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The Effects of Soil Management Systems on Soil Carbon Dynamics
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Abstract: Carbon is the building stone of plant and animals and a major constituent of soil organic matter.
Carbon dioxide is the gaseous form of carbon and is a greenhouse gas. The source of atmospheric CO- is
manly fossil fuel combustion, land clearing (removing plant residues from soils and fire or clear cutting of
forest areas for cultivation), and soil management systems. Since the beginning of industrial revolution, CO-
levels have risen at a rate of 1.5 percent per year (IPCC, 2001). The increases of atmospheric CO-
concentration could lead to global warming. One possible mechanism for reducing the rise of COa
concentration in the atmosphere is fixation of CO; by plant into soil organic carbon. A long-term reduction
in atmospheric CO, levels will require a reduction of fossil fuel use and minimize the amount of CO- release
from soils to the atmosphere.
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Toprak Yonetim Sistemlerinin Toprak Karbon Dinamigi Uzerine Etkileri

Ozet: Karbon, bitki ve hayvanlarin yapi tasi ve toprak organik maddesinin en 6nemli ogesini
olusturmaktadir. Karbon dioksit karbomun gaz formu olup bir sera gazidir. Atmosferdeki CO-"nun baslica
kaynaklan fosil yalatlar, toprak yviizeyinin bitkilerden temizlemesi (bitki hasat artiklarimin yakilmasi ve
ormanlarin yakilarak veya kesilerek tarima agilmasi) ve toprak yonetim sistemleridir. Endiistriyel gelismeden
bu vana atmosferdeki CO, diizeyi vilda 1.5 % diizeyinde artmaktadir (IPCC, 2001). Atmosferdeki CO-
konsantrasyonundaki bu artis kiiresel 1sinmaya vol agabilir. Atmosferdeki CO- miktarindaki bu viikselisi
diisiirmenin bir yolu CO, nun bitkiler tarafindan toprak organik karbonuna baglanmasidir. Atmosferdeki CO-
diizevindeki uzun siireli bir diisiis fosil vakitlann kullanimini azaltmay: ve topraklardan atmosfere salinan
CO-" nun mininmm dizeyvde tutulmasim gerektirmektedir.

Anahtar Kelimeler: Toprak karbonu, atmosferik CO,, toprak y6netimi,. karbon dinamigi

Introduction
Recent studies have shown a link between Drake, 1998). Minimizing agriculture’s impact
increasing atmospheric CO, concentration and on the global atmospheric CO-. requires

global warming (IPCC, 2001). Atmospheric
concentrations of COs have increased from pre-
industrial revolution of 260 ppm to present
levels of 370 ppm (IPCC, 2001) (Figure 1). The
greatest portion of this increase can be
attributed to burning of fossil fuels, and to a
lesser extent changes in land use (Vitousek,
1994: Trumbore, 1997; Stevenson and Cole,
1999). Soils contain the largest active
terrestrial C pool on earth, and through soil
respiration, annually contribute CO, to the
atmosphere that is 10 times greater than that
from fossil fuel combustion; however much of
this respired CO, is reassimilated into new plant
growth (Schlesinger, 1997). Because of the size
of this pool even a small change in this flux
could have a large effect on the atmospheric
CO- concentration. Studies have shown that
increased atmospheric CO, increases the rate of
soil respiration (Johnson et al., 1994; Vose et
al., 1995: Hungate et al., 1997, Ball and

maintenance of soil organic matter. Soil C
levels can be increased in existing agricultural
soils by management systems that include
production of high residue crops. elimination of
summer fallow, and reduction in tillage
mtensity.
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Figure 1. Changes in atmospheric carbon dioxide levels.
(Note: This graph shows CO, levels from ice core data from
Greenland (A.c), and Antarctica (e) (various svmbols
represent ditferent sampling sites)) — monitoring at Mauna
Loa (o) (IPCC, 2001 ).



Seil C Dynamics in Agricultural Ecosystems
Agricultural systems in the past have
reduced soil organic C levels and contributed to
atmospheric CO, (Houghton et al, 1983).
Decreases in soil C as a result of intensive
tillage are well documented (Haas et al., 1957,
Greeland and Mye, 1959). Flach et al. (1997)
indicated that 50 years of cultivation practices
decreased soil C level 53% from the original
level (Figure 2). The losses of the soil C over
the first half of the 20™ century were
partlyrecovered in the second half as soil
conservation practices improved and cropping
imtensified. Minimum cultivation and improved
hybrids have also played a role building soil
organic C levels. The higher yields and greater
cropping intensities increased the amount of
biomass retummed to the soils that can become
soil organic carbon. The rnight-hand side of
Figure 2 shows future projection of soil organic
carbon levels assuming 1990 tillage and
cropping practices. Tillage practices increase
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C losses to the atmosphere and major gaseous
loss of soil C as CO, occurs immediately after
tillage (Reicosky and Lindstrom, 1993). Tillage
causes higher fluxes of CO, compared with no-
tillage (Dao, 1998; Lupwayi et al., 1999).
Reicosky et al. (1999) determined that
cumulative CO, flux from conventional tillage
at the end of 80 h was nearly three times larger
than from no-tillage. However, tillage may
increase temporarily soil nutrient availability
and plant productivity. Tillage can increase
aerobic conditions, create a more favorable
temperature for biological activity, and
enhance nutrient availability. The lower
albedo of bare soil increases soil
temperature resulting in increased rate of
decomposition of organic materials.
Changes in nutrient availability and pH
status have significant indirect influences
on soil C turnover affecting productivity
and residue inputs. '
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Figure 2. Measured and predicted changes in soil organic carbon content of a prairie soil throughout the period of

cultivation (Flach et al. 1997).
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Crop residue and how they are managed
significantly impact soil physical properties
such as bulk density, water infiltration, pore
size distribution, and aggregate stability.
Residue effects on aggregation and aggregate
stability directly affect soil C since aggregates
are thought to be a key mechanism in soil C
stabilization. Increased retention time of
residues generally increases the number and
stability of aggregates (Adem and Tisdall,
1984). It has been reported that aggregate
stability increases in proportion to the rate of
residue addition.

