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SPECTRAL PROPERTIES OF THE SECOND ORDER
DIFFERENCE EQUATION WITH SELFADJOINT OPERATOR
COEFFICIENTS

GOKHAN MUTLU

ABSTRACT. In this paper, we consider the second order difference equation
defined on the whole axis with selfadjoint operator coefficients. The main
objective of this study is to obtain the continuous and discrete spectrum of the
discrete operator which is generated by this difference equation. To achieve
this, we first obtain the Jost solutions of this equation explicitly and then
examine the analytical and asymptotic properties of these solutions. With
the help of these properties, we find the continuous and discrete spectrum of
this operator. Finally we obtain a sufficient condition which ensures that this
operator has a finite number of eigenvalues.

1. INTRODUCTION

Difference equations play a very important role on modelling of problems re-
lated to physics, chemistry, biology, finance, economics, probability, engineering
etc. Difference equations also arise when approximating continuous models and
differential equations using numerical methods. Selfadjoint differential operators
such as Sturm-Liouville, Dirac and Klein-Gordon operators are used in functional
analysis and quantum mechanics and the spectral analysis of these operators have
been studied (see [14, [I7, [18]). There are also many studies on the spectral analy-
sis of both selfadjoint and non-selfadjoint discrete operators defined by difference
equations (see [Il [2, B] and references therein). Besides, spectral analysis of the
selfadjoint differential and difference equations with matrix coefficients are studied
in [6, 8, [T0]. In particular, in [4] the authors investigated the spectral properties of
the discrete operator generated by selfadjoint matrix-valued difference equation of
second order defined on the half-axis. Namely, they considered the discrete operator
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Ly generated by the difference equation with matrix coefficients
Anflynfl + B.Y, + AnYn+1 = )\ann € Nv (]-)

and the boundary condition Yy = 0, where 4, (n € NU{0}) and B, (n € N) are
m x m selfadjoint matrices (m < o), detA, # 0(n € NU{0}) and A is a spec-
tral parameter. The domain of this operator is denoted by Il (N,C™) which is
the Hilbert space of all vector sequences Y = (Y3,), oy such that Y;, € C™ and
>0 Y5 ? < oo. The inner product in I (N,C™) is defined as

oo
(K Z) = Z (Yna Zn) .
n=1
Note that Equation can be written in Sturm-Liouville form
A (AnflAYnfl) + QnYn = AY,,n €N,

where Q,, = A,_1+ A, + B, and A is the forward difference operator. The authors
obtained the continuous and discrete spectrum of Lg [4]. Further, in [7] the authors
considered the same difference equation with non-selfadjoint matrix coefficients
and examined the continuos spectrum, eigenvalues and spectral singularities of
the resulting non-selfadjoint discrete operator. They proved the finiteness of the
eigenvalues and spectral singularities of the operator under the condition

o0

S 0 (I = Aall + 1Bal) < .

n=1
Furthermore, in [5] the authors extended the results in [4] to the whole axis by
considering the Equation for n € Z. They obtained the Jost solutions of this
equation and also the discrete and continuous spectrum of the discrete operator
generated by this equation. They proved that the operator has a finite number of
eigenvalues and spectral singularities if the coefficients satisfy

oo

> Il (I = Anll + [|Ball) < oo.

Let H be a separable Hilbert space (dim H < oo) and Ls (Ry, H) denote the
space of vector-valued functions f(z) (0 < x < oo) which are strongly-integrable
in each finite subinterval of [0,00) such that [;* |f(2)]* dz < oo. Consider the
differential expression in Lo (R4, H)

(V) ==Y +Q(z)Y, 0 <z < oo, (2)

where Q(z) is a selfadjoint, completely continuous operator in H for each x €
(0,00). In [9, M2, I3| 5], the authors have studied the discrete spectrum of the
Sturm-Liouville operator [y generated by (2]) and the boundary condition ¥ (0) = 0.

In this paper, we consider the discrete analogue of the operator [y and call it
the discrete Sturm-Liouville operator which will be denoted by L hereafter. We
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investigate the spectral properties of the discrete Sturm-Liouville operator L on
the whole axis with selfadjoint operator coefficients. In particular, we find Jost
solutions of L and obtain the continuous and point spectrum of L. We also show
that L has a finite number of eigenvalues under a condition on the coefficients.

