
Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.
Volume 69, Number 1, Pages 97—111 (2020)
DOI: 10.31801/cfsuasmas.561632
ISSN 1303—5991 E-ISSN 2618-6470

Available online: October 5, 2019

http://communications.science.ankara.edu.tr/index.php?series=A1

COMPACTNESS AND STABILITY IN DIFRAMES

ESRA KORKMAZ AND RIZA ERTÜRK

Abstract. The concept of diframe was introduced as a generalization of di-
topological texture spaces. The purpose of this paper is to present the results of
a study on the concepts of compactness and stability in the setting of diframes.
Further, the bitopological concepts of locally compactness and locally stability
are extended to diframes.

1. Introduction

The theory of bitopological spaces is based on the notion of open sets, and the
closed sets can be obtained easily by using the set complementation. As distinct
from bitopologies, a ditopological texture space is defined on a suitable subfamily of
subsets, which is not necessarily complemented. It can be considered as a structure
in which the open and closed sets play an equal role. Diframes were defined in
[1] as a generalization of ditopological texture spaces. Briefly, it is a 3-tuple L =
(Le, Lfr, Lcf ), where Le is both a frame and a coframe, Lfr ⊆ Le is a subset
closed under arbitrary joins and finite meets and Lcf ⊆ Le is a subset closed
under arbitrary meets and finite joins. As is well known, point-free topology has a
wide range of applications, including logic, topos theory and theoretical computer
science. The motivation behind the notion of diframe is to provide a point-free
perspective on the theory of ditopological texture spaces. We obtained a larger
family of lattices by weakening the property of complete distributivity. This paper
is self-contained but may also be considered as a continuation of the article [2],
in which we developed the diframe versions of the separation axioms and relations
between these axioms. In this study, we are interested in the notions of compactness,
stability, local compactness, local stability and their duals in diframes.
The present paper is divided into 5 sections. In Section 2, we present some nec-

essary preliminaries including the concept of compactness in ditopological texture
spaces and the separation axioms in diframes. Section 3 is devoted to the study
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of compactness and stability in diframes. The questions of whether these prop-
erties are hereditary, and whether they are preserved by any reasonable kind of
homomorphisms are discussed. As will be seen in the sequel, stability is a property
relating the frame Lfr and the coframe Lcf . Hence we replace compactness by
stability to obtain diframe versions of topological results relating separation ax-
ioms and compactness. In this section, we also give a generalization of Alexander
subbase theorem. In section 4, we define the concepts of locally compactness and
locally stability in terms of suitable binary relations. For bitopological versions of
these concepts, we refer the reader to the comprehensive paper of Kopperman [3].
As expected, the approach of Kopperman is based on the notion of neighbourhood
and hence it is dependent on points. Some of our results are parallel to those in [3]
but sometimes we need to impose some extra conditions. Finally, in Section 5, we
conclude the paper and discuss our future work.

2. Preliminaries

In this section, we briefly recall some definitions and results of ditopological
texture spaces, (co)frames and diframes which will be used throughout the paper.
We refer the reader to [4, 10] for details concerning lattice and frame theory and
[6, 7, 8] for details concerning ditopological texture spaces.
Ditopological Texture Spaces: Let S be a set and S be a subset of the powerset
P(S) with the following properties:

(1) (S,⊆) is a complete, completely distributive lattice containing S as a top
element and ∅ as a bottom element.

(2) S is point separating.
(3) Arbitrary meet coincides with intersection and finite joins coincide with

union in this lattice.

The pair (S, S) is known as a texture space.
A dichotomous topology, (briefly, ditopology) on a texture (S, S) is a pair (τ , κ)

of generally unrelated subsets of S satisfying

(T1) S, ∅ ∈ τ ,
(T2) G1, G2 ∈ τ ⇒ G1 ∩G2 ∈ τ ,
(T3) Gi ∈ τ , i ∈ I ⇒

∨
iGi ∈ τ ,

(CT1) S, ∅ ∈ κ,
(CT2) K1,K2 ∈ κ⇒ K1 ∪K2 ∈ κ,
(CT3) Ki ∈ κ, i ∈ I ⇒

⋂
iKi ∈ κ.

Loosely speaking, a ditopology is a structure in which the open and closed sets
play an equal role.
Galois Adjunctions: A pair of monotone functions f : L → M , g : M → L
between partially ordered sets is called Galois adjoint if the following condition is
satisfied for all x ∈ L and y ∈ M : f(x) ≤ y ⇔ x ≤ g(y). This fact is referred to
by saying that f is a left adjoint to g, or g is a right adjoint to f . Our notation
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for the adjoints is that of [10], that is, we will denote this adjunction by f = g∗ or
g = f∗.
One can show that a suprema (resp., infima) preserving map between complete

lattices has a right (resp., left) adjoint.
Let (f, g) be a Galois adjunction.

(1) If L and M are complete lattices, then f preserves finite joins and g pre-
serves finite meets.

(2) f is one-one if and only if g is onto.
(3) If f is onto, then fg = id, and if f is one-one, then gf = id.