Cultivation destroys macroaggregates and
may promote decomposition of physically
protected organic matter (Beare et al., 1994).

The vulnerability of soil to physical disturbance

1s greater in coarse-textured soils than fine-
textured soils (Aguilar et al., 1988; Burke et al.,
1989).  Clay promotes  organo-mineral
complexes which allow aggregates to persist in
the soil (Tiessen et al., 1984).

Reduced tillage by decreasing the amount
of bare soil and increasing residue inputs,
reduces the loss of C and in some cases
increases soil C levels (Paustian et al., 1997;
Flach et al, 1997. Collins et al., 1999).
Residue on the soil surface minimizes the soil —
residue contact which results in a lower
decomposition rtate. The reduced residue
decomposition and less soil disturbance usualty
results in greater amount of soil C in no-tillage
than conventional tillage systems.

Soils under tillage and no-tillage
management systems have different soil
properties. The stratification of no-tillage soil
properites occurs not only in the amount, but
also  the composition of soil organic matter
with depth. Cultivation reduces of total organic
C and microbial biomass (Groffman et al.,
1993). Several researchers have reported higher
microbial biomass C under no- tillage than
under conventional tillage (Franzluebbers and
Arshad. 1996: 1997 Meyer et al.. 1997). The
higher microbial biomass under no-tillage is a
result of greater quantities of labile C compared
with conventional tillage systems. Ajwa et al.
(1998) reported that cultivation practices may
also alter the distribution and type of
mineralizable C in the soil profile. Cultivation
translocates organic C and N to the subsurface
environment.

Conversion of land from plow tillage to
no-tillage management has a positive effect on
the quality of agricultural soil (Doran, 1980,
1987; Doran and Linn, 1994; McCarty at al.,
1995, McCarty and Meisinger, 1997). The
concept of soil quality as it relates to
agricultural use requires maintenance of soil
properties, such as soil C that are important for
soil fertility (Bezdicek et al., 1996). Some
studies have proposed that a simple measure of
soil organic matter, such as organic C and N, to
assess soil quality (Arshad and Coen, 1992), but
others have proposed that biological
parameters, such as biomass C and N, provide a
more sensitive  assessment  (Visser and
Parkinson, 1992).

Seil C Dynamics in Tallgrass Prairie
Ecosystem

The vegetation of a tallgrass prairie is
dommated by warm-scason grasses little
bluestem {(Schizachyrium scoparium [Michx. ]
Nash), blue grama (Bouteloua graciliis
HBK]| lagex Steud), Dbig bluestem
(Andropogon  gerardii), and indiangrass
(Sorghastrum nutans). These grasses can
produce large amounts of foliage depending on
precipitation (Knapp and Seastedt, 1986). In
undisturbed prairie, large amounts of detritus
can accummlate as dead vegetation or litter.
which may lower the primary production
becanse of the reduction of photosvnthetically
active radiation and soil temperature (Knapp.
1984). Fire removes the standing dead
vegetation and litter thus  elimnating
photosynthetic hmitation (Rice and Parent,
1978). Research in tallgrass prairic of Kansas
found imcreases in aboveground net primary
productivity with burning (Hobbs et al., 1991
Ojima et al., 1990: Ojima et al., 1994). Few
studies have examined the response of
belowground net primary productivity to fire.
Ojima et al. (1990) found a significant increase
in roots with annual burning with both long-
and short-term burning in tallgrass prairie.
Blair et al. (1998) also reported greater root
biomass in frequently burned tallgrass prairie
than unburned prairie.

Burning removes aboveground biomass in
the form of volatile gases. Ojima et al. (1990)
found that plant biomass C and N losses to
combustion ranged from 63 to 89 % per burn.
which represents net losses from the ecosystem.
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The increases in the frequency of burning
decreases N availability and tissue quality
compared to less frequently burned prairie
(Blair et al., 1998). Buming removes plant
canopy and litter and increases light and
temperature at the soil surface (Knapp, 1984;
Hulbert, 1988). The change in light intensity
and soil temperature will significantly affect
plant community, net primary productivity, and
nutrient availability.

Increases in soill temperature may
influence the rate of litter decomposition in
prairic. Ojima et al. (1994) modeled a short-
term response of burning as higher microbial C
and N and higher in situ net N mineralization
rates relative to unburned prairie. However,
sites that have been burmned for longer periods of
time (18 years) showed significant reductions m
microbial C and N and net N mineralization
rates (Burke et al.,, 1997). The reduction in
microbial activity could decrease aboveground
productivity.

Aboveground Productivity in Prairie and
Agricultural Ecosystems

Change in soil C levels partialty depends
on the amount of C returned to the soil as plant
residue. Some agricultural systems can return
more C as rvesidue than native prairie, bt
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