2. SOME PROPERTIES AND JOST SOLUTIONS OF THE OPERATOR L

In this section we specify the properties of the discrete Sturm-Liouville operator
on the whole axis. Let H be a separable Hilbert space and Hy = I3 (N, H) denote

the space of vector sequences ¥y = (Yn),cny (Yn € H, n € N ) such that [y, :=

o]
> ||yn||§{ < oo. H; is a Hilbert space with inner product

(yvz)l = Z (ynazn)H

Consider the difference expression in H;
l(y)n - An—lyn—l + Bnyn + Anyn-i-h n c Z7 (3)

where A, B, (n € Z) are selfadjoint operators in H and A,, — I, B, (n € Z) are
completely continuous operators in H. We also assume A,, is invertible for each
n € Z. We consider the operator L generated by . We can also define the
operator L by using the infinite Jacobi matrix

Bi7 =17

AL—17 L= .] + 17
()i = L

Am t=7— 17

0, otherwise

It is obvious that the operator L is selfadjoint in H;. We will examine the difference
equation

A’nflynfl + Bnyn + Anyn+1 == )\yn, n e N (4)
We shall also consider the equation
Ap 1Yo 1+ B,Y, + AnYnJrl = )\Ynz neN, (5)

where Y, is an operator sequence i.e, Y,, is an operator in H for each n € N.

Lemma 1. Every sequence of solutions of can be represented as an operator
sequence which satisfies (). Conversely, one can construct a sequence of vector
sequences which satisfies for a given operator solution of (@

Proof. Since H is a separable Hilbert space, there exists an orthonormal basis
(Um)men - SUpPpose vector sequences Y, = (y;n)Z ez satisfy Equation for each
m € N. We can construct an operator sequence Y = (Yn)nEZ such that Y, u,, =
(Ym)nez for every m € N. It is obvious that Y, um, = ym and Y satisfies the Equation

(-
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Conversely, suppose an operator sequence Y = (Y;,), ., satisfies . Let z,, :=
(Zm)nez = Yntp for every m € N. Then it is clear that z,, = (z},),c, satisfy
Equation for every m € N.

Note that from Lemma [I} we have one-to-one correspondence between the op-
erator solutions of Equation and sequences of solutions of Equation . Hence
we can consider and examine both equations.

Let us assume
o0

Y (= Al + 11Ball) < oe. (6)

n=—oo

Let E(z) := (En(2)),cz and F(2) := (F,(2)),,cz, denote the operator solutions of
the equation

1
Ap1Yn_1+ B Yo + AnYn+1 = (Z + Z) Y., n€Z, (7)

satisfying the conditions
lim E,(2)z7"=1, z€ Dy :={2€C: |z|] =1},
and
lim F,(2)z" =1, z € Dy,

n—oo

respectively. E(z) and F(z) are called the Jost solutions of Equation (7). Note
that these solutions are bounded.

Theorem 2. Under the condition (@), the solutions E(z) and F(z) exist and have
the representations

E.(2) = "I+
> T ) B (2) — BB () + (5 - AW B (2],
k=n-+1
F.(z) = z "I+
0 Zk+n _ Z—n—k
> =t (= Ar-1) Fiea(2) = BrFio(2) + (I = Ar) Fira (2)]-
k=—n-+1

Now, suppose that

oo

n=-—oo

holds.
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Theorem 3. Under the condition (§), the Jost solutions (E,(2)), (Fa(z)) (n € Z)
have the represantations ***F¥*xxEFdk kR xHHFK

Eu(z) = To2" |1+ Kn,mzm] , nez,
m=1
m=—1
Fu(2) = Rpz " |1+ Y mezm] , nez,
where Ty, Ry, Ky m and Ly, n, are obtained in terms of A, and B,,. Further

IKnmll <e > (= Al +Bpl),me Zy,

pen+ll %]

p=n+[| %]
ILnml <d > (=4l +IByl),meZ,

hold where ¢,d > 0 are constants. Thus, (E,(z)) and (F,(2)) have analytic contin-
uations from Dy to Dy :={z € C: |z| <1}\{0}.

Theorem 4. Under the condition (@, the Jost solutions satisfy the following as-
ymptotic relations for z € D :={z € C: |z| <1}\ {0}
E,(z)=2"[I+0(1)] , n — oo,
F.(z2)=2z""[I+0(1)] , n— —oc.
Remark 5. The proofs of above theorems are omitted since they are similar to the

matrixz coefficient case which have been obtained in [4l, [5].

