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GENERALIZED FRACTIONAL MAXIMAL OPERATOR ON
GENERALIZED LOCAL MORREY SPACES

A. KUCUKASLAN, V.S. GULIYEV, AND A. SERBETCI

Abstract. In this paper, we study the boundedness of generalized fractional
maximal operator Mρ on generalized local Morrey spaces LM

{x0}
p,ϕ and gen-

eralized Morrey spaces Mp,ϕ, including weak estimates. Firstly, we prove the

Spanne type boundedness of Mρ from the space LM{x0}p,ϕ1 to another LM{x0}q,ϕ2 ,

1 < p < q <∞ and from LM
{x0}
1,ϕ1

to the weak space WLM
{x0}
q,ϕ2 for p = 1 and

1 < q <∞. Secondly, we prove the Adams type boundedness of Mρ from the
space M

p,ϕ
1
p
to anotherM

q,ϕ
1
q
for 1 < p < q <∞ and from M1,ϕ to the weak

space WM
q,ϕ

1
q
for p = 1 and 1 < q < ∞. In all cases the conditions for the

boundedness ofMρ are given in terms of supremal-type integral inequalities on
(ϕ1, ϕ2, ρ) and (ϕ, ρ), which do not assume any assumption on monotonicity
of ϕ1(x, r), ϕ2(x, r) and ϕ(x, r) in r.

1. Introduction

The classical Morrey spacesMp,λ were first introduced by Morrey in [21] to study
the local behavior of solutions to second order elliptic partial differential equations.
The generalized Morrey spaces Mp,ϕ are obtained by replacing rλ in the definition
of the Morrey space. During the last decades various classical operators, such
as maximal, singular and potential operators were widely investigated in both in
classical, generalized Morrey spaces and generalized local Morrey spaces. For the
boundedness of the Hardy—Littlewood maximal operator, the fractional integral
operator and the Calderón-Zygmund singular integral operators on these spaces,
we refer the readers to [1, 9, 15, 16, 20, 22].
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For a measurable function ρ : (0,∞)→ (0,∞) the generalized fractional maximal
operator Mρ and the generalized fractional integral operator Iρ are defined by

Mρf(x) = sup
t>0

ρ(t)

tn

∫
B(x,t)

|f(y)|dy,

Iρf(x) =

∫
Rn

ρ(|x− y|)
|x− y|n f(y)dy

for any suitable function f on Rn. If ρ(t) ≡ tα, then Mα ≡ Mtα is the fractional
maximal operator and Iα ≡ Itα is the Riesz potential.
Spanne [24] and Adams [1] studied boundedness of the Riesz potential in Morrey

spaces. Their results can be summarized as follows.

Theorem A. (Spanne, but published by Peetre [24]) Let 0 < α < n, 1 < p < n
α ,

0 < λ < n − αp. Moreover, let 1
p −

1
q =

α
n and λ

p =
µ
q . Then for p > 1, the

operator Iα is bounded from Mp,λ to Mq,µ and for p = 1, Iα is bounded from M1,λ

to WMq,µ.

Theorem B. (Adams [1]) Let 0 < α < n, 1 < p < n
α , 0 < λ < n − αp and

1
p −

1
q =

α
n−λ . Then for p > 1, the operator Iα is bounded from Mp,λ to Mq,λ and

for p = 1, Iα is bounded from M1,λ to WMq,λ.

Nakai [22] proved the boundedness of the operators Iρ and Mρ from the general-
ized Morrey spacesMp,ϕ1 to the spacesMq,ϕ2 for suitable functions ϕ1 and ϕ2. The
boundedness of Mρ and Iρ from the generalized Morrey spaces Mp,ϕ1 to the spaces
Mq,ϕ2 is studied by Nakai [23], Eridani [10], Gunawan [18], Eridani, Gunawan and
Nakai [12], Sawano, Sugano, Tanaka [25], Eridani, Gunawan, Nakai, Sawano [11],
Guliyev, Ismayilova, Kucukaslan, Serbetci [17], Kucukaslan, Hasanov, Aykol [19].
In particular, the following statement containing both Theorem A and Theorem

B was proved in [3, 4].
Theorem C. ([3, 4]) Let 1 ≤ p < q <∞, 0 < λ, µ < n and

0 < α =
n− λ
p
− n− µ

q
<
n

p
.