Frames and coFrames A frame (resp., a coframe) is a complete lattice with the
property that binary meet (resp., join) distributes over arbitrary join (resp., meet)
and a frame (resp., a coframe) homomorphism is a function between frames (resp.,
a coframes) preserving arbitrary joins (resp., meets) and finite meets (resp., joins).
Denote by Frm the category of frames, and by Loc its opposite category. The

regular subobjects of objects of Loc, sublocales, have various kinds of characteri-
zations. Here we just recall two of them that we shall exploit in the sequel.
Let L be a frame and let S ⊆ L be a subset closed under arbitrary meets. Then

S is called a sublocale of L provided that (x → s) ∈ S for all s ∈ S and x ∈ L.
Similarly, if M is a coframe and S ⊆ M is a subset closed under arbitrary joins
then S is called a subcolocale of M if (s ← x) ∈ S for all s ∈ S and x ∈ M . Here,
“→”and “←”denote the Heyting and co- Heyting algebra operation, respectively.
A sublocale can also be represented by a nucleus which is a monotone, idempo-

tent, inflationary map preserving finite meets. Note that these two characterizations
of a sublocale are equivalent. According to [4], a sublocale S is said to be flat if it
is closed under finite joins, or equivalently, if vS preserves finite joins.
Dually, a conucleus t : M →M on a coframe M is a monotone, idempotent map

preserving finite joins and satisfying t(x) ≤ x for all x ∈ M . One can easily show
that for a given subcolocale S ⊆ M , tS(a) =

∨
{s ∈ S : s ≤ a} is a conucleus, and

conversely, for every conucleus t : M →M , t(M) is a subcolocale.
Diframes: A diframe is a 3-tuple L = (Le, Lfr, Lcf ) with the following conditions:

(1) Le is a complete lattice satisfying

x ∧ (
∨
Y ) =

∨
{x ∧ y : y ∈ Y } and x ∨ (

∧
Y ) =

∧
{x ∨ y : y ∈ Y }

for any x ∈ Le and any subset Y ⊆ Le.
(2) Lfr ⊆ Le is closed under arbitrary joins and finite meets.
(3) Lcf ⊆ Le is closed under arbitrary meets and finite joins.
Notice that Le is both a frame and a coframe, Lfr is a frame, and Lcf is a

coframe.

Example 2.1. Consider the family Ωreg(R) of regular open sets of (R, τs), where
τs is the usual topology on R. If Lfr = {(−∞, a) : a ∈ R}∪{∅,R} and Le = Lcf =
Ωreg(R) then L = (Le, Lfr, Lcf ) is a diframe.
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Let ϕ : Le → Me be a map preserving arbitrary join and finite meets and
satisfying ϕ[Lfr] ⊆ Mfr, and let ψ : Le → Me be a map preserving arbitrary
meets and finite joins and satisfying ψ[Lcf ] ⊆ Mcf . Then the pair (ϕ,ψ) is called
a diframe homomorphism.
Diframes and diframe homomorphisms form a category diFrm. The dual cate-

gory of diFrm is denoted by diLoc, and the objects of diLoc are referred to as
dilocales.
By a base of a diframe, we mean a subset β ⊆ Lfr such that for every a ∈ Lfr

there exists a βa ⊆ β with a =
∨
βa. Dually, a cobase is a subset β ⊆ Lcf such

that every k ∈ Lcf can be expressed as a meet of some elements of β.
A subset δ ⊆ Lfr (resp., δ ⊆ Lcf ) is called a subbase (resp., subcobase) of L if

the set of finite meets (resp., joins) of δ is a base (resp., cobase) of L.
A diframe homomorphism (ϕ,ψ) : (Le, Lfr, Lcf )→ (Me,Mfr,Mcf ) is called

(1) onto (resp., one-one) if both ϕ and ψ are onto (resp., one-one),
(2) open (resp., co- open) if ψ∗(a) ∈ Lfr (resp., ϕ∗(a) ∈ Lfr) for all a ∈Mfr,
(3) closed (resp., co- closed) if ψ∗(k) ∈ Lcf (resp., ϕ∗(k) ∈ Lcf ) for all k ∈Mcf .

Let us recall the non-full subcategory hdiFrm of diFrm introduced in [1]. The
objects of hdiFrm are diframes, and the morphisms are mappings ϕ : (Le, Lfr, Lcf )→
(Me,Mfr,Mcf ) preserving arbitrary meets and joins, and satisfying the properties
ϕ[Lfr] ⊆Mfr, ϕ[Lcf ] ⊆Mcf .
If ϕ is one-one and onto then the concept of openness (resp., closedness) coincides

with the concept of co- opennness (resp., co- closedness). A hdiFrm isomorphism
is an open, closed, one-one and onto hdiFrm morphism.
Recall that by a subdilocale of a diframe L, we mean a triple S = (Se, Sfr, Scf )

where Se ⊆ Le is both a sublocale and a subcolocale of Le, Sfr = vSe(Lfr) ⊆ Se
and Scf = tSe(Lcf ) ⊆ Se.
Note that Se ⊆ Le is obviously a flat sublocale, and hence the nucleus vSe

preserves finite joins. Similarly, by defining a co- flat subcolocale as subcolocale
closed under finite meets, we obtain that the co- nucleus tSe preserves finite meets.
In a diframe L = (Le, Lfr, Lcf ), we have the closure and interior of a ∈ Le given

by the formulas [a] =
∧
{c ∈ Lcf : a ≤ c} and ]a[=

∨
{b ∈ Lfr : b ≤ a}, respectively.

