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ABSTRACT

In this article, we completely characterize flat Lagrangian H-umbilical submanifolds in the
indefinite complex Euclidean spaces Cn

s . Consequently, in conjunction with a result from [4],
Lagrangian H-umbilical submanifolds in the indefinite complex Euclidean n-space Cn

s with n > 2
are completely classified.
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1. Introduction

The notion of Lagrangian H-umbilical submanifolds in Kaehler manifolds was introduced by B.-Y. Chen in
[2]. Later he extended this notion in [5] to Lagrangian H-umbilical submanifolds in pseudo-Kaehler manifolds.
In particular, he proved that a Lagrangian H-umbilical submanifold in the indefinite complex Euclidean n-
space Cn

s with n > 2 and complex index s is locally either a complex extensor, a pseudo-hyperbolic space, a
pseudo-Riemannian sphere, or a flat pseudo-Riemannian manifold. In this article, we completely characterize
flat Lagrangian H-umbilical submanifolds in Cn

s . Consequently, Lagrangian H-umbilical submanifolds in Cn
s

with n > 2 are completely classified. There are new cases in our classification. In order to do so, we have
arranged the indices and utilized Legendre curves carefully to make the classification results true and simple.

Notice that for n = 2 the complete classification of Lagrangian H-umbilical surfaces of constant curvature in
the indefinite complex Euclidean plane was already done earlier in [8], [9] and [10].

2. Preliminaries

We use Chen’s book [6] as the general reference for Lagrangian submanifolds in pseudo-Kaehler manifolds.
Let L :M → Cn

s be an isometric immersion of an n-dimensional pseudo-Riemannian manifold M into the
indefinite complex Euclidean n-space Cn

s . We assume n > 2 and 0 < s < n in the article. Then M is called
a Lagrangian submanifold if the almost complex structure J of Cn

s interchanges the tangent space and the
normal space. Clearly, a Lagrangian submanifold of Cn

s has real dimension n and real index s. The formulas of
Gauss and Weingarten are given respectively by

∇̃XY = ∇XY + h(X,Y ),

∇̃Xξ = −AξX +DXξ,

for tangent vector fields X and Y and normal vector fields ξ, where D is the normal connection. The second
fundamental form h is related to Aξ by

〈h(X,Y ), ξ〉 = 〈AξX,Y 〉 .
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The Gauss and Codazzi equations are given by

〈R(X,Y )Z,W 〉 = 〈h(X,W ), h(Y,Z)〉 − 〈h(X,Z), h(Y,W )〉 ,
(∇h)(X,Y, Z) = (∇h)(Y,X,Z),

where (∇h) is defined by

(∇h)(X,Y, Z) = DXh(Y,Z)− h(∇XY,Z)− h(Y,∇XZ).

When M is a Lagrangian in Cn
s , we have

DXJY = J∇XY,
〈h(X,Y ), JZ〉 = 〈h(Y,Z), JX〉 = 〈h(Z,X), JY 〉 .

We denote the pseudo hypersphere and the pseudo hyperbolic space by

S2n−1
2s (1) = {z = (z1, ..., zn) ∈ Cn

s :< z, z >= 1},
H2n−1

2s−1 (−1) = {z = (z1, ..., zn) ∈ Cn
s :< z, z >= −1}.

Let z = z(s) be a unit speed time-like curve in S2n−1
2s (1) (or space-like curve in H2n−1

2s−1 (−1) ). z = z(s) is called
a Legendre curve if 〈z′(s), iz(s)〉 = 0 identically. Since z = z(s) is a unit speed curve, 〈z′(s), z(s)〉 = 0. Hence,
z(s), iz(s), z′(s), iz′(s) are orthonormal vector fields along the Legendre curve. There exist parallel normal
vector fields P3, ...Pn such that

z(s), iz(s), z′(s), iz′(s), P3(s), iP3(s)...Pn(s), iPn(s) (2.1)

form an orthonormal frame field along the Legendre curve.
By taking the derivatives of < z′(s), iz(s) >= 0 and < z′(s), z(s) >= 0, we have < z′′(s), iz(s) >= 0 and

< z′′(s), z(s) >= 1 if z(s) is in S2n−1
2s (1) ( or < z′′(s), z(s) >= −1 if z(s) is in H2n−1