Then, for p > 1, the operator Iα is bounded from Mp,λ to Mq,µ, and, for p = 1, Iα
is bounded from M1,λ to WMq,µ.

In [3, 4] it was also proved that, under the assumptions of Theorem C, the
operator Iα, for p > 1, is bounded from the local Morrey space LM

{x0}
p,λ to LM{x0}q,µ ,

and, for p = 1 from LM
{x0}
1,λ to the weak local Morrey space WLM

{x0}
q,µ .

Since, for some c > 0,
(
Mαf

)
(x) ≤ c

(
Iα(|f |)

)
(x), x ∈ Rn, it follows that in

Theorems A, B, C the operator Iα can be replaced by the operator Mα (including
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also the case p = q). For the operator Mα Theorem C was, in fact, earlier proved
in [5, 6].
Guliyev [14] proved the Spanne and Adams type boundedness of Iα from the

spaces Mp,ϕ1(R
n) to Mq,ϕ2(R

n) without any assumption on monotonicity of ϕ1,
ϕ2. Paper [7] should be mentioned where for α = n

(
1
p −

1
q

)
necessary and suffi cient

conditions of ϕ1 and ϕ2 are obtained. In [17], by using the method given in [13]
the Spanne and Adams type boundedness of the operator Iρ from the generalized
local Morrey space LM{x0}p,ϕ1 to another one LM

{x0}
q,ϕ2 were proved.

The main goal of this paper is to show that the boundedness of the generalized
fractional maximal operator Mρ in generalized local Morrey spaces LM

{x0}
p,ϕ and

generalized Morrey spaces Mp,ϕ can be obtained under weaker assumptions on ρ,
namely in terms of the so-called supremal operators. More precisely, we find suffi -
cient conditions, in supremal terms, on the functions (ϕ1, ϕ2, ρ) which ensure the
boundedness of the operator Mρ from one generalized local Morrey space LM{x0}p,ϕ1

to another LM{x0}q,ϕ2 for 1 < p < q < ∞ and from LM
{x0}
1,ϕ1

to the weak space

WLM
{x0}
q,ϕ2 for p = 1 and 1 < q < ∞. We also find conditions on the pair (ϕ, ρ)

which ensure the Adams type boundedness ofMρ from the spacesM
p,ϕ

1
p
to another

M
q,ϕ

1
q
for 1 < p < q <∞ and from M1,ϕ to the weak space WM

q,ϕ
1
q
for p = 1 and

1 < q <∞.
By A . B we mean that A ≤ CB with some positive constant C independent

of appropriate quantities. If A . B and B . A, we write A ≈ B and say that A
and B are equivalent.

2. Preliminaries

For x ∈ Rn and r > 0, we denote by B(x, r) the open ball centered at x of radius
r, and by

{
B(x, r) denote its complement. Let |B(x, r)| be the Lebesgue measure

of the ball B(x, r). Therefore |B(x, r)| = wnr
n, where wn denotes the volume of

the unit ball in Rn.

Definition 2.1. Let ϕ(x, r) be a positive measurable function on Rn × (0,∞) and
1 ≤ p < ∞. We denote by Mp,ϕ ≡ Mp,ϕ(Rn) the generalized Morrey space, the
space of all functions f ∈ Llocp (Rn) with finite norm

‖f‖Mp,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|−
1
p ‖f‖Lp(B(x,r)).

Also by WMp,ϕ ≡WMp,ϕ(Rn) we denote the weak generalized Morrey space of all
functions f ∈WLlocp (Rn) for which

‖f‖WMp,ϕ
= sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|−
1
p ‖f‖WLp(B(x,r)) <∞.
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According to this definition, we recover the Morrey spaceMp,λ, the weak Morrey

space WMp,λ respectively, under the choice ϕ(x, r) = r
λ−n
p :

Mp,λ =Mp,ϕ

∣∣∣
ϕ(x,r)=r

λ−n
p
, WMp,λ =WMp,ϕ

∣∣∣
ϕ(x,r)=r

λ−n
p
.