Now, we briefly present the separation axioms in diframes. A comprehensive
discussion on their basic properties, characterizations and the implications between
them can be found in our previous work [2].
A diframe L = (Le, Lfr, Lcf ) is called

(1) T0 if given a ∈ Le, there exist c
j
i ∈ Lfr ∪ Lcf , i ∈ I, j ∈ J such that

a =
∨
j∈J

∧
i∈I c

j
i ,

(2) co-T0 if given a ∈ Le, there exist cji ∈ Lfr ∪ Lcf , i ∈ I, j ∈ J such that
a =

∧
j∈J

∨
i∈I c

j
i ,

(3) R0 if every element of Lfr can be written as a supremum of some elements
of Lcf ,
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(4) co-R0 if every element of Lcf can be written as a infimum of some elements
of Lfr,

(5) R1 if for all a ∈ Lfr, a =
∨
j∈J

∧
i∈I c

j
i =

∨
j∈J

∧
i∈I [c

j
i ] where c

j
i ∈ Lfr,

(6) co- R1 if for all a ∈ Lcf , a =
∧
j∈J

∨
i∈I k

j
i =

∧
j∈J

∨
i∈I ]k

j
i [ where k

j
i ∈ Lcf .

Recall the following relations defined on Le. LetD = {k/2n : k, n ∈ N, k = 0, . . . 2n}
denote the set of dyadic rationals.

(1) a ≺fr b, if a, b ∈ Lfr and if there exists c ∈ Lcf such that a ≤ c ≤ b.
(2) f ≺cf k, if f, k ∈ Lcf and if there exists a ∈ Lfr such that f ≤ a ≤ k.
(3) a ≺≺fr b if a, b ∈ Lfr and if there exists aq ∈ Lfr with q ∈ D and satisfying

a0 = a, a1 = b, and aq ≺fr ar if q < r.

(4) k ≺≺cf f if k, f ∈ Lcf and if there exist kq ∈ Lcf with q ∈ D and satisfying

k0 = k, k1 = f, and kq ≺cf kr if q < r.

A diframe L = (Le, Lfr, Lcf ) is called

(1) regular if a =
∨
{x ∈ Lfr : x ≺fr a} for all a ∈ Lfr,

(2) co- regular if c =
∧
{x ∈ Lcf : c ≺cf x} for all c ∈ Lcf ,

(3) completely regular if a =
∨
{x ∈ Lfr : x ≺≺fr a} for all a ∈ Lfr,

(4) completely co- regular if c =
∧
{x ∈ Lcf : c ≺≺cf x} for all c ∈ Lcf ,

(5) normal if for any c ∈ Lcf and a ∈ Lfr such that c ≤ a there exists b ∈ Lfr
with c ≤ b ≤ [b] ≤ a.

Finally, we recall the definition of a Urysohn relation given in [9]: A Urysohn
relation on a partially ordered set (L,≤) is a binary relation C satisfying

(U1) If aC b then a ≤ b,
(U2) a ≤ bC c ≤ d implies aC d ,
(U3) aC b implies the existence of c ∈ L with aC cC b.
As was shown in [2], a diframe is completely regular if and only if there exists a

Urysohn relation C on Le with the following conditions:
(1) aC b implies [a] ≤]b[,
(2) a =

∨
{x ∈ Lfr : xC a} for every a ∈ Lfr.

3. Compactness and Stability in Diframes

The notion of compactness for bitopological spaces has several versions in the
literature. By adopting the definiton of Kopperman [3], Brown and Diker [6] gener-
alized the notion of compactness to ditopological texture spaces. It was also studied
by Brown and Gohar [7]. Here, we extend this concept to a broader setting.

Definition 3.1. Let L = (Le, Lfr, Lcf ) be a diframe and a ∈ Le. Then a subset
G ⊆ Lfr is called a cover of a if a ≤

∨
G. A subset K of Lcf is said to be a co-

cover of a if
∧
K ≤ a.

Definition 3.2. Let L = (Le, Lfr, Lcf ) be a diframe and a ∈ Le.
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(1) a is called compact (resp., Lindelöf) if for every cover G of a, there is a
finite (resp., countable) H ⊆ G such that a ≤

∨
H.

(2) a is called co- compact (resp., co- Lindelöf) if for every co- cover K of a,
there is a finite (resp., countable) F ⊆ K such that

∧
F ≤ a.

(3) L is compact if the top element 1 ∈ Le is compact, and it is Lindelöf if
1 ∈ Le is Lindelöf.

(4) L is co- compact if the bottom element 0 ∈ Le is co- compact, and it is
called co- Lindelöf if 0 ∈ Le is co- Lindelöf.

Note that for each property P, L = (Le, Lfr, Lcf ) is said to be bi- P if it is P and
co-P.

Remark 3.3. Obviously, (co-)compact implies (co-)Lindelöf but the reverse im-
plication is not necessarily true. If X is a countable set, Le = Lfr = P(X) and
Lcf = {X, ∅} then the diframe L = (Le, Lfr, Lcf ) is Lindelöf but not compact.