2s−1 (−1) ). In both cases, with
respect to an orthonormal frame field (2.1), z′′ can be expressed as

z′′(s) = iλ(s)z′(s) + z(s)−
n∑
j=3

aj(s)Pj(s) +

n∑
j=3

bj(s)iPj(s) (2.2)

for some real functions λ, a3, ..., an, b3, ..., bn. The Legengre curve is called special Legendre if b3 = ... = bn = 0 (see
[4]). Hence (2.2) reduces to

z′′(s) = iλ(s)z′(s) + z(s)−
n∑
j=3

aj(s)Pj(s) (2.3)

3. Flat Lagrangian H-umbilical Submanifolds in Cn
s

Following [2, 3, 6], a Lagrangian H-umbilical submanifold is a non-totally geodesic Lagrangian submanifold
whose second fundamental form takes the following simple form:

h(e1, e1) = λJe1, h(e2, e2) = · · · = h(en, en) = µJe1,

h(e1, ej) = µJej , h(ej , ek) = 0, j 6= k, j, k = 2, . . . , n

for some suitable functions λ and µ with respect to some suitable orthonormal local frame field. In particular,
if L :M → Cn

s is a flat Lagrangian H-umbilical submanifold, then the second fundamental form takes the
following form:

h(e1, e1) = φJe1, h(e1, ej) = h(ej , ek) = 0, j, k = 2, ..., n. (3.1)

for some orthonormal frame field on M .
We state the following well-known lemma for later use.

Lemma 3.1. Let L :M → Cn
s be a flat Lagrangian H-umbilical submanifold. If φ = 0, L is an open portion of a totally

geodesic Lagrangian n-plane in Cn
s .
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Proof. If φ = 0, then the second fundamental form vanishes identically. Hence M is totally geodesic and flat.
Therefore, L must be an open portion of a totally geodesic Lagrangian n-plane in Cn

s .

From now on we assume φ is nowhere zero. We divide the proof of our classification into two cases; namely,
Case 1: e1 is space-like and Case 2: e1 is time-like.

Case 1: e1 is space-like. In this case, we arrange the indices as follows.

〈e1, e1〉 = 〈es+2, es+2〉 = · · · = 〈en, en〉 = 1; 〈e2, e2〉 = ... = 〈es+1, es+1〉 = −1 (3.2)

We put
εk = −1, k = 2, ..., s+ 1; εk = 1, k = 1, s+ 2, ..., n

Then (3.2) becomes 〈ek, ek〉 = εk.

Theorem 3.2. Let λ, b, a3, ..., an be real-valued functions on an open interval I with λ being nowhere zero and let
z : I → H2n−1

2s−1 (−1) ⊂ Cn
s be a space-like special Legendre curve satisfying (2.3). Put

f(t, u2, ..., un) = b(t) + u2 +

n∑
j=3

aj(t)uj . (3.3)

Denote by M̂1(0) the twisted product manifold fI × En−1s with twisted product metric given by

g = f2dt2 − du22 − · · · − dus+1
2 + dus+2

2 + · · ·+ dun
2 (3.4)

Then M̂1(0) is a flat pseudo-Riemannian manifold and

L(t, u2, ..., un) = u2z(t) +

n∑
j=3

ujPj(t) +

∫ t

b(t)z′(t)dt (3.5)

defines a Lagrangian H-umbilical isometric immersion L : M̂1(0)→ Cn
s .

Conversely, up to rigid motions of Cn
s , every flat Lagrangian H-umbilical submanifold without totally geodesic points

in Cn
s and with space-like e1 is locally a Lagrangian cylinder over a curve, or a product of a flat Lagrangian H-umbilical

Riemannian submanifold and a time-like s-plane, or a Lagrangian submanifold obtained in the way described above.

Proof. Let λ, b, a3, ..., an be real-valued functions on an open interval I with λ nowhere zero and let z : I →
H2n−1

2s−1 (−1) ⊂ Cn
s be a space-like special Legendre curve satisfying (2.3) for some parallel orthonormal vector

fields P3, ...Pn along the curve and we may arrange the indices in such way that Ps+2, ..., Pn are space-like. With
P3, ...Pn being parallel, we have

P ′j(t) = ηj(t)z
′(t), j = 3, ..., n. (3.6)

for some functions η3, ..., ηn.

Let L(t, u2, ..., un) be given by (3.5). By taking the partial derivatives of L with respect to t, u2, ..., un, we find

Lt = u2z
′(t) +

n∑
j=3

ujP
′
j(t) + b(t)z′(t),

Lu2
= z(t),

· · ·
Luj

= Pj(t).