Definition 2.2. Let ϕ(x, r) be a positive measurable function on Rn × (0,∞) and
1 ≤ p < ∞. We denote by LMp,ϕ ≡ LMp,ϕ(Rn) the generalized local (central)
Morrey space, the space of all functions f ∈ Llocp (Rn) with finite norm

‖f‖LMp,ϕ
= sup

r>0
ϕ(0, r)−1 |B(0, r)|−

1
p ‖f‖Lp(B(0,r)).

Also by WLMp,ϕ ≡ WLMp,ϕ(Rn) we denote the weak generalized local (central)
Morrey space of all functions f ∈WLlocp (Rn) for which

‖f‖WLMp,ϕ
= sup

r>0
ϕ(0, r)−1 |B(0, r)|−

1
p ‖f‖WLp(B(0,r)) <∞.

Definition 2.3. Let ϕ(x, r) be a positive measurable function on Rn × (0,∞) and
1 ≤ p < ∞. For any fixed x0 ∈ Rn we denote by LM{x0}p,ϕ ≡ LM

{x0}
p,ϕ (Rn) the

generalized local Morrey space, the space of all functions f ∈ Llocp (Rn) with finite
norm

‖f‖
LM

{x0}
p,ϕ

= ‖f(x0 + ·)‖LMp,ϕ
.

Also by WLM
{x0}
p,ϕ ≡ WLM

{x0}
p,ϕ (Rn) we denote the weak generalized local Morrey

space of all functions f ∈WLlocp (Rn) for which

‖f‖
WLM

{x0}
p,ϕ

= ‖f(x0 + ·)‖WLMp,ϕ
<∞.

According to this definition, we recover the local Morrey space LM{x0}p,λ and weak

local Morrey space WLM
{x0}
p,λ under the choice ϕ(x0, r) = r

λ−n
p :

LM
{x0}
p,λ = LM{x0}p,ϕ

∣∣∣
ϕ(x0,r)=r

λ−n
p
, WLM

{x0}
p,λ =WLM{x0}p,ϕ

∣∣∣
ϕ(x0,r)=r

λ−n
p
.

Definition 2.4. Let M(0,∞) be the set of all Lebesgue-measurable functions on
(0,∞) and M+(0,∞) its subset consisting of all non-negative functions on (0,∞).
We define a cone A by the set of the functions ϕ ∈ M+(0,∞) which are non-
decreasing on (0,∞) and such that limt→0+ ϕ(t) = 0, briefly

A =
{
ϕ ∈M+(0,∞; ↑) : lim

t→0+
ϕ(t) = 0

}
.

Definition 2.5. [8] Let u be a continuous and non-negative function on (0,∞).
We define the supremal operator Su on g ∈M(0,∞) by

(Sug)(r) := ‖u(t)g(t)‖L∞(r,∞) , r ∈ (0,∞).
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Let v be a non-negative measurable function on (0,∞). We denote by L∞,v(0,∞)
the space of all functions g(t), t > 0 with finite norm

‖g‖L∞,v(0,∞) = sup
t>0

v(t)g(t)

and L∞(0,∞) ≡ L∞,1(0,∞). The following lemma is proved analogously to Lemma
5.2 in [8].

Lemma 2.1. [8] Let v1 and v2 be weights and 0 < ‖v1‖L∞(t,∞) <∞ for any t > 0
and let u be a continuous non-negative function on (0,∞). Then the operator Su is
bounded from L∞,v1(0,∞) to L∞,v2(0,∞) on the cone A if and only if∥∥∥v2Su (‖v1‖−1L∞(·,∞))∥∥∥L∞(0,∞) <∞.
The following lemma was proved in [17].

Lemma 2.2. [17] Let v1, v2 be non-negative measurable functions satisfying 0 <
‖v1‖L∞(t,∞) < ∞ for any t > 0. Then the identity operator I is bounded from
L∞,v1(0,∞) to L∞,v2(0,∞) on the cone A if and only if∥∥∥v2 (‖v1‖−1L∞(·,∞))∥∥∥L∞(0,∞) <∞.

3. Spanne type result for the operator Mρ in the spaces LM
{x0}
p,ϕ

We assume that

sup
1≤t<∞

ρ(t)

tn
<∞, (3.1)

so that the fractional maximal functions Mρf are well defined, at least for charac-
teristic functions 1/|x|2n of complementary balls:

f(x) =
χRn\B(0,1)(x)

|x|2n .

