has torsion 1 (see [2]), we can write k1 > 0 and k2 = 1. The first and the third equations
of (3.6) give us f is a constant. Hence ~ cannot be proper f-biharmonic. Previously, in [19], we claimed that v
cannot be proper biharmonic either.

Casell. c # s, T 1 Es.
In this case, g(¢T, E3) = 0. From Theorem 3.1, we obtain

3K] + 261 =0, (3.13)
R e R AR
Kh + 2H2f7 + 2/{2:—1 =0,
RoKR3 = 0.
Firstly, we need the following proposition:

Proposition 3.1. [19] Let ~ be a Legendre Frenet curve of osculating order 3 in an S-space form (M*™ %5, , &0, 1%, g),
a€{l,..,s} and ¢T L Ey. Then {T = E1, Es, Es, 0T, VT, &1, ..., &} is linearly independent at any point of ~.
Therefore m > 3.

Now we have the following Theorem:

Theorem 3.3. Let v be a Legendre Frenet curve in an S-space form (M>*™+5 o, &,,n% g), a € {1,...,s}, c # s and
©T L Es. Then -y is proper biharmonic if and only if
(1) v is of osculating order r = 2 with f = cml_?’/Q, m > 2,{T = Ey, Es, ¢T, VT, &, ..., &} is linearly independent
and
(a) if ¢ > —3s, then k, satisfies

1 3 2
t + ——— arctan ctost ek +cq4 =0,
c+ 3s \/c+38\/—4/ﬁ—403m—c—33
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(b) if c = —3s, then k; satisfies
. —K1(k1 +c3) p—
C3K1

(¢) if ¢ < —3s, then k4 satisfies

1 c+ 3s + 2c3k1 —\/—C—SS\/—4H% —4czk —c— 3s
In 4+ cq4 =0; 0r
Vv—c—3s (c+3s)k1

t+

(2) ~ is of osculating order r=3 with f= 61,%1_3/2, w2 =cy = constant >0, m >3,

{T' = E1, By, E3, T, V1T, &, ..., &} is linearly independent and
(a) if ¢ > —3s, then k, satisfies

1 2
t + ——— arctan ¢t 35+ 20m +c4 =0,
c+3s

Vet 3sy/—4(1 + c3)k} — deaky — ¢ — 3s

() if c = —3s, then k4 satisfies

. \/—1431 [(1+ c2)k1 + c3)
C3Rk1

+C4:0,

(¢) if ¢ < —3s, then k; satisfies

1 | <c+38+203n1—\/—0—33\/—4(1—1-0%)5%—403,‘{1—c—33>Jr 0
Cc4 =V,

t+

n
V—c—3s (c+ 3s)Kq

where ¢1 > 0, ca > 0, cg and ¢4 are convenient arbitrary constants, t is the arc-length parameter r1(t) is in convenient
open interval.

Proof. The proof is similar to the proof of Theorem 3.2. O

CaselIll. ¢ # s, T || Eo.
In this case, ¢T = £Fs, g(¢T, Es) = 1, g(pT, E3) = g(£Es, E3) =0 and g(¢T, E4) = g(£Es, E4) = 0. From
Theorem 3.1, + is biharmonic if and only if

36+ 25 L =0, (3.14)
R Ry Y
Kh + 260 L + 20551 = 0,
KRoR3 =0.

In [19], we have proved that ko = /s, that is, k2 is a constant. Then, the first and the third equations of (3.14)
give us f is a constant. Hence, we give the following result:

Theorem 3.4. There does not exist any proper f-biharmonic Legendre curve in an S-space form (M™%, £,,1n%, g),
a€{l,...,s} with ¢ # sand ¢T || Es.

Case IV. ¢ # s and g(¢T, E5) is not constant 0, 1 or —1.

In this final case, let (M?™%¢, ¢, &,,n, g) be an S-space form, a € {1,...,s} and v : I — M a Legendre curve
of osculating order r, where 4 < r < 2m + s and m > 2. If v is biharmonic, then ¢T' € span{E>, E5, E,} . Let 6(t)
denote the angle function between ¢T" and FE», thatis, g(¢T, E») = cos 6(t). If we differentiate g(¢T', E5) along v
and use equations (2.1), (2.3), (3.1) and (2.4), we get

—0'(t)sinf(t) = Vrg(eT, Ey) = g(VreT, Es) + g(¢T, VrEs)
= 9(Z€a + Kk1pEa, Ea) + g(@T, —k1T + k2o E3) (3.15)
a=1
= rag(eT, E3).
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If we write T = g(¢T, E2)Es + g(¢T, Es)Es + g(¢T, E4) E4, Theorem 3.1 gives us