(3.7)

From (3.7) and the special Legendre curve we have〈
Lt, Luj

〉
= 0,

〈
Luj

, Luk

〉
= εkδjk, j, k = 2, ..., n. (3.8)

Since z′(t) and Pj(t) are perpendicular, (3.6) yields

P ′j(t) = aj(t)z
′(t), j = 3, ..., n. (3.9)
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From (3.7) and (3.9) we get
Lt(t) = fz′(t) (3.10)

It follows from (3.3), (3.4), (3.8) and (3.10) that L(t, u2, ..., un) is an isometric immersion of M̂1(0) in Cn
s . From

the definition of special Legendre curves, L is Lagrangian.
From (2.3), (3.7), (3.10) and the definition of special Legendre curves, we find

Ltt = ftz
′(t) + fz′′(t), Ltuj = aj(t)z

′(t), Lujuk
= 0, j, k = 2, ..., n. (3.11)

From (2.3), (3.7), (3.9), (3.10), (3.11) and the formula of Gauss, we have

h

(
∂

∂t
,
∂

∂t

)
= λ(t)J

(
∂

∂t

)
, h

(
∂

∂t
,
∂

∂uj

)
= h

(
∂

∂uj
,
∂

∂uk

)
= 0, j, k = 2, ..., n.

which implies that L :M → Cn
s is Lagrangian H-umbilical.

Conversely, assume that L :M → Cn
s is a flat Lagrangian H-umbilical isometric immersion of a flat pseudo-

Riemannian manifold M into Cn
s with e1 space-like and without totally geodesic points. Since M is flat, the

second fundamental form h of L satisfies

h(e1, e1) = φJe1, h(e1, ej) = h(ej , ek) = 0, j, k = 2, ..., n. (3.12)

for some nowhere zero function φ with respect to some orthonormal frame field e1, ..., en. Without loss of
generality, we may assume φ > 0. Since e1 is space- like, we may arrange the indices as the following

〈e1, e1〉 = 〈es+2, es+2〉 = · · · = 〈en, en〉 = 1; 〈e2, e2〉 = · · · = 〈es+1, es+1〉 = −1 (3.13)

or
< ek, ek >= εk, εk = −1, k = 2, ..., s+ 1; εk = 1, k = 1, s+ 2, ..., n

From Codazzi’s equation and (3.12), we have (see also [5, page 174])

ej lnφ = ωj1(e1), ωj1(ek) = 0, j, k = 2, ..., n. (3.14)

Let D and D⊥ be the distributions of M spanned by {e1} and {e2, ...en}, respectively. Being one dimensional,
D is integrable and space-like. From (3.13) and (3.14), D⊥ is also integrable and the leaves of D⊥ are
totally geodesic submanifolds of Cn

s with real index s. Because D and D⊥ are both integrable and they are
perpendicular, there exist local coordinates {x1, x2, ..., xn} such that ∂

∂x1
spans D and { ∂

∂x2
, ..., ∂

∂xn
} spans

D⊥. We may assume that x2, ..., xs+1 are time-like. Since D is one dimensional, we may choose x1 such that
∂
∂x1

= φ−1e1. Then (3.12) becomes

h

(
∂

∂x1
,
∂

∂x1

)
= J

(
∂

∂x1

)
, h

(
∂

∂x1
,
∂

∂xj

)
= h

(
∂

∂xj
,
∂

∂xk

)
= 0, j, k = 2, ..., n. (3.15)

Let Nn−1
s be an integral submanifold of D⊥. Then Nn−1

s is a totally geodesic submanifold of Cn
s . Thus, Nn−1

s

is an open portion of an indefinite Euclidean (n-1)-space En−1s . Hence, M is an open portion of the twisted
product manifold fI × En−1s with twisted product metric (see [1, page 66] or [12]; and we arrange the indices
as in (3.2)):

g = f2dx21 − dx2
2 − · · · − dxs+1

2 + dxs+2
2 + · · ·+ dxn

2 (3.16)

where f = φ−1 and I is the interval on which φ is defined. (3.16) implies

∇∂/∂x1

∂

∂x1
=
f1
f

∂

∂x1
− f

n∑
k=2

εkfk
∂

∂xk
,

∇∂/∂x1

∂

∂xj
=
fj
f

∂

∂x1
, ∇∂/∂xj

∂

∂xk
= 0, j, k = 2, ..., n

(3.17)

where fi = ∂f/∂xi, i = 1, ..., n.