In addition, we shall also assume that ρ satisfies the growth condition: there exist
constants C1 > 0 and 0 < 2k1 < k2 <∞ such that

sup
r<s≤2r

ρ(s)

sn
≤ C1 sup

k1r<t<k2r

ρ(t)

tn
, r > 0. (3.2)

This condition is weaker than the usual doubling condition for the function ρ(t)
tn

: there exists a constant C2 > 0 such that

1

C2

ρ(t)

tn
≤ ρ(r)

rn
≤ C2

ρ(t)

tn
,

whenever r and t satisfy r, t > 0 and 1
2 ≤

r
t ≤ 2.
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Remark 3.1. Typical examples of ρ(t) that we envisage are, for 0 < α < n

ρ(t) ≡
{ tα log(e/t), 0 < t ≤ 1

tα

log(et) , 1 ≤ t <∞
and, for c > 0

ρ(t) ≡
{ tα, 0 < t ≤ 1
ece−ct

2

, 1 ≤ t <∞.
The second one is used to control the Bessel potential (see also [26]).

The boundedness of the operator Iρ in the spaces Lp(Rn) can be found in [11].
Let ρ(t)

tn be almost decreasing, that is, there exists a constant C such that ρ(t)
tn ≤

C ρ(s)
sn for s < t. In this case we get

Mρf(x) = sup
t>0

ρ(t)

tn

∫
B(x,t)

|f(y)|dy

. sup
t>0

∫
B(x,t)

ρ(|x− y|)
|x− y|n |f(y)|dy

=

∫
Rn

ρ(|x− y|)
|x− y|n |f(y)|dy = Iρ(|f |)(x).

For proving our main results, we need the following estimate.

Lemma 3.3. If B0 := B(x0, r0) ⊂ B(x, r) and ρ satisfies the doubling condition.
Then ρ(r0) .MρχB0

(x) for every x ∈ B0.
Proof. Let ρ satisfy the doubling condition, then

Mρf(x) .Mρf(x), (3.3)

whereMρ(f)(x) = sup
B3x

ρ(rB)
|B|

∫
B
|f(y)|dy and rB is the center of the ball B.

Now let x ∈ B0. By using (3.3), we get

MρχB0
(x) &MρχB0

(x) = sup
B3x

ρ(rB)

|B| |B ∩B0|

& ρ(r0)

|B0|
|B0 ∩B0| = ρ(r0).

�
The following lemma is valid.

Lemma 3.4. Let 1 ≤ p < q <∞.
(1) The condition

ρ(r) ≤ Cr
n
p−

n
q (3.4)

for all r > 0, where C > 0 does not depend on r, is suffi cient for the boundedness
of Mρ from Lp(Rn) to WLq(Rn). Moreover, if p > 1, then the condition (3.4) is
suffi cient for the boundedness of Mρ from Lp(Rn) to Lq(Rn).
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(2) If ρ satisfies the doubling condition, then the condition (3.4) is necessary for
the boundedness of Mρ from Lp(Rn) to WLq(Rn) and from Lp(Rn) to Lq(Rn) for
p > 1.
(3) If ρ satisfies the doubling condition and the supremal regularity condition

sup
r<t<∞

ρ(t) t−
n
p ≤ Cρ(r)r−

n
p

holds for all r > 0, where C > 0 does not depend on r, then the condition (3.4)
is necessary and suffi cient for the boundedness of Mρ from Lp(Rn) to WLq(Rn).
Moreover, if p > 1, then the condition (3.4) is necessary and suffi cient for the
boundedness of Mρ from Lp(Rn) to Lq(Rn).

