

RESEARCH ARTICLE

Soft topology in ideal topological spaces

Ahmad Al-Omari

Al al-Bayt University, Faculty of Sciences, Department of Mathematics P.O. Box 130095, Mafraq 25113, Jordan

Abstract

In this paper, (X, τ, E) denotes a soft topological space and $\overline{\mathfrak{I}}$ a soft ideal over X with the same set of parameters E. We define an operator $(F, E)^{\theta}(\overline{\mathfrak{I}}, \tau)$ called the θ -local function of (F, E) with respect to $\overline{\mathfrak{I}}$ and τ . Also, we investigate some properties of this operator. Moreover, by using the operator $(F, E)^{\theta}(\overline{\mathfrak{I}}, \tau)$, we introduce another soft operator to obtain soft topology and show that $\tau_{\theta} \subseteq \sigma \subseteq \sigma_0$.

Mathematics Subject Classification (2010). 54A05, 54C10

Keywords. soft topological, ideal, θ -local function, θ -compatibility.

1. Introduction and preliminaries

In 1999, Molodtsov [5] introduced the concept of soft set theory and started to develop the basics of the corresponding theory as a new approach for modeling uncertainties. Shabir and Naz [6] gave the definition of soft topological spaces and studied soft neighborhoods of a point, soft separation axioms and their basic properties. At the same time, Aygünoğlu and Aygün [2] introduced soft topological spaces and soft continuity of soft mappings. Recently, in [3] it was introduced the concept of soft ideal theory and soft local function and a basis for this generated soft topologies were also studied. In this paper, We define an operator $(F, E)^{\theta}(\bar{J}, \tau)$ called the θ -local function of (F, E) with respect to \bar{J} and τ . Also, we investigate some properties of this operator. Moreover, by using the operator $(F, E)^{\theta}(\bar{J}, \tau)$, we introduce another soft operator to obtain soft topology and show that $\tau_{\theta} \subseteq \sigma \subseteq \sigma_0$.

Definition 1.1. [5] Let X be an initial universe and E be a set parameters. Let P(X) denote the power set of X and A be a nonempty subset of E. A pair (F, A) denoted by F_A is called a soft set over X, where F is a mapping given by $F : A \to P(X)$. In other words, a soft set over X is a parameterized family of subsets of the universe X. For a particular $e \in A$, F(e) may be considered the set of e-approximate elements of the soft set (F, A) and if $e \notin A$, then $F(e) = \phi$ i.e $F_A = \{F(e) : e \in A \subseteq E, F : A \to P(X)\}$. The family of all these soft sets denoted by $SS(X)_A$.

Definition 1.2. [4] Let $F_A, G_B \in SS(X)_E$. Then F_A is called a soft subset of G_B , denoted by $F_A \sqsubseteq G_B$ if

(1) $A \subseteq B$.

Email addresses: omarimutah1@yahoo.com Received: 28.03.2017; Accepted: 06.02.2018

(2) $F(e) \subseteq G(e)$, for all $e \in A$.

In this case F_A is said to be a soft subset of G_B and G_B is said to be a soft superset of F_A , $F_A \sqsubseteq G_B$.

Definition 1.3. [1] A complement of a soft set (F, E), denoted by $(F, E)^c$, is defined by $(F, E)^c = (F^c, E), F^c : E \to P(X)$ is a mapping given by $F^c(e) = X - F(e)$, for all $e \in E$ and F^c is called a soft complement function of F.

Clearly $(F^c)^c$ is the same as F and $((F, E)^c)^c = (F, E)$.

Definition 1.4. [6] A difference of two soft sets (F, E) and (G, E) over the common universe X, denoted by (F, E) - (G, E), is the soft set (H, E) where for all $e \in E$, H(e) = F(e) - G(e).

Definition 1.5. [6] Let (F, E) be a soft set over X and $x \in X$. We say that $x \in (F, E)$ read as x belongs to the soft set (F, E) whenever $x \in F(e)$ for all $e \in E$.

Definition 1.6. [7] Let Δ be an arbitrary indexed set and $\Omega = \{(F_{\alpha}, E) : \alpha \in \Delta\}$ be a subfamily of $SS(X)_E$.

