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SPECTRAL PROPERTIES OF THE SECOND ORDER
DIFFERENCE EQUATION WITH SELFADJOINT OPERATOR

COEFFICIENTS

GÖKHAN MUTLU

Abstract. In this paper, we consider the second order difference equation
defined on the whole axis with selfadjoint operator coeffi cients. The main
objective of this study is to obtain the continuous and discrete spectrum of the
discrete operator which is generated by this difference equation. To achieve
this, we first obtain the Jost solutions of this equation explicitly and then
examine the analytical and asymptotic properties of these solutions. With
the help of these properties, we find the continuous and discrete spectrum of
this operator. Finally we obtain a suffi cient condition which ensures that this
operator has a finite number of eigenvalues.

1. Introduction

Difference equations play a very important role on modelling of problems re-
lated to physics, chemistry, biology, finance, economics, probability, engineering
etc. Difference equations also arise when approximating continuous models and
differential equations using numerical methods. Selfadjoint differential operators
such as Sturm-Liouville, Dirac and Klein-Gordon operators are used in functional
analysis and quantum mechanics and the spectral analysis of these operators have
been studied (see [14, 17, 18]). There are also many studies on the spectral analy-
sis of both selfadjoint and non-selfadjoint discrete operators defined by difference
equations (see [1, 2, 3] and references therein). Besides, spectral analysis of the
selfadjoint differential and difference equations with matrix coeffi cients are studied
in [6, 8, 10]. In particular, in [4] the authors investigated the spectral properties of
the discrete operator generated by selfadjoint matrix-valued difference equation of
second order defined on the half-axis. Namely, they considered the discrete operator
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L0 generated by the difference equation with matrix coeffi cients

An−1Yn−1 +BnYn +AnYn+1 = λYn, n ∈ N, (1)

and the boundary condition Y0 = 0, where An (n ∈ N ∪ {0}) and Bn (n ∈ N) are
m × m selfadjoint matrices (m < ∞), detAn 6= 0 (n ∈ N ∪ {0}) and λ is a spec-
tral parameter. The domain of this operator is denoted by l2 (N,Cm) which is
the Hilbert space of all vector sequences Y = (Yn)n∈N such that Yn ∈ Cm and∑∞

n=1‖Yn‖2 <∞. The inner product in l2 (N,Cm) is defined as

(Y,Z) :=

∞∑
n=1

(Yn, Zn) .

Note that Equation (1) can be written in Sturm-Liouville form

∆ (An−1∆Yn−1) +QnYn = λYn, n ∈ N,
where Qn = An−1+An+Bn and ∆ is the forward difference operator. The authors
obtained the continuous and discrete spectrum of L0 [4]. Further, in [7] the authors
considered the same difference equation with non-selfadjoint matrix coeffi cients
and examined the continuos spectrum, eigenvalues and spectral singularities of
the resulting non-selfadjoint discrete operator. They proved the finiteness of the
eigenvalues and spectral singularities of the operator under the condition

∞∑
n=1

n (‖I −An‖+ ‖Bn‖) <∞.

Furthermore, in [5] the authors extended the results in [4] to the whole axis by
considering the Equation (1) for n ∈ Z. They obtained the Jost solutions of this
equation and also the discrete and continuous spectrum of the discrete operator
generated by this equation. They proved that the operator has a finite number of
eigenvalues and spectral singularities if the coeffi cients satisfy

∞∑
n=−∞

|n| (‖I −An‖+ ‖Bn‖) <∞.

Let H be a separable Hilbert space (dimH ≤ ∞) and L2 (R+, H) denote the
space of vector-valued functions f(x) (0 ≤ x < ∞) which are strongly-integrable
in each finite subinterval of [0,∞) such that

∫∞
0
|f(x)|2 dx < ∞. Consider the

differential expression in L2 (R+, H)

l0(Y ) = −Y
′′

+Q(x)Y, 0 < x <∞, (2)

where Q(x) is a selfadjoint, completely continuous operator in H for each x ∈
(0,∞) . In [9, 12, 13, 15], the authors have studied the discrete spectrum of the
Sturm-Liouville operator l0 generated by (2) and the boundary condition Y (0) = 0.