Proof. (1) Suppose ρ satisfies the condition (3.4). Then

Mρf(x) .Mn
p−

n
q
f(x). (3.5)

Since the operatorMn
p−

n
q
is bounded from Lp(Rn) toWLq(Rn) and for p > 1 from

Lp(Rn) to Lq(Rn), then from (3.5) we get the statement (1).
(2) Now we shall prove the second part. Let B0 = B(x0, r0) and x ∈ B0. By

Lemma 3.3, we have ρ(r0) .MρχB0
(x). Therefore, we have

ρ(r0) . r
−nq
0 ‖MρχB0

‖WLq(B0) . r
−nq
0 ‖MρχB0

‖WLq(Rn)

. r−
n
q

0 ‖χB0
‖Lp(Rn) . r

n
p−

n
q

0

and for p > 1

ρ(r0) . r
−nq
0 ‖MρχB0

‖Lq(B0) . r
−nq
0 ‖MρχB0

‖Lq(Rn)

. r−
n
q

0 ‖χB0
‖Lp(Rn) . r

n
p−

n
q

0

holds for every r0 > 0, hence the proof of statement (2) is completed.
(3) From the first and second statements the third statement of the lemma

follows. �

The following lemma is valid.

Lemma 3.5. Let 1 ≤ p < q < ∞ and let ρ(t) satisfy the conditions (3.1), (3.2)
and (3.4). Then the inequality

‖Mρf‖WLq(B(x0,r)) . ‖f‖Lp(B(x0,2r)) + r
n
q sup
t>r
‖f‖Lp(B(x0,t))

ρ(t)

t
n
p

holds for any ball B(x0, r) and for all f locp (Rn).
If p > 1, then the inequality

‖Mρf‖Lq(B(x0,r)) . ‖f‖Lp(B(x0,2r)) + r
n
q sup
t>r
‖f‖Lp(B(x0,t))

ρ(t)

t
n
p

(3.6)

holds for any ball B(x0, r) and for all f locp (Rn).
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Proof. Let 1 ≤ p < q <∞ and let ρ(t) satisfy the conditions (3.1), (3.2) and (3.4).
For arbitrary x0 ∈ Rn, set B = B(x0, r) for the ball centered at x0 and of radius r.
Write f = f1 + f2 with f1 = fχ2B and f2 = fχ {(2B)

. Hence

‖Mρf‖WLq(B) ≤ ‖Mρf1‖WLq(B) + ‖Mρf2‖WLq(B).

Since f1 ∈ Lp(Rn), Mρf1 ∈ WLq(Rn) and by Lemma 3.4 Mρ is bounded from
Lp(Rn) to WLq(Rn). Thus it follows that

‖Mρf1‖WLq(B) ≤ ‖Mρf1‖WLq(Rn) ≤ C‖f1‖Lp(Rn) = C‖f‖Lp(2B),

where constant C > 0 is independent of f .
Let x be an arbitrary point from B. If B(x, t) ∩ {

(2B) 6= ∅, then t > r. Indeed,
if y ∈ B(x, t) ∩ {

(2B), then t > |x− y| ≥ |x0 − y| − |x0 − x| > 2r − r = r.
On the other hand, B(x, t) ∩ {

(2B) ⊂ B(x0, 2t). Indeed, y ∈ B(x, t) ∩ {
(2B),

then we get |x0 − y| ≤ |x− y|+ |x0 − x| < t+ r < 2t.
Hence

Mρf2(x) = sup
t>0

ρ(t)

tn

∫
B(x,t)∩ {(2B)

|f(y)|dy

. sup
t>r

ρ(2t)

(2t)n

∫
B(x0,2t)

|f(y)|dy

= sup
t>2r

ρ(t)

tn

∫
B(x0,t)

|f(y)|dy.

Therefore, for all x ∈ B we have

Mρf2(x) . sup
t>2r

ρ(t)

tn

∫
B(x0,t)

|f(y)|dy. (3.7)

Thus

‖Mρf‖WLq(B) ≤ ‖Mρf‖Lq(B) . ‖f‖Lp(2B) + |B|
1
q sup
t>2r
‖f‖L1(B(x0,t))

ρ(t)

tn

. ‖f‖Lp(2B) + r
n
q sup
t>2r
‖f‖Lp(B(x0,t))

ρ(t)

t
n
p
. (3.8)

Let p > 1. From the (p, q) boundedness of Mρ and (3.4) it follows that:

‖Mρf1‖Lq(B) ≤ ‖Mρf1‖Lq(Rn) . ‖f1‖Lp(Rn) = ‖f‖Lp(2B). (3.9)