Proposition 3.4. Every subdilocale of a compact (resp., co- compact) diframe is
compact (resp., co- compact).

Proof. It is clear since 1Se = 1Le and Se ⊆ Le is closed under arbitrary suprema. �

Lemma 3.5. Let L = (Le, Lfr, Lcf ), M = (Me,Mfr,Mcf ) be diframes, and let
(ϕ,ψ) : L → M be a one-one, onto diframe homomorphism. Then the following
statements hold:

(1) If (ϕ,ψ) is an open (resp., co- open) homomorphism, then for all b ∈Mfr

there exists a ∈ Lfr such that ψ(a) = b (resp., ϕ(a) = b).
(2) If (ϕ,ψ) is a closed (resp., co- closed) homomorphism, then for all k ∈Mcf

there exists f ∈ Lcf such that ψ(f) = k (resp., ϕ(f) = k).

Proof. (1) Suppose that (ϕ,ψ) : Le → Me is a one-one, onto, open diframe homo-
morphism and b ∈ Mfr. Since ψ is onto, there is an a ∈ Le with ψ(a) = b. On
the other hand, ψ being one-one yields ψ∗ψ = 1Le , and hence ψ

∗ψ(a) = a = ψ∗(b).
Since (ϕ,ψ) is open, a = ψ∗(b) ∈ Lfr.
The remaining assertions can be proved similarly. �

Proposition 3.6. Suppose L = (Le, Lfr, Lcf ) andM = (Me,Mfr,Mcf ) are diframes
and (ϕ,ψ) : L→M is a one-one, onto diframe homomorphism.

(1) If (ϕ,ψ) : L→M is co- open then L is compact iff M is compact.
(2) If (ϕ,ψ) : L→M is closed then L is co- compact iff M is co- compact.

Proof. (1) Let L be a compact diframe and B ⊆ Mfr be a cover of 1Me
. By

Lemma 3.5, for each bi ∈ B, there is an ai ∈ Lfr with ϕ(ai) = bi. Since ϕ(1Le) =
1Me =

∨
i∈I ϕ(ai) = ϕ(

∨
i∈I ai) and ϕ is one-one, we have 1Le =

∨
i∈I ai. Now,

compactness of L gives k1, . . . , kn ∈ I such that 1Le =
∨n
k=1 aik . Applying the map
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ϕ to both sides of the equation gives

1Me = ϕ(1Le) = ϕ(

n∨
k=1

aik) =

n∨
k=1

ϕ(aik) =

n∨
k=1

bik

and hence M is compact.
Conversely, suppose M is compact and A = {ai : i ∈ I} ⊆ Lfr is a cover of

1Le , that is, 1Le =
∨
i∈I ai. Since ϕ preserves arbitrary joins, we have ϕ(1Le) =

1Me = ϕ(
∨
i∈I ai) =

∨
i∈I ϕ(ai). Then, by compactness of M , there is a finite

subset {aik : k = 1, . . . , n} of A such that

ϕ(1Le) = 1Me =

n∨
k=1

ϕ(aik) = ϕ(

n∨
k=1

aik).

Thus, ϕ being one-one implies 1Le =
∨n
k=1 aik , and hence L is compact. �

We now give a generalization of Alexander subbase theorem, the proof of which
runs as the same as the one given in [7].

Theorem 3.7. Let L = (Le, Lfr, Lcf ) be a diframe and δ be a subbase (resp.,
subcobase) of L. Then L is compact (resp., co- compact) if and only if for every
cover (resp., co- cover) A ⊆ δ there exists a finite cover (resp., co- cover) B ⊆ A.

Proof. We just give the sketch of the proof. As we mentioned before, the idea
repeats that of [7, Theorem 2.14].
The implication “⇒” is clear by definition of compactness. For the reverse

implication, assume that A ⊆ Lfr is a subset such that no finite subset of A covers
1. We claim that A is not a cover of 1. Now let G be the collection of all subsets
B ⊆ Lfr such that A ⊆ B, and B has no finite subset covering 1. Then (G,⊆) is
a poset and it has a maximal element H by Zorn’s Lemma. Moreover, H satisfies
the properties given below:

(1) Given any a ∈ Lfr with a /∈ H, there exists {ai : 1 ≤ i ≤ n} ⊆ H such that
a ∨ (

∨n
i=1 ai) = 1.

(2) For every subset {ai : ai /∈ H, 1 ≤ i ≤ n} ⊆ Lfr we have
∧n
i=1 ai /∈ H.

(3) For every subset C = {ai : 1 ≤ i ≤ n} of Lfr and every b ∈ H with∧n
i=1 ai ≤ b, there exists an aj ∈ C such that aj ∈ H.

We also know that no finite subset of δ ∩H covers 1 since δ ∩H ⊆ H. By using
the properties (1) − (3), we see that

∨
H =

∨
(δ ∩ H). Now, if H is a cover of 1

then
∨

(δ ∩H) = 1, which contradicts with the assumption. Thus H, and hence A,
is not a cover of 1. �

As can be easily seen from the definitions, (co-) compactness is not a property
relating Lfr and Lcf . Thus we need the following concepts that relate the frame
Lfr and the coframe Lcf .