In this paper, we consider the discrete analogue of the operator l0 and call it
the discrete Sturm-Liouville operator which will be denoted by L hereafter. We
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investigate the spectral properties of the discrete Sturm-Liouville operator L on
the whole axis with selfadjoint operator coeffi cients. In particular, we find Jost
solutions of L and obtain the continuous and point spectrum of L. We also show
that L has a finite number of eigenvalues under a condition on the coeffi cients.

2. Some properties and Jost solutions of the operator L

In this section we specify the properties of the discrete Sturm-Liouville operator
on the whole axis. Let H be a separable Hilbert space and H1 = l2 (N, H) denote
the space of vector sequences y = (yn)n∈N (yn ∈ H, n ∈ N ) such that ‖y‖1 :=
∞∑

n=−∞
‖yn‖2H <∞. H1 is a Hilbert space with inner product

(y, z)1 =

∞∑
n=−∞

(yn, zn)H .

Consider the difference expression in H1

l(y)n = An−1yn−1 +Bnyn +Anyn+1, n ∈ Z, (3)

where An, Bn (n ∈ Z) are selfadjoint operators in H and An − I,Bn (n ∈ Z) are
completely continuous operators in H. We also assume An is invertible for each
n ∈ Z. We consider the operator L generated by (3). We can also define the
operator L by using the infinite Jacobi matrix

(J)ij =


Bi, i = j,

Ai−1, i = j + 1,

Ai, i = j − 1,

0, otherwise

It is obvious that the operator L is selfadjoint in H1.We will examine the difference
equation

An−1yn−1 +Bnyn +Anyn+1 = λyn, n ∈ N. (4)

We shall also consider the equation

An−1Yn−1 +BnYn +AnYn+1 = λYn, n ∈ N, (5)

where Yn is an operator sequence i.e, Yn is an operator in H for each n ∈ N.

Lemma 1. Every sequence of solutions of (4) can be represented as an operator
sequence which satisfies (5). Conversely, one can construct a sequence of vector
sequences which satisfies (4) for a given operator solution of (5).

Proof. Since H is a separable Hilbert space, there exists an orthonormal basis
(um)m∈N . Suppose vector sequences ym =

(
yim
)
i∈Z satisfy Equation (4) for each

m ∈ N. We can construct an operator sequence Y = (Yn)n∈Z such that Ynum =
(ynm)n∈Z for everym ∈ N. It is obvious that Ynum = ym and Y satisfies the Equation
(5).
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Conversely, suppose an operator sequence Y = (Yn)n∈Z satisfies (5). Let zm :=
(znm)n∈Z = Ynum for every m ∈ N. Then it is clear that zm = (znm)n∈Z satisfy
Equation (4) for every m ∈ N. �

Note that from Lemma 1, we have one-to-one correspondence between the op-
erator solutions of Equation (5) and sequences of solutions of Equation (4). Hence
we can consider and examine both equations.
Let us assume

∞∑
n=−∞

(‖I −An‖+ ‖Bn‖) <∞. (6)

Let E(z) := (En(z))n∈Z and F (z) := (Fn(z))n∈Z denote the operator solutions of
the equation

An−1Yn−1 +BnYn +AnYn+1 =

(
z +

1

z

)
Yn, n ∈ Z, (7)

satisfying the conditions

lim
n→∞

En(z)z−n = I, z ∈ D0 := {z ∈ C : |z| = 1} ,

and

lim
n→∞

Fn(z)zn = I, z ∈ D0,

respectively. E(z) and F (z) are called the Jost solutions of Equation (7). Note
that these solutions are bounded.