From (3.17) we have

R

(
∂

∂x1
,
∂

∂xj

)
∂

∂x1
= f

n∑
k=2

εkfjk
∂

∂xk
, j = 2, ..., n (3.18)
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Since M is flat, (3.18) implies fjk = 0, j, k = 2, ..., n. Therefore, f is given by

f = β(x1) +

n∑
j=2

αj(x1)xj . (3.19)

for some functions β, α2, ..., αn. By (3.19), (3.17) becomes

∇∂/∂x1

∂

∂x1
=

1

f
{β′(x1) +

n∑
j=2

α′j(x1)xj}
∂

∂x1
− f

n∑
k=2

εkαk
∂

∂xk
,

∇∂/∂x1

∂

∂xj
=
αj
f

∂

∂x1
, ∇∂/∂xj

∂

∂xk
= 0, j, k = 2, ..., n

(3.20)

By (3.15), (3.20) and the formula of Gauss, we obtain

Lx1x1
=

1

f
{β′(x1) +

n∑
j=2

α′j(x1)xj}Lx1
− f

n∑
k=2

εkαkLxk
+ iLx1

(3.21)

Lx1xj =
αj
f
Lx1

(3.22)

Lxjxk
= 0, j, k = 2, ..., n. (3.23)

Integrating (3.23) yields

L =

n∑
j=2

Pj(x1)xj +D(x1), (3.24)

for some Cn
s valued functions P2, ..., Pn, D of x1. Hence,

Lx1
=

n∑
j=2

P ′j(x1)xj +D′(x1), (3.25)

Lxj
= Pj(x1), j = 2, ..., n (3.26)

From (3.16) and (3.26), we know that P2, ..., Pn are orthonormal tangent vectors on M with P2, ..., Ps+1 being
time-like. Applying (3.22), (3.25) and (3.26), we have

αj(x1)D
′(x1) = β(x1)P

′
j(x1), (3.27)

αj(x1)P
′
k(x1) = αk(x1)P

′
j(x1), j, k = 2, ..., n. (3.28)

Case (i): α2 = · · · = αn = 0. From (3.27) we have P ′2(x1) = · · · = P ′n(x1) = 0, since β 6= 0 by (3.19). Hence,
P2, ..., Pn are constant vectors in Cn

s . Therefore, (3.24) becomes

L(x1, ..., xn) =

n∑
j=2

Pjxj +D(x1)

for some function D = D(x1) and orthonormal constant vectors P2, ..., Pn in Cn
s . This means that L is a

Lagrangian cylinder over the curve D = D(x1) whose ruling are (n− 1)-planes parallel to the totally real
x2, ..., xn–plane in Cn

s .

Case (ii): α2 = · · · = αs+1 = 0. (3.27) yields P ′2(x1) = · · · = P ′s+1(x1) = 0, since β 6= 0 by (3.19). Hence,
P2, ..., Ps+1 are constant vectors in Cn

s . Constant vectors P2, iP2, ..., Ps+1, iPs+1 span the time-like subspace of
Cn

s . Now within the space-like subspace of Cn
s , the function f in (3.19) becomes

f = β(x1) +

n∑
j=s+2

αj(x1)xj . (3.29)
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By Theorem 5.1 in [3], the immersion is definite flat Lagrangian H-umbilical. Therefore, M is locally the
product of a flat Lagrangian H-umbilical Riemannian submanifold and a time-like s-plane.

Case (iii): At least one of the α2, ..., αs+1 is nonzero. In this case, we may assume that α2 6= 0. By changing the
variables:

t =

∫ x1

0

α2(x1)dx1, u2 = x2, ..., un = xn, (3.30)

we have
g = f̂2dt2 − du22 − · · · − dus+1

2 + dus+2
2 + · · ·+ dun

2 (3.31)

where

f̂ = b(t) + u2 +

n∑
j=3

aj(t)uj , (3.32)

for some functions b(t), a3(t), ..., an(t).
From (3.15) and (3.30) we obtain

h

(
∂

∂t
,
∂

∂t

)
= λ(t)J

(
∂

∂t

)
, h

(
∂

∂t
,
∂

∂uj

)
= h

(
∂

∂uj
,
∂

∂uk

)
= 0, j, k = 2, ..., n. (3.33)

where λ = (α2)
−1 is a function of t. By applying (3.17), (3.31), (3.32), (3.33) and the formula of Gauss, we have

Ltt =
1

f̂
(b′(t) +

n∑
j=3

a′j(t)uj)Lx1
− f̂

n∑
k=2

εkakLuk
+ iλLt (3.34)

Ltuj
=
aj

f̂
Lt (3.35)