Definition 3.8. Let L = (Le, Lfr, Lcf ) be a diframe. Then L is called
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(1) stable if every element of Lcf other than 1 is compact,
(2) co- stable if every 0 6= a ∈ Lfr is co- compact,

Example 3.9. Consider the the diframe L = (Le, Lfr, Lcf ) of Example 2.1.
(1) L is not compact since the cover {(−∞, a+ n) : n ∈ N} of R does not have

a finite subset covering R. Further, L is not co- compact. Indeed, the co-
cover {(a− 1

n , a+ 1
n ) : n ∈ N} of 0Le = ∅ proves our claim.

(2) L is not co- stable. Indeed, for any (−∞, b) ∈ Lfr, we have∧
n∈N

(a, b+
1

n
) = int

( ⋂
n∈N

(a, b+
1

n
)
)

= int(a, b] = (a, b) ⊆ (−∞, b)

but there is no finite F ⊆ {(a, b + 1
n ) : n ∈ N} such that

∧
F ⊆ (−∞, b).

(Here, “int”denotes the interior operator.) Moreover, one can easily show
that L is not stable.

The following example shows that compactness does not imply stability, and vice
versa.

Example 3.10. (1) Let Ω(R) be the open set lattice of countable comple-
ment topology on R. If Le = P(R), Lfr = Ω(R) and Lcf = {∅,R} then
(Le, Lfr, Lcf ) is a stable, non-compact diframe.

(2) Let I be the unit interval equipped with the usual topology. If Lfr =
Ω(I) and Lcf = {∅, [0, 12 ), I}, then the diframe (P(I), Lfr, Lcf ) is obviously
compact. But it is not stable since the element [0, 12 ) ∈ Lcf is not compact.
Indeed, the cover

{
[0, 12 −

1
n ) : n ≥ 2, n ∈ N

}
proves our claim.

The bitopological version of the next proposition was proved in [3]. In our case,
we shall impose a stronger condition on diframe L′ because of the lack of complete
distributivity in diframes. We replace the property of being R0 by that of being
regular. Here, it is worth reminding the reader that our R0 and R1 are given,
respectively, as pseudo-Hausdorff (pH) and weak symmetry (ws) in [3].

Proposition 3.11. If L = (Le, Lfr, Lcf ) is a co- R0, stable diframe and L′ =
(Le, Lfr, Lcf

′) is regular, then Lcf ⊆ Lcf ′. Dually, if L = (Le, Lfr, Lcf ) is R0, co-
stable and L′ = (Le, Lfr

′, Lcf ) is co- regular then Lfr ⊆ Lfr ′.

Proof. Let k ∈ Lcf . The case k = 1 being obvious, we assume k 6= 1. Since
L is co- R0, there exist ai ∈ Lfr such that k =

∧
i∈I ai. By regularity of L′,

ai =
∨
j∈J{xij ∈ Lfr : xij ≺fr ai}. Moreover, xij ≺fr ai implies the existence of

kij ∈ Lcf ′ such that xij ≤ kij ≤ ai. Now we have k ≤
∨
j∈J xij for all i ∈ I, and

hence by stability of L, there is a finite J0 ⊆ J with k ≤
∨
j∈J0 xij ≤

∨
j∈J0 kij .

Thus,
k ≤

∧
i∈I

∨
j∈J0

kij ≤
∧
i∈I

ai ≤ k

and hence k =
∧
i∈I
∨
j∈J0 kij ∈ Lcf

′.
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The dual statement can be proved in a dual manner. �
The property of being R0 (resp., co- R0) is generally not inherited by subdilocales

but it is hereditary if the diframe is co- stable (resp., stable):

Proposition 3.12. Every subdilocale of a (co-)stable diframe is (co-)stable.

Proof. Obvious, since the joins in S coincide with the joins in L. �
The following two propositions establish the connection between (co-)stability

and separation axioms.

Proposition 3.13. Every stable regular diframe is normal. Dually, every co- stable
co- regular diframe is normal.

Proof. Let c ≤ a for some c ∈ Lcf , a ∈ Lfr. We assume a 6= 1 since the case a = 1
is trivial. By regularity, c ≤ a =

∨
i∈I{xi ∈ Lfr : xi ≺fr a}. Since 1 6= c ∈ Lcf

is a compact element by stability of L, we have c ≤
∨n
i=1{xi ∈ Lfr : xi ≺fr a}.

If xi ≺fr a there exists a ki ∈ Lcf such that xi ≤ ki ≤ a. Thus, by setting
b =

∨n
i=1]ki[ we obtain

c ≤
n∨
i=1

xi ≤ b and [b] =
[ n∨
i=1

]ki[
]
≤
[ n∨
i=1

ki
]
≤

n∨
i=1

ki ≤ a.

�
Proposition 3.14. (1) A R1 co- stable diframe is regular.

(2) A co- R1 stable diframe is co- regular.