3. CONTINUOUS AND DISCRETE SPECTRUM OF L

Let us introduce the equation
Yoo1An—1+ Y, By + Y14, = (24271 Y, neN. (9)
It can be shown similarly that equation @ has a solution H (2) := (H, (2)),cz

such that
lim H,(z)z" =1, z € Dy

holds. Indeed, the solution H (z) is the adjoint of the operator solution F (z) i.e.,
H, (2)=(F,(2)", n€Z.
Definition 6. Let U, and V,, be operator solutions of the Equations (@) and (@,
respectively. The Wronskian of U,, and V., is defined by

(W [Ua VDn = n—lAn—lUn - VnAn—lUn—l-

Lemma 7. Let U, be an operator solution of (@ and V, be an operator solution
of (@ Then, the Wronskian of these solutions is constant i.e., independent of n.
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Proof. We have the equalities
An—lUn—l + BnUn + AnUn+1 = (Z + Zﬁl) Un,

‘/n—lAn—l + Van + Vtrb-i-lAn = (Z + Z_l) Vn

If we multiply the first equality with V,, from the left and the second equality with
—U, from the right we get

ViAn-1Up—1 = Vi1 An1Upn + Vo AnUpia — Vi1 AnUy, = 0, (10)
by adding two equalities. Let H,, := (W [U,V]), = Vo1An_1Up — Vi Ap_1Up—1.
From , we have
AH,=H,1—H, =V, A Unv1 = Va1 AU — Vi1 A1 Un + Vi AU =0,
which implies W [U, V] is constant. O

From Lemma [7] it easily follows that
W E (z),H (2)] = Gy (2) AgF1 (2) — G1 (2) AgEo (2) .
Let us define T' (2) := W [E (2), H (z)] for z € D. T (z) is called the Jost function
of L. Now we obtain the continuous spectrum of L.
Theorem 8. Under the condition (@, the continuous spectrum of L is 0. (L) =
[—2,2].
Proof. Let Lo and Ly denote the operators generated in Hy = Iy (Z, H) by the
difference expressions
LO(y>n = Yn—1 + Yn+1, T € Z7
and
Ll(y)n = (An—l - I) Yn—-1 + Bnyn + (An - I) Yn41, N S Zv

respectively. We can also define the operators Ly and L; by using the infinite Jacobi

matrices
I, i1=j4+1lori=35—-1,
Jo).. =
(Jo)yy {0, otherwise,
and
Bi7 i = j)
Ai - I7 Z :.7 - la
(Jl)ij = .
A — 1, t=7+1,
0, otherwise
respectively. We have L = Lo + L1, Lo = L and o(Lg) = 0.(Lo) = [—2,2] (see

[19]). It is well known that L; is a compact operator iff Ly is bounded and the
set R = {Liy: ||ly|l; <1} is compact in H;. It is obvious that L; is bounded.
Moreover, if we use the compactness criteria in [, spaces (see [16] (p. 167)) we
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obtain the compactness of R. Indeed, let ||y||, < 1. Then (8) implies that for e > 0,
there exists ng€ N such that for n > ng
> €
A —1T B;l|) < =.
> (lIC M5B <

1=n-+1

Now we have

Szl

Z |(Aic1 — I)yi—1 + Biyi + (A; — I) yz‘HH?{

1=n+1 1=n+1
< > (It = DI lyima iy + 1Bl il + 1A = DI i)
1=n—+1
<l Y (A = DIP + 1B + (4 = DI
i=n+1
= 2 2
< > (20 - DI+ 18P
1=n+1
< Y (Gl = D)+ Ce || Bi)
1=n—+1
< Y =Dl + 1B
1=n—+1
< &,
where

1

Cr = gsup||[(Ai — D)ll, Gz =sup||Bi]
i€N ieN

and C = Cy + Cs. Thus, we proved Lq is a compact operator in H;. By Weyl

Theorem of Compact Perturbation [I1], we have

oe(L) = 0c(Lo) = [-2,2].
(|

Since the operator L is selfadjoint, all eigenvalues of L are real. Note that from
the definition of discrete spectrum and Theorem [§] we have

o4(L) C (=00, —2] U [2,00). (11)
Further, from the definition of eigenvalues we find

1
oq(L) = {)\ tA=z+ pei € (—-1,00U(0,1), T(z) is not invertible} .

Theorem 9. Under the condition (@, L has a finite number of eigenvalues.
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Proof. From (1)), it follows that the limit points of the set o4(L) could only be
+2,4+00. If A = 400 is a limit point of o4(L) then it implies that L is unbounded
operator which gives a contradiction. On the other hand, if A = 2 is a limit point of
o4(L) then there exists an eigenvalue in the neighbourhood [2 — ¢, 2) for sufficiently
small e > 0. From Theorem [8| we have o, (L) = [—2,2] and it is well known that
for a selfadjoint operator o4(L) ¢ o.(L). Hence there can’t be any eigenvalue
in [2 —¢,2) which means A = 2 is not a limit point of o4(L). Similarly, A = —2
can not be a limit point of o4(L). As a result, the set of eigenvalues has no limit
point and therefore should have a finite number of elements by Bolzano-Weierstrass
Theorem. (I
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