- (1) The union of Δ is the soft set (H, E), where $H(e) = \bigcup_{\alpha \in \Delta} F_{\alpha}(e)$ for each $e \in E$. We write $\bigsqcup_{\alpha \in \Delta} (F_{\alpha}, E) = (H, E)$.
- (2) The intersection of Δ is the soft set (M, E), where $M(e) = \bigcap_{\alpha \in \Delta} F_{\alpha}(e)$ for each $e \in E$. We write $\bigcap_{\alpha \in \Delta} (F_{\alpha}, E) = (M, E)$.

Definition 1.7. [7] A soft set $(F, E) \in SS(X)_E$ is called a soft point in X_E if there exist $x \in X$ and $e \in E$ such that $F(e) = \{x\}$ and $F(e^c) = \phi$ for each $e^c \in E - \{e\}$. This soft point (F, E) is denoted by x_e .

Definition 1.8. [6] Let (X, τ, E) be a soft topological space and $(F, E) \in SS(X)_E$. The soft closure of (F, E), denoted by cl(F, E) is the intersection of all closed soft super sets of (F, E) i.e. $cl(F, E) = \{ \sqcap(H, E) : (H, E) \text{ is closed soft and } (F, E) \sqsubseteq (H, E) \}.$

Definition 1.9. [7] A soft set (G, E) in a soft topological space (X, τ, E) is called a soft neighborhood of the soft point $x_e \in X_E$ if there exists an open soft set (H, E) such that $x_e \in (H, E) \sqsubseteq (G, E)$.

2. New type of soft local function

Definition 2.1. [3] Let \mathcal{I} be a non-null collection of soft sets over a universe X with the same set of parameters E. Then $\overline{\mathcal{I}} \subseteq SS(X)_E$ is called a soft ideal on X with the same set E if

(1) $(F, E) \in \overline{\mathcal{I}}$ and $(G, E) \in \overline{\mathcal{I}}$, then $(F, E) \sqcup (G, E) \in \overline{\mathcal{I}}$.

(2) $(F, E) \in \overline{\mathcal{I}}$ and $(G, E) \sqsubseteq (F, E)$, then $(G, E) \in \overline{\mathcal{I}}$.

i.e. $\overline{\mathcal{I}}$ is closed under finite soft unions and soft subsets.

Definition 2.2. [3] Let (X, τ, E) be a soft topological space and $\overline{\mathcal{I}}$ be a soft ideal over X with the same set of parameters E. Then $(F, E)^*(\overline{\mathcal{I}}, \tau)(\operatorname{or} F_E^*) = \bigsqcup \{x_e \in (X, E) : O_{x_e} \sqcap (F, E) \notin \overline{\mathcal{I}} \text{ for every } O_{x_e} \in \tau\}$ is called the soft local function of (F, E) with respect to $\overline{\mathcal{I}}$ and τ , where O_{x_e} is a τ -open soft set containing x_e .

Definition 2.3. Let (X, τ, E) be a soft topological space and $\overline{\mathcal{I}}$ be a soft ideal over X with the same set of parameters E. Then $(F, E)^{\theta}(\overline{\mathcal{I}}, \tau)(\operatorname{or} F_E^{\theta}) = \sqcup \{x_e \in (X, E) : cl(O_{x_e}) \sqcap (F, E) \notin \overline{\mathcal{I}} \text{ for every } O_{x_e} \in \tau \}$ is called the soft θ -local function of (F, E) with respect to $\overline{\mathcal{I}}$ and τ , where O_{x_e} is a τ -open soft set containing x_e .

Lemma 2.4. Let (X, τ, E) be a soft topological space and \overline{J} be a soft ideal over X with the same set of parameters E. Then $F_E^* \sqsubseteq F_E^\theta$ for ever subset $(F, E) \sqsubseteq (X, E)$.