Theorem 2. Under the condition (6), the solutions E(z) and F (z) exist and have
the representations

En(z) = znI +
∞∑

k=n+1

zk−n − zn−k
z − z−1 [(I −Ak−1)Ek−1(z)−BkEk(z) + (I −Ak)Ek+1(z)] ,

Fn(z) = z−nI +
∞∑

k=−n+1

zk+n − z−n−k
z − z−1 [(I −Ak−1)Fk−1(z)−BkFk(z) + (I −Ak)Fk+1(z)] .

Now, suppose that

∞∑
n=−∞

|n| (‖I −An‖+ ‖Bn‖) <∞, (8)

holds.
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Theorem 3. Under the condition (8), the Jost solutions (En(z)) , (Fn(z)) (n ∈ Z)
have the represantations *********************

En(z) = Tnz
n

[
I +

∞∑
m=1

Kn,mz
m

]
, n ∈ Z,

Fn(z) = Rnz
−n

[
I +

m=−1∑
−∞

Ln,mz
−m

]
, n ∈ Z,

where Tn, Rn,Kn,m and Ln,m are obtained in terms of An and Bn. Further

‖Kn,m‖ ≤ c
∞∑

p=n+[|m2 |]
(‖I −Ap‖+ ‖Bp‖) ,m ∈ Z+,

‖Ln,m‖ ≤ d
p=n+[|m2 |]∑
−∞

(‖I −Ap‖+ ‖Bp‖) ,m ∈ Z−,

hold where c, d > 0 are constants. Thus, (En(z)) and (Fn(z)) have analytic contin-
uations from D0 to D1 := {z ∈ C : |z| < 1} \ {0} .

Theorem 4. Under the condition (8), the Jost solutions satisfy the following as-
ymptotic relations for z ∈ D := {z ∈ C : |z| ≤ 1} \ {0}

En(z) = zn [I + o(1)] , n→∞,
Fn(z) = z−n [I + o(1)] , n→ −∞.

Remark 5. The proofs of above theorems are omitted since they are similar to the
matrix coeffi cient case which have been obtained in [4, 5].

3. Continuous and discrete spectrum of L

Let us introduce the equation

Yn−1An−1 + YnBn + Yn+1An =
(
z + z−1

)
Yn, n ∈ N. (9)

It can be shown similarly that equation (9) has a solution H (z) := (Hn (z))n∈Z
such that

lim
n→∞

Hn(z)zn = I, z ∈ D0

holds. Indeed, the solution H (z) is the adjoint of the operator solution F (z) i.e.,
Hn (z) = (Fn (z))

∗
, n ∈ Z.

Definition 6. Let Un and Vn be operator solutions of the Equations (5) and (9),
respectively. The Wronskian of Un and Vn is defined by

(W [U, V ])n := Vn−1An−1Un − VnAn−1Un−1.

Lemma 7. Let Un be an operator solution of (7) and Vn be an operator solution
of (9). Then, the Wronskian of these solutions is constant i.e., independent of n.
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Proof. We have the equalities

An−1Un−1 +BnUn +AnUn+1 =
(
z + z−1

)
Un,

Vn−1An−1 + VnBn + Vn+1An =
(
z + z−1

)
Vn.

If we multiply the first equality with Vn from the left and the second equality with
−Un from the right we get

VnAn−1Un−1 − Vn−1An−1Un + VnAnUn+1 − Vn+1AnUn = 0, (10)

by adding two equalities. Let Hn := (W [U, V ])n = Vn−1An−1Un − VnAn−1Un−1.
From (10), we have

∆Hn = Hn+1−Hn = VnAnUn+1− Vn+1AnUn− Vn−1An−1Un + VnAn−1Un−1 = 0,

which implies W [U, V ] is constant. �

From Lemma 7 it easily follows that

W [E (z) , H (z)] = G0 (z)A0E1 (z)−G1 (z)A0E0 (z) .

Let us define T (z) := W [E (z) , H (z)] for z ∈ D. T (z) is called the Jost function
of L. Now we obtain the continuous spectrum of L.