Then by (3.8) and (3.9) we get the inequality (3.6). �

The following theorem is one of the main results of the paper in which we get
the Spanne type boundedness of the generalized fractional maximal operator Mρ

in the generalized local Morrey spaces LM{x0}p,ϕ .
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Theorem 3.1. Let x0 ∈ Rn, 1 ≤ p < q < ∞, and let the function ρ satisfy the
conditions (3.1), (3.2) and (3.4). Let also (ϕ1, ϕ2) satisfy the conditions

ess inf
t<s<∞

ϕ1(x0, s)s
n
p ≤ C ϕ2

(
x0,

t

2

)
t
n
q , (3.10)

sup
t>r

(
ess inf
t<s<∞

ϕ1(x0, s)s
n
p

)ρ(t)
t
n
p
≤ C ϕ2(x0, r),

where C does not depend on x0 and r. Then the operator Mρ is bounded from
LM

{x0}
p,ϕ1 to WLM

{x0}
q,ϕ2 and for p > 1 from LM

{x0}
p,ϕ1 to LM

{x0}
q,ϕ2 . Moreover,

‖Mρf‖WLM
{x0}
q,ϕ2

. ‖f‖
LM

{x0}
p,ϕ1

,

and for p > 1
‖Mρf‖LM{x0}q,ϕ2

. ‖f‖
LM

{x0}
p,ϕ1

.

Proof. Let the function ρ satisfy the conditions (3.1), (3.2), (3.4), and also (ϕ1, ϕ2)
satisfy the conditions (3.10) and (3.11). By Lemmas 2.1, 2.2 and 3.5 we have

‖Mρf‖WLM
{x0}
q,ϕ2

. sup
r>0

ϕ2(x0, r)
−1r−

n
q ‖f‖Lp(B(x0,2r))

+ sup
r>0

ϕ2(x0, r)
−1 sup

t>r
‖f‖Lp(B(x0,t))

ρ(t)

t
n
p

≈ sup
r>0

ϕ1(x0, r)
−1r−

n
p ‖f‖Lp(B(x0,r)) = ‖f‖LM{x0}p,ϕ1

and for p > 1

‖Mρf‖LM{x0}q,ϕ2

. sup
r>0

ϕ2(x0, r)
−1r−

n
q ‖f‖Lp(B(x0,2r))

+ sup
r>0

ϕ2(x0, r)
−1 sup

t>r
‖f‖Lp(B(x0,t))

ρ(t)

t
n
p

≈ sup
r>0

ϕ1(x0, r)
−1r−

n
p ‖f‖Lp(B(x0,r)) = ‖f‖LM{x0}p,ϕ1

.

�

In the following corollary we get the boundedness of the generalized fractional
maximal operator Mρ on generalized Morrey spaces Mp,ϕ.

Corollary 3.1. Let 1 ≤ p < q < ∞, the function ρ satisfy the conditions (3.1),
(3.2) and (3.4). Let also (ϕ1, ϕ2) satisfy the following conditions

ess inf
r<t<∞

ϕ1(x, t)t
n
p ≤ C ϕ2

(
x,
r

2

)
r
n
q ,

sup
t>r

(
ess inf
t<s<∞

ϕ1(x, s)s
n
p

)ρ(t)
t
n
p
≤ C ϕ2(x, r),

where C does not depend on x and r. Then the operator Mρ is bounded from Mp,ϕ1
to WMq,ϕ2 and for p > 1 from Mp,ϕ1 to Mq,ϕ2 .
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In the case ρ(t) = tα from Theorem 3.1 we get new Spanne type result for
fractional maximal operator Mα on generalized local Morrey spaces.

Corollary 3.2. Let x0 ∈ Rn, 0 < α < n, 1 ≤ p < q < ∞ and 1/p − 1/q = α/n.
Let also (ϕ1, ϕ2) satisfy the condition

sup
t>r

(
ess inf
t<s<∞

ϕ1(x0, s)s
n
p

)
t−

n
q ≤ C ϕ2(x0, r), (3.11)

where C does not depend on r. Then the operator Mα is bounded from LM
{x0}
p,ϕ1 to

LM
{x0}
q,ϕ2 for p > 1 and from LM

{x0}
1,ϕ1

to WLM
{x0}
q,ϕ2 for p = 1.