!
3K) + 2n1f7 =0, (3.16)
o o_ct3s 3l—=s) o, K& [T k[
KT + K5 = 1 + 1 cos 0+/€1+f+2/11f, (3.17)
— ! !
Ko + 3(c—s) cosOg(pT, E3) + 2/»4;2f7 + 2&2% =0, (3.18)
Koks + —5) cosOg(oT, Eq) = 0. (3.19)
If we put (3.11) in (3.17) and (3.18) respectively, we find
2
9 o ¢+3s 3(c—s) kY 3 (K]
_ 2g_ M1 3 (R 2
KT+ K3 1 + 1 cos 0 o —|—4 pl I (3.20)
/ j—
Kb — %/{2 + 3(04 s) cosOg(T, E3) = 0. (3.21)
1
If we multiply (3.21) with 22 and use (3.15), we obtain
! —
ooy — 2702 4 378 oy o5 0sin) = 0. (3.22)
K1
Let us denote v(t) = r3(t), where t is the arc-length parameter. Then (3.22) turns into
/ —
o — 28y = —M(—%’ cosfsinf), (3.23)
K1 4
which is a linear ODE. If we solve (3.23), we get the following results:
1) If 6 is a constant, then
22 _ o (3.24)
K1

where ¢; > 0 is an arbitrary constant. From (3.15) and (3.25), we find g¢(¢T, E3) = 0. Since |¢T| =1 and
©T = cosOFEy + g(¢T, E4)E4, we obtain g(¢T, E4) = sin . By the use of (3.17) and (3.24), we have

c+3s+3(c—s)cos? 0
3(k))? — 261K = 4R3[(1 + c2)K3 — ( ) ].

4
i1) If = 0(t) is a non-constant function, then
K3 = — 3(04_ 2) cos? 0 + \(t).K3, (3.25)
where 3(c—s) [ cos? Ok}
At) = — 5 / 7 Lat. (3.26)
If we write (3.25) in (3.20), we find
14+ A(t)] .65 = 6233 + 3(62_ °) cos® ) — 2/%1/1 + Z <Zi)2

Hence, we can state the following final theorem of the paper:

Theorem 3.5. Let v : 1 — M be a Legendre curve of osculating order v in an S-space form (M?*™75, ¢, &q,n%, g),
ae{l, .. s}, wherer >4, m > 2 c+#s,g(¢T, Ey) = cosf(t) is not constant 0,1 or —1. Then  is proper f-biharmonic
ifand only if f = cyry > and

(i) if 0 is a constant,
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+3s+3(c—s)cos?6
3(k))? — 2k kY] = 4R3[(1 + c3)KT — ¢+ 35 +3(c— 5)cos

I

4
ks — :|:3(C — §)sin 207
8
(t2) if 0 is a non-constant function,
3
K2 = — (C4 )COb 20 4+ \(t).k3,

c+3s+3(c—s)cos?0

3(kh)? = 2k1K] = 4R3[(1 + N(t))K3 — 1

I,

3(c — s)sin 20 sinw

8 )
where ¢, and cy are positive constants, T = cos OE, £ sinf coswE3 + sin 0 sinwkEy, w is the angle function between
Es and the orthogonal projection of ©T onto span{Es, E4} . w is related to 6 by cosw = ;—Zl and \(t) is given by

_ 2 /
At) = ~3(c—3) / cos? Ok} Qb

3
2 Ky

Koks = £

In case @ is a constant, we can give the following direct corollary of Theorem 3.5:

Corollary 3.1. Let v : 1 — M be a Legendre curve of osculating order r in an S-space form (M?*™F5 o £, 0%, g),
a€{l,.., s}, wherer >4,m>2,c#s,g(¢T, Ey) = cos isaconstant and 6 € (0,2r) \ {5, , 2% }. Then ~ is proper

f- bzharmomc ifand only if f = ey, >? , 52 = ¢y = constant > 0 and

i) if a > 0, then k, satisfies "

. 1 ) 2a + c3kq " 0
—— arctan C4 =V,
2\/a 2fw/c+33\/ (1+3)K? —csk1 —a

(1) if a = 0, then k. satisfies

o Vo [+ B + o)
C3K1

+cq4 =0,

(t41) if a < O, then k. satisfies

n 1 In 2a+03/<;1—2\/—a\/ 1—|—02 —c;;m—a F—
2V —a 2ak1

where a = c+ 3s+3(c—s)cos?0, ¢T =cosOFy £sinfFE,, c¢; >0, ca >0, ¢ and ¢4 are convenient arbitrary

constants, t is the arc-length parameter and k1 (t) is in convenient open interval.

At the end of this section, let us give an example of an f-biharmonic Legendre curve in the very well known
S-space form R?™+5(—3s) (see [12]), where we take m = 2 and s = 2.

Example 3.1. Let us consider the curve v : I — R5(—6),
~(t) = (a1, a2, 2arcsinh(t), 20/ 1 + 2, a3, aq),

where a; (i = 1,4) are real constants. After calculations, we find that ~ is a Legendre curve of osculating order
2, tis the arc-length parameter,
1

1—|—7]‘/27 /4}2:0, QOTJ_EQ

K1 =

and « is f-biharmonic with f = ¢;(1 +#?)3/2, where ¢; > 0 is a constant. It is easy to show that v satisfies
Theorem 3.3 (1)(b).
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