Proof. (1) Suppose that L is a R1, co- stable diframe, and take any a ∈ Lfr.
The case a = 0 is trivial, so let a 6= 0. By R1, a ∈ Lfr can be expressed as
a =

∨
i∈I
∧
j∈J c

j
i =

∨
i∈I
∧
j∈J [cji ] for c

j
i ∈ Lfr. Since, for all i,

∧
j∈J [cji ] ≤ a and L

is co- stable, there is a finite subset J0 ⊆ J of indices such that
∧
j∈J0 [c

j
i ] ≤ a. Set

xi =
∧
j∈J0 c

j
i for all i ∈ I. Then

∧
j∈J0 c

j
i ≤

∧
j∈J0 [c

j
i ] ≤ a and

∧
j∈J0 [c

j
i ] ∈ Lcf ,

and hence xi ≺fr a for all i ∈ I. Therefore,∨
i∈I

∧
j∈J0

cji ≤ a ≤
∨
i∈I

∧
j∈J

cji ≤
∨
i∈I

∧
j∈J0

cji

that is, a =
∨
i∈I{xi ∈ Lfr : xi ≺fr a}, which shows that L is regular.

The proof of (2) can be done similarly. �
Corollary 3.15. Every R1 (resp., co- R1) bi- stable (i.e., stable and co- stable)
diframe is normal.

Proof. L is regular by Proposition 3.14 and hence the statement follows from Propo-
sition 3.13. �
We end this section by discussing the preservation of (co-)stability under certain

morphisms.
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Proposition 3.16. Let (ϕ,ψ) : (Le, Lfr, Lcf )→ (Me,Mfr,Mcf ) be an onto, one-
one diframe homomorphism.

(1) If (ϕ,ψ) is a co- open, co- closed homomorphism and L is stable then M
is stable.

(2) If (ϕ,ψ) is an open, closed homomorphism and L is co- stable then M is
co- stable.

Proof. Suppose that L is stable, 1Me
6= k ∈ Mcf and {bi : i ∈ I} ⊆ Mfr is a cover

of k. By Lemma 3.5, there exists 1Le 6= f ∈ Lcf with ϕ(f) = k and ai ∈ Lfr with
ϕ(ai) = bi for all i ∈ I. Then we have ϕ(f) ≤

∨
i∈I ϕ(ai) = ϕ(

∨
i∈I ai), and hence

ϕ∗ϕ(f) ≤ ϕ∗ϕ(
∨
i∈I ai) since ϕ∗ is an order preserving map. Now, ϕ being onto

implies ϕ∗ϕ(f) = id, and hence, by stability of L, we have f ≤
∨n
k=1 aik . Thus we

obtain

ϕ(f) ≤ ϕ(

n∨
k=1

aik) =

n∨
k=1

ϕ(aik) =

n∨
k=1

bik

which shows that M is stable. �
Proposition 3.17. Let M be a stable (resp., co- stable) diframe and ϕ : L → M
be a one-one hdiFrm morphism. Then L is a stable (resp., co- stable) diframe.

Proof. Suppose that M is stable. Take any element 1Le 6= f ∈ Lcf and any cover
{ai ∈ Lfr : i ∈ I} of f . Then ϕ(f) ≤ ϕ(

∨
i∈I ai) =

∨
i∈I ϕ(ai). Since 1Me

6= ϕ(f) ∈
Mcf and ϕ(ai) ∈ Mfr for all i ∈ I, stability of M gives ϕ(f) ≤

∨n
k=1 ϕ(aik) =

ϕ(
∨n
k=1 aik). Thus, applying ϕ∗ on both sides we obtain f ≤

∨n
k=1 aik . �

4. Locally Compact Diframes

In this section, we introduce two main concepts, that of locally compactness and
locally stability in diframes. As pointed out in the introduction, their bitopological
versions use the notion of neighbourhood which is a point-based structure. Hence,
we first define the following binary relations on Le.

Definition 4.1. Let L = (Le, Lfr, Lcf ) be a diframe and x, y ∈ Le. Then,
(1) x�c y iff there exists a compact k ∈ Le with x ≤ k ≤ y.
(2) x�cc y iff there exists a co- compact a ∈ Le with x ≤ a ≤ y.
(3) x�s y iff there exists a compact k ∈ Lcf with x ≤ k ≤ y.
(4) x�cs y iff there exists a co- compact a ∈ Lfr with x ≤ a ≤ y.

Remark 4.2. It is an immediate consequence of the definitions that x�s y implies
x �c y for x, y ∈ Le and x �s y implies x ≺fr y for x, y ∈ Lfr. On the other
hand, it is obvious that x ∈ Le is compact (resp., co- compact) iff x �c x (resp.,
x �cc x), and in particular, L is compact (resp., co- compact) iff 1 �c 1 (resp.,
0�cc 0).

Note that the following concepts have no counterparts in the theory of ditopo-
logical texture spaces.
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Definition 4.3. A diframe L is called

(1) locally compact if a =
∨
{x ∈ Lfr : x�c a} for all a ∈ Lfr,

(2) locally co- compact if k =
∧
{x ∈ Lcf : k �cc x} for all k ∈ Lcf ,

(3) locally stable if a =
∨
{x ∈ Lfr : x�s a} for all a ∈ Lfr,

(4) locally co- stable if k =
∧
{x ∈ Lcf : k �cs x} for all k ∈ Lcf .

Example 4.4. The diframe in Example 2.1 is neither locally compact nor locally
co- compact.