Also in the case ρ(t) = tα and ϕ(x, t) = t
λ−n
p , 0 < λ < n from Theorem 3.1 we

get local Morrey space variant of Theorem A.

Corollary 3.3. Let x0 ∈ Rn, 0 < α < n, 1 < p < n
α , 0 < λ < n − αp. Moreover,

let α = n
p −

n
q and

λ
p =

µ
q . Then for p > 1, the operator Mα is bounded from

LM
{x0}
p,λ to LM{x0}q,µ and for p = 1, Mα is bounded from LM

{x0}
1,λ to WLM

{x0}
q,µ .

Remark 3.2. For this case α = n
p −

n
q necessary and suffi cient conditions for the

boundedness of Iα from Mp,ϕ1 to Mq,ϕ2 are obtained in [4].

4. Adams type result for the operator Mρ in the spaces Mp,ϕ

The following theorem was proved in [2].

Theorem D. Let 1 ≤ p <∞ and (ϕ1, ϕ2) satisfy the condition

sup
r<t<∞

t−
n
p ess inf
t<s<∞

ϕ1(x, s) s
n
p ≤ C ϕ2(x, r),

where C does not depend on x and r. Then the operator M is bounded from Mp,ϕ1
to WMp,ϕ2 and for p > 1, the operator M is bounded from Mp,ϕ1 to Mp,ϕ2 .

The following theorem is another main result of the paper, in which we get the
Adams type boundedness of the generalized fractional maximal operator Mρ in the
generalized Morrey spaces Mp,ϕ.

Theorem 4.2. Let 1 ≤ p < q < ∞, ρ(t)tn be almost decreasing, and let ρ(t) satisfy
the condition (3.2) and the inequality∫ k2r

0

ρ(s)

s
ds ≤ Cρ(r),

where k2 is given by the condition (3.2) and C does not depend on r > 0. Let also
ϕ(x, t) satisfy the conditions

sup
r<t<∞

t−n ess inf
t<s<∞

ϕ(x, s) sn ≤ C ϕ(x, r), (4.1)
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and

ρ(r)ϕ(x, r) + sup
t>r

ρ(t)ϕ(x, t) ≤ Cϕ(x, r)
p
q , (4.2)

where C does not depend on x ∈ Rn and r > 0.
Then the operator Mρ is bounded from M

p,ϕ
1
p
to WM

q,ϕ
1
q
and for p > 1 from

Mp,ϕ to M
q,ϕ

1
q
.

Proof. Let x0 ∈ Rn, 1 ≤ p < q < ∞ and f ∈ M
p,ϕ

1
p
. Write f = f1 + f2, where

B = B(x, r), f1 = fχ2B and f2 = fχ {(2B)
. Then we have

Mρf(x) ≤Mρf1(x) +Mρf2(x).

For Mρf1(y), y ∈ B(x, r), following Hedberg’s trick (see for instance [27], p. 354),
we obtain

Mρf1(y) = sup
t>0

ρ(t)

tn

∫
B(y,t)∩B(x,2r)

|f(z)|dz

. sup
t>0

∫
B(y,t)∩B(x,2r)

ρ(|y − z|)
|y − z|n |f(z)|dz

≈ sup
t>0

0∑
k=−∞

∫
B(y,t)∩

(
B(x,2k+1r)\B(x,2kr)

) ρ(|y − z|)|y − z|n |f(z)|dz

. sup
t>0

0∑
k=−∞

∫ 2kk2r

2kk1r

ρ(s)

sn+1
ds

∫
B(y,t)∩B(x,2k+1r)

|f(z)|dz

≈Mf(x) sup
t>0

0∑
k=−∞

∫ 2kk2r

2kk1r

ρ(s)

s
ds

=Mf(x)

∫ k2r

0

ρ(s)

s
ds .Mf(x)ρ(r). (4.3)

For Mρf2(y), y ∈ B(x, r) from (3.7) we have

Mρf2(y) . sup
t>2r

ρ(t)

tn

∫
B(x,t)

|f(z)|dz

. sup
t>2r
‖f‖Lp(B(x,t))

ρ(t)

t
n
p
. (4.4)