Proof. Let $x_e \in F_E^*$. Then, $O_{x_e} \sqcap (F, E) \notin \overline{\mathfrak{I}}$ for every a τ -open soft set O_{x_e} containing x_e . Since $O_{x_e} \sqcap (F, E) \sqsubseteq cl(O_{x_e}) \sqcap (F, E)$, we have $cl(O_{x_e}) \sqcap (F, E) \notin \overline{\mathfrak{I}}$ and hence $x_e \in F_E^{\theta}$.

Lemma 2.5. Let (X, τ, E) be a soft topological space and $(F, E) \sqsubset (X, E)$. If (F, E) is a soft open set, then $cl_{\theta}(F, E) = cl(F, E)$.

Theorem 2.6. Let (X, τ, E) be a soft topological space and $\overline{\mathfrak{I}}$ and $\overline{\mathfrak{J}}$ be two a soft ideals over X with the same set of parameters E. Let (F, E) and (G, E) be subsets of (X, E). Then the following properties hold:

- $\begin{array}{ll} (1) \ \ If \ (F,E) \sqsubseteq (G,E), \ then \ F_E^{\theta} \sqsubseteq G_E^{\theta}. \\ (2) \ \ If \ \overline{\mathfrak{I}} \sqsubseteq \overline{J}, \ then \ (F,E)^{\theta}(\overline{J},\tau) \sqsubseteq (F,E)^{\theta}(\overline{\mathfrak{J}},\tau). \\ (3) \ \ F_E^{\theta} = cl(F_E^{\theta}) \sqsubseteq cl_{\theta}((F,E)) \ and \ F_E^{\theta} \ is \ \tau\text{-closed soft.} \\ (4) \ \ If \ (F,E) \sqsubseteq F_E^{\theta} \ and \ F_E^{\theta} \ is \ \tau\text{-open soft, then } F_E^{\theta} = cl_{\theta}((F,E)). \\ (5) \ \ If \ (F,E) \in \overline{\mathfrak{I}}, \ then \ F_E^{\theta} = \phi. \end{array}$

Proof. (1) Suppose that $x_e \notin G_E^{\theta}$. Then there exists $O_{x_e} \in \tau$ such that $cl(O_{x_e}) \sqcap (G, E) \in$ $\overline{\mathbb{J}}$. Since $cl(O_{x_e}) \sqcap (F, E) \sqsubseteq cl(O_{x_e}) \sqcap (G, E), cl(O_{x_e}) \sqcap (F, E) \in \overline{\mathbb{J}}$. Hence $x_e \notin F_E^{\theta}$. Thus $(X, E) \setminus G_E^{\theta} \sqsubseteq (X, E) \setminus F_E^{\theta}$ or $F_E^{\theta} \sqsubseteq G_E^{\theta}$.

(2) Suppose that $x_e \notin (F, E)^{\theta}(\overline{\mathcal{I}}, \tau)$. There exists $O_{x_e} \in \tau$ such that $cl(O_{x_e}) \sqcap (F, E) \in \overline{\mathcal{I}}$. Since $\overline{\overline{J}} \sqsubseteq \overline{J}$, $cl(O_{x_e}) \sqcap (F, E) \in \overline{J}$ and $x_e \notin (F, E)^{\theta}(\overline{J}, \tau)$. Therefore, $(F, E)^{\theta}(\overline{J}, \tau) \sqsubseteq$ $(F,E)^{\theta}(\overline{\mathfrak{I}},\tau).$