Proposition 4.5. Each subdilocale of a locally (co-) compact diframe is locally
(co-) compact.

Proof. Let S be a subdilocale of a locally compact diframe L and let a ∈ Sfr. Then,
a =

∨
{x ∈ Lfr : x �c a}. If x �c a, then there is a compact k ∈ Le satisfying

x ≤ k ≤ a, and then vSe(x) ≤ vSe(k) ≤ vSe(a) = a by monotonicity of vSe . Thus,
it suffi ces to show that vSe(k) is compact, which yields

a =
∨
{vSe(x) ∈ Sfr : vSe(x)�c a}

and completes the proof.
Let {bi ∈ Sfr : i ∈ I} be a cover of vSe(k), that is, k ≤ vSe(k) ≤

∨
i∈I bi. By

compactness of k, we obtain a finite I0 ⊆ I with k ≤
∨
i∈I0 bi. Hence, applying the

nucleus vSe and using the fact that Se is a flat sublocale yield

vSe(k) ≤ vSe(
∨
i∈I0

bi) =
∨
i∈I0

vSe(bi) =
∨
i∈I0

bi

Thus, vSe(k) is compact. �

Proposition 4.6. A (co-)regular, (co-)stable, (co-)compact diframe is locally (co-)
stable.

Proof. Let a ∈ Lfr. The case a = 1 is clear by compactness of L. So, assume that
a 6= 1. Then, by regularity, a ∈ Lfr can be writen as a =

∨
{x ∈ Lfr : x ≺fr a}. If

x ≺fr a then there exists a k ∈ Lcf with x ≤ k ≤ a. Moreover, k 6= 1 since k ≤ a
and a 6= 1. Hence, k is compact since L is a stable diframe. Thus we obtain x�s a
and

a ≤
∨
{x ∈ Lfr : x ≺fr a} ≤

∨
{x ∈ Lfr : x�s a} ≤ a

which shows that L is locally stable.
The dual proof is analogous. �

Proposition 4.7. Let L be a diframe.

(1) L is locally stable iff it is regular and locally compact.
(2) L is locally co- stable iff it is co- regular and locally co- compact.
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Proof. (1) The suffi ciency is immediate by Remark 4.2. Thus, we only prove the
necessity.
Suppose that L is a regular and locally compact diframe and take an arbitrary

a ∈ Lfr. Then a ∈ Lfr can be expressed as a =
∨
{x ∈ Lfr : x �c a}. Further, if

x�c a then there exists a compact k ∈ Le such that x ≤ k ≤ a.
Claim 1: [k] ≤ a.
By regularity of L, we have k ≤ a =

∨
i∈I{xi ∈ Lfr : xi ≺fr a}. If xi ≺fr a,

then there is an fi ∈ Lcf such that xi ≤ fi ≤ a. Hence, there exists a finite I0 ⊆ I
with k ≤

∨
i∈I0 xi ≤

∨
i∈I0 fi ≤ a by compactness of k. Thus, we obtain

[k] ≤ [
∨
i∈I0

fi] =
∨
i∈I0

[fi] =
∨
i∈I0

fi ≤ a

Claim 2: [k] ∈ Lcf is a compact element.
Let {ai ∈ Lfr : i ∈ I} be a cover of [k]. By regularity of L, each ai can be

expressed as ai =
∨
j∈I{xij ∈ Lfr : xij ≺fr ai}. If xij ≺fr ai then there is an fij ∈

Lcf with xij ≤ fij ≤ ai. Moreover, the expression k ≤
∨
i∈I ai =

∨
i∈I
∨
j∈I xij ,

together with the fact that k is compact, implies the existence of finite subsets
I0 ⊆ I and J0 ⊆ J such that k ≤

∨
i∈I0

∨
j∈J0 xij . Therefore,

[k] ≤
∨
i∈I0

∨
j∈J0

[xij ] ≤
∨
i∈I0

∨
j∈J0

fij ≤
∨
i∈I0

ai

and hence [k] is compact.
Now we can conclude that, in a regular diframe, x ≤ k ≤ a and k being compact

imply x ≤ [k] ≤ a and [k] is compact. Thus,

a =
∨
{x ∈ Lfr : x�c a} =

∨
{x ∈ Lfr : x�s a}

and hence L is locally stable. �

Proposition 4.8. Every locally (co-)stable diframe is completely (co-)regular.

Proof. Let L be a locally stable diframe. We claim that the relation

aC b if there exists a compact k ∈ Le such that [a] ≤ k ≤]b[

is a Urysohn relation satisfying the following properties:
(1) aC b implies [a] ≤]b[,
(2) for every a ∈ Lfr, a =

∨
{x ∈ Lfr : xC a}.

(U1) and (U2) are obvious by definition of the given relation.
For (U3), let a C b. Then there exists a compact k ∈ Le with [a] ≤ k ≤]b[ and

further, by locally stability of L, ]b[=
∨
i∈I{ci ∈ Lfr : ci �s]b[}. But then there

exists a finite subset I0 ⊆ I of indices such that k ≤
∨
i∈I0 ci since k is compact.