Lujuk
= 0, j, k = 2, ..., n. (3.36)

where a2 = 1. Solving (3.36), we get

L =

n∑
j=2

Pj(t)uj +D(t), (3.37)

for some Cn
s valued functions P2, ..., Pn, D of t. Hence,

Lt =

n∑
j=2

P ′j(t)uj +D′(t), (3.38)

Luj
= Pj(t), j = 2, ..., n (3.39)

(3.31) and (3.39) implies that P2, ..., Pn are orthonormal tangent vectors on M with P2, ..., Ps+1 being time-like.
Applying (3.35), (3.38) and (3.39), we have

D′(t) = b(t)P ′2(t), P ′k(t) = ak(t)P
′
2(t), k = 2, ..., n. (3.40)

Substituting (3.40) into (3.38) yields
Lt = f̂2P ′2(t), (3.41)

If we put z(t) = P2(t), then z = (t) can be regarded as a unit speed space-like curve z : I → H2n−1
2s−1 (−1)

⊂ Cn
s defined on some interval I . Since L is Lagrangian, it follows from (3.38),(3.39) and (3.40) that

z = z(t) is a Legendre curve in H2n−1
2s−1 (−1) ⊂ Cn

s . Now, by applying (3.38), (3.39) and (3.40) we see that
z(s), iz(s), z′(s), iz′(s), P3(s), iP3(s)...Pn(s), iPn(s) form an orthonormal frame field, where P3, ..., Ps+1 are time-
like and P3, ..., Pn are parallel normal vector fields along the Legendre curve. Moreover, (3.37) and (3.41) imply
that, up to rigid motions of Cn

s , L is given by

L(t, u2, ..., un) = u2z(t) +

n∑
j=3

ujPj(t) +

∫ t

b(t)z′(t)dt (3.42)
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Finally, we conclude from (3.34), (3.38), (3.39), (3.40) and (3.42) that z = z(t) satisfies (2.3). Hence z = z(t) in
(3.42) is a special Legendre curve in H2n−1

2s−1 (−1) ⊂ Cn
s .

Case 2: e1 is time-like. In this case, we arrange the indices as the following

〈e1, e1〉 = 〈en−s+2, en−s+2〉 = · · · = 〈en, en〉 = −1; 〈e2, e2〉 = · · · = 〈en−s+1, en−s+1〉 = 1 (3.43)

If we put
εk = 1, k = 2, ..., n− s+ 1; εk = −1, k = 1, n− s+ 2, ..., n,

then (3.43) becomes < ek, ek >= εk.

Theorem 3.3. Let λ, b, a3, ..., an be real-valued functions on an open interval I with λ being nowhere zero and let
z : I → S2n−1

2s (1) ⊂ Cn
s be a time-like special Legendre curve satisfying (2.3). Put

f(t, u2, ..., un) = b(t) + u2 +

n∑
j=3

aj(t)uj . (3.44)

Denote by M̂2(0) the twisted product manifold fI × En−1s−1 with twisted product metric given by

g = −f2dt2 + du2
2 + · · ·+ dun−s+1

2 − dun−s+2
2 − · · · − dun2 (3.45)

Then M̂2(0) is a flat pseudo-Riemannian manifold and

L(t, u2, ..., un) = u2z(t) +

n∑
j=3

ujPj(t) +

∫ t

b(t)z′(t)dt (3.46)

defines a Lagrangian H-umbilical isometric immersion L : M̂2(0)→ Cn
s .

Conversely, up to rigid motions of Cn
s , every flat Lagrangian H-umbilical submanifold without totally geodesic points

in Cn
s and with time-like e1 is locally either a Lagrangian cylinder over a curve, a product of a definite flat Lagrangian

H-umbilical submanifold and a (n-s)-plane, or a Lagrangian submanifold obtained in the way described above.

Proof. If we follow the indices as given in (3.43), then the proof is almost the same as the proof in Theorem 3.2.
For simplicity we omit the details.

Remark 3.1. Flat Lagrangian H-umbilical submanfolds in complex Euclidean spaces Cn were completely
classified in [3] and [4].

Remark 3.2. Legendre curves z : I → S3
2(1) ⊂ C2

1 ( or z : I → H3
1 (−1) ⊂ C2

1 ) are special and they can be
considered as special Legendre curves in Cn

s . The proof of the existence of special Legendre curves in [4] is
also true for indefinite case.

Remark 3.3. Lemma 3.1, Theorem 3.2 and Theorem 3.3 provide the complete classification of flat Lagrangian
H-umbilical submanifolds in Cn

s . The proof is also valid for n = 2, the results correspond to Case (5) and Case
(6) in [8] except for the order of the variables.
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