Theorem 8. Under the condition (8), the continuous spectrum of L is σc (L) =
[−2, 2].

Proof. Let L0 and L1 denote the operators generated in H1 = l2 (Z, H) by the
difference expressions

L0(y)n = yn−1 + yn+1, n ∈ Z,
and

L1(y)n = (An−1 − I) yn−1 +Bnyn + (An − I) yn+1, n ∈ Z,
respectively. We can also define the operators L0 and L1 by using the infinite Jacobi
matrices

(J0)ij =

{
I, i = j + 1 or i = j − 1,

0, otherwise,

and

(J1)ij =


Bi, i = j,

Ai − I, i = j − 1,

Ai−1 − I, i = j + 1,

0, otherwise

respectively. We have L = L0 + L1, L0 = L∗0 and σ(L0) = σc(L0) = [−2, 2] (see
[19]). It is well known that L1 is a compact operator iff L1 is bounded and the
set R = {L1y : ‖y‖1 ≤ 1} is compact in H1. It is obvious that L1 is bounded.
Moreover, if we use the compactness criteria in lp spaces (see [16] (p. 167)) we
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obtain the compactness of R. Indeed, let ‖y‖1 ≤ 1. Then (8) implies that for ε > 0,
there exists n0∈ N such that for n ≥ n0

∞∑
i=n+1

(‖(Ai − I)‖+ ‖Bi‖) <
ε

C
.

Now we have
∞∑

i=n+1

‖(L1y)i‖
2
H

=

∞∑
i=n+1

‖(Ai−1 − I) yi−1 +Biyi + (Ai − I) yi+1‖2H

≤
∞∑

i=n+1

(
‖(Ai−1 − I)‖2 ‖yi−1‖2H + ‖Bi‖2 ‖yi‖2H + ‖(Ai − I)‖2 ‖yi+1‖2

)
≤ ‖y‖21

∞∑
i=n+1

(
‖(Ai−1 − I)‖2 + ‖Bi‖2 + ‖(Ai − I)‖2

)
≤

∞∑
i=n+1

(
2 ‖(Ai − I)‖2 + ‖Bi‖2

)
≤

∞∑
i=n+1

(C1 ‖(Ai − I)‖+ C2 ‖Bi‖)

≤
∞∑

i=n+1

C (‖(Ai − I)‖+ ‖Bi‖)

< ε,

where

C1 =
1

2
sup
i∈N
‖(Ai − I)‖ , C2 = sup

i∈N
‖Bi‖

and C = C1 + C2. Thus, we proved L1 is a compact operator in H1. By Weyl
Theorem of Compact Perturbation [11], we have

σc(L) = σc(L0) = [−2, 2] .

�

Since the operator L is selfadjoint, all eigenvalues of L are real. Note that from
the definition of discrete spectrum and Theorem 8 we have

σd(L) ⊂ (−∞,−2] ∪ [2,∞) . (11)

Further, from the definition of eigenvalues we find

σd(L) =

{
λ : λ = z +

1

z
, z ∈ (−1, 0) ∪ (0, 1) , T (z) is not invertible

}
.

Theorem 9. Under the condition (8), L has a finite number of eigenvalues.
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Proof. From (11), it follows that the limit points of the set σd(L) could only be
±2,±∞. If λ = ±∞ is a limit point of σd(L) then it implies that L is unbounded
operator which gives a contradiction. On the other hand, if λ = 2 is a limit point of
σd(L) then there exists an eigenvalue in the neighbourhood [2− ε, 2) for suffi ciently
small ε > 0. From Theorem 8 we have σc (L) = [−2, 2] and it is well known that
for a selfadjoint operator σd(L) * σc (L). Hence there can’t be any eigenvalue
in [2− ε, 2) which means λ = 2 is not a limit point of σd(L). Similarly, λ = −2
can not be a limit point of σd(L). As a result, the set of eigenvalues has no limit
point and therefore should have a finite number of elements by Bolzano-Weierstrass
Theorem. �
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