Moreover, ci �s]b[ implies that there exists a compact ki ∈ Lcf with ci ≤ ki ≤]b[.
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Now set d =
∨
i∈I0 [ci]. We have,

[a] ≤ k ≤
∨
i∈I0

ci ≤
] ∨
i∈I0

ci
[
≤
] ∨
i∈I0

[ci]
[

=]d[

and hence aC d. On the other hand,

[d] =
∨
i∈I0

[ci] ≤
∨
i∈I0

ki ≤]b[

and
∨
i∈I0 ki is compact since ki is compact for all i ∈ I0. Hence we have dC b.

Now it remains to show the properties (1) and (2). The first one is clear by
definition. For (2), let a ∈ Lfr. Then by locally stability of L, it can be written
as a =

∨
{x ∈ Lfr : x �s a}. If x �s a then there is a compact k ∈ Lcf with

x ≤ k ≤ a and hence [x] ≤ k ≤ a =]a[. Thus,

a =
∨
{x ∈ Lfr : x�s a} ≤

∨
{x ∈ Lfr : xC a} ≤ a

that is, a =
∨
{x ∈ Lfr : xC a}. �

Proposition 4.9. Let L = (Le, Lfr, Lcf ), M = (Me,Mfr,Mcf ) be diframes and
(ϕ,ψ) : L → M be a one-one, onto diframe homomorphism. Then the following
statements hold:

(1) If (ϕ,ψ) is co- open then L is locally compact iff M is locally compact.
(2) If (ϕ,ψ) is closed then L is locally co- compact iff M is locally co- compact.

Proof. (1) Suppose that L is locally compact and take any b ∈ Mfr. First, by
Lemma 3.5, there is an a ∈ Lfr such that ϕ(a) = b and it can be expressed as
a =

∨
{x ∈ Lfr : x�c a} by locally compactness of L. If x�c a then there exist a

compact k ∈ Le with x ≤ k ≤ a. Then, ϕ(x) ≤ ϕ(k) ≤ ϕ(a) = b since ϕ preserves
order.
Now we claim that ϕ(k) is compact. Let {bi ∈ Mfr : i ∈ I} be an arbitrary

cover of ϕ(k). Then, for every i ∈ I there exists ai ∈ Lfr such that ϕ(ai) = bi, and
hence

ϕ(k) ≤
∨
i∈I

bi =
∨
i∈I

ϕ(ai) = ϕ(
∨
i∈I

ai).

Applying the map ϕ∗ and then using the compactness of k, we get k ≤
∨n
k=1 aik .

Thus,

ϕ(k) ≤ ϕ(

n∨
k=1

aik) =

n∨
k=1

ϕ(aik) =

n∨
k=1

bik

and hence ϕ(k) is compact.
Now, using the claim it is easy to see that

b = ϕ(a) =
∨
{ϕ(x) ∈Mfr : ϕ(x)�c b}

which means that M is locally compact.
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Conversely, assume that M is locally compact. Given any a ∈ Lfr, ϕ(a) ∈Mfr

and hence we have ϕ(a) =
∨
{y ∈ Mfr : y �c ϕ(a)}. Moreover, for each y ∈ Mfr,

there is an x ∈ Lfr such that ϕ(x) = y. If ϕ(x) �c ϕ(a) then there exists a
compact k ∈ Me with ϕ(x) ≤ k ≤ ϕ(a). Now we obtain x ≤ ϕ∗(k) ≤ a. We can
easily show that ϕ∗(k) is compact. Thus a =

∨
{x ∈ Lfr : x�c a}.

The second one can be proved in a similar manner. �

Proposition 4.10. Let (ϕ,ψ) : (Le, Lfr, Lcf )→ (Me,Mfr,Mcf ) be an onto, one-
one diframe homomorphism.

(1) If (ϕ,ψ) is a co- open, co- closed diframe homomorphism and M is locally
stable then L is locally stable.

(2) If (ϕ,ψ) is an open, closed diframe homomorphism and M is locally co-
stable then L is locally co- stable.

Proof. (2) Assume thatM is locally co- stable and take an arbitrary f ∈ Lcf . Then
we have ψ(f) ∈ Mcf and it can be written as ψ(f) =

∧
{y ∈ Mcf : ψ(f) �cs y}.

For all y, there is an x ∈ Lcf with ψ(x) = y, and if ψ(f) �cs ψ(x) then we have
a co- compact b ∈ Mfr such that ψ(f) ≤ b ≤ ψ(x). Moreover, for b ∈ Mfr, there
is an a ∈ Lfr with ψ(a) = b. As in the previous proof, one can see that a ∈ Lfr
is co- compact. Thus, we obtain f =

∧
{x ∈ Lcf : f �cs x}, which completes the

proof. �

Proposition 4.11. The image of a locally stable (resp., locally co- stable) diframe
under a one-one, onto, open (resp., closed) hdiFrm morphism is locally stable (resp.,
locally co- stable).

Proof. This can be proved easily in a similar way used in the proof of the previous
propositions. �

5. Conclusion

In this paper we have introduced the concept of compactness in diframes. Then
we have defined stable, locally compact and locally stable diframes and investigated
the relations between separation axioms and these properties. As a future work,
other topological and bitopological structures such as paracompactness, connect-
edness and uniformities etc. can be constructed on diframes.
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