Then from condition (4.2) and inequalities (4.3), (4.4) for all y ∈ B(x, r) we get

Mρf(y) . ρ(r)Mf(x) + sup
t>r
‖f‖Lp(B(x,t))

ρ(t)

t
n
p

≤ ρ(r)Mf(x) + ‖f‖M
p,ϕ

1
p

sup
t>r

ϕ(x, t)ρ(t). (4.5)
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Thus, by (4.2) and (4.5) we obtain

Mρf(y) . min
{
ϕ(x, t)

p
q−1Mf(x), ϕ(x, t)

p
q ‖f‖M

p,ϕ
1
p

}
. sup

s>0
min

{
s
p
q−1Mf(x), s

p
q ‖f‖M

p,ϕ
1
p

}
= (Mf(x))

p
q ‖f‖1−

p
q

M
p,ϕ

1
p

,

where we have used that the supremum is achieved when the minimum parts are
balanced. Hence for all y ∈ B(x, r) , we have

Mρf(y) . (Mf(x))
p
q ‖f‖1−

p
q

M
p,ϕ

1
p

.

Consequently the statement of the theorem follows in view of the boundedness of
the maximal operator M in M

p,ϕ
1
p
provided by Theorem D in virtue of condition

(4.1).

‖Mρf‖WM
q,ϕ

1
q

= sup
x∈Rn,t>0

ϕ(x, t)−
1
q t−

n
q ‖Mρf‖WLq(B(x,t))

. ‖f‖1−
p
q

M
p,ϕ

1
p

sup
x∈Rn,t>0

ϕ(x, t)−
1
q t−

n
q ‖Mf‖

p
q

WLp(B(x,t))

= ‖f‖1−
p
q

M
p,ϕ

1
p

(
sup

x∈Rn,t>0
ϕ(x, t)−

1
p t−

n
p ‖Mf‖WLp(B(x,t))

) p
q

= ‖f‖1−
p
q

M
p,ϕ

1
p

‖Mf‖
p
q

WM
p,ϕ

1
p

. ‖f‖M
p,ϕ

1
p

,

and

‖Mρf‖M
q,ϕ

1
q

= sup
x∈Rn,t>0

ϕ(x, t)−
1
q t−

n
q ‖Mρf‖Lq(B(x,t))

. ‖f‖1−
p
q

M
p,ϕ

1
p

sup
x∈Rn,t>0

ϕ(x, t)−
1
q t−

n
q ‖Mf‖

p
q

Lp(B(x,t))

= ‖f‖1−
p
q

M
p,ϕ

1
p

(
sup

x∈Rn,t>0
ϕ(x, t)−

1
p t−

n
p ‖Mf‖Lp(B(x,t))

) p
q

= ‖f‖1−
p
q

M
p,ϕ

1
p

‖Mf‖
p
q

M
p,ϕ

1
p

. ‖f‖M
p,ϕ

1
p

,

if 1 < p < q <∞ . �

In the case ρ(t) = tα from Theorem 4.2 we get the Adams type result on gener-
alized Morrey spaces (see [16, Theorem 5.7, p. 182]).
In the case ρ(t) = tα, ϕ(x, t) = tλ−n, 0 < λ < n from Theorem 4.2 we get the

following Adams’s result for the fractional maximal operator.
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Corollary 4.4. Let 0 < α < n, 1 < p < n
α , 0 < λ < n − αp and 1

p −
1
q =

α
n−λ .

Then for p > 1, the operator Mα is bounded from Mp,λ to Mq,λ and for p = 1, Mα

is bounded from M1,λ to WMq,λ.

Remark 4.3. Note that, the condition (3.1) is weaker than the following condition
which was given in [17] for Iρ: ∫ ∞

1

ρ(t)

tn
dt

t
<∞. (4.6)

For example, the function

ρ(t) =
tn

log(e+ t)
, t > 0

satisfies (3.1), but not (4.6). This example shows that the function ρ satisfies
Theorems 3.1 and 4.2, but does not satisfy the assumptions of Theorems 16 and
22 in [17]. In other words, the condition (3.1) which satisfies our main theorems,
is better (more general and comprehensive) than the condition (4.8) which satisfies
the main theorems were given in [17].
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