(3) We have $F_E^{\theta} \sqsubseteq cl(F_E^{\theta})$ in general. Let $x_e \in cl(F_E^{\theta})$. Then $O_{x_e} \sqcap F_E^{\theta} \neq \phi$ for every $O_{x_e} \in \tau$. Therefore, there exists some $y_e \in O_{x_e} \sqcap F_E^{\theta}$ and O_{x_e} a τ -open soft set containing y_e . Since $y_e \in F_E^{\theta}$, $cl(O_{x_e}) \sqcap (F, E) \notin \overline{\mathfrak{I}}$ and hence $x_e \in F_E^{\theta}$. Hence we have $cl(F_E^{\theta}) \sqsubseteq F_E^{\theta}$ and hence $F_E^{\theta} = cl(F_E^{\theta})$. Again, let $x_e \in cl(F_E^{\theta}) = F_E^{\theta}$, then $cl(O_{x_e}) \sqcap (F, E) \notin \overline{\mathbb{J}}$ for every a τ -open soft set O_{x_e} containing x_e . This implies $cl(O_{x_e}) \sqcap (F, E) \neq \phi$ for every a τ -open soft set $O_{x_e} \text{ containing } x_e. \text{ Therefore, } x_e \in cl_{\theta}((F, E)). \text{ This show that } F_E^{\theta} = cl(F_E^{\theta}) \sqsubseteq cl_{\theta}((F, E)).$ (4) For any subset $(F, E) \sqsubseteq (X, E)$, by (3) we have $F_E^{\theta} = cl(F_E^{\theta}) \sqsubseteq cl_{\theta}((F, E)).$ Since $(F, E) \sqsubseteq F_E^{\theta}$ and F_E^{θ} is a τ -open soft, by Lemma 2.5 $cl_{\theta}((F, E)) \sqsubseteq cl_{\theta}(F_E^{\theta}) = cl(F_E^{\theta}) = cl(F_E^{\theta}) = cl_{\theta}(F, E)$ and hence $F_E^{\theta} = cl_{\theta}((F, E)).$ (5) Sum can that $\pi \neq F_E^{\theta} = cl_{\theta}(F, E)$

(5) Suppose that $x_e \notin F_E^{\theta}$. Then for any O_{x_e} a τ -open soft set containing x_e , $cl(O_{x_e}) \sqcap$ $(F,E) \notin \overline{\mathbb{J}}$. But since $(F,E) \in \overline{\mathbb{J}}$, $cl(O_{x_e}) \sqcap (F,E) \in \overline{\mathbb{J}}$ for any O_{x_e} a τ -open soft set containing x_e . This is a contradiction. Hence $F_E^{\theta} = \phi$.

Lemma 2.7. Let (X, τ, E) be a soft topological space and \overline{J} be a soft ideal over X with the same set of parameters E. If O is a τ_{θ} -open soft set, then $O \sqcap F_E^{\theta} = O \sqcap (O \sqcap F)_E^{\theta} \sqsubseteq (O \sqcap F)_E^{\theta}$ for any subset (F, E) of (X, E).

Proof. Suppose that O is a τ_{θ} -open soft set and $x_e \in O \sqcap F_E^{\theta}$. Then $x_e \in O$ and $x_e \in F_E^{\theta}$. Since O is a τ_{θ} -open soft set, then there exists a τ -open soft set W containing x_e such that $W \sqsubseteq cl(W) \sqsubseteq O$. Let V be any τ -open soft set containing x_e . Then $V \sqcap W$ is a τ -open soft set containing x_e and $cl(V \sqcap W) \sqcap (F, E) \notin \overline{\mathfrak{I}}$ and hence $cl(V) \sqcap (O \sqcap (F, E)) \notin \overline{\mathfrak{I}}$. This shows that $x_e \in (O \sqcap F)_E^{\theta}$ and hence, we get $O \sqcap F_E^{\theta} \sqsubseteq (O \sqcap F)_E^{\theta}$. Moreover, $O \sqcap F_E^{\theta} \sqsubseteq O \sqcap (O \sqcap F)_E^{\theta}$ and by Theorem 2.6 $(O \sqcap F)_E^{\theta} \sqsubseteq F_E^{\theta}$ and $O \sqcap (O \sqcap F)_E^{\theta} \sqsubseteq O \sqcap F_E^{\theta}$. Therefore, $O \sqcap F_E^{\theta} = O \sqcap (O \sqcap F)_E^{\theta}$.

Theorem 2.8. Let (X, τ, E) be a soft topological space and \overline{J} be a soft ideal over X with the same set of parameters E and (F, E), (G, E) any subsets of (X, E). Then the following properties hold:

(1) $\phi_E^{\theta} = \phi.$ (2) $(F \sqcup G)_E^{\theta} = F_E^{\theta} \sqcup G_E^{\theta}.$

Proof. (1) The proof is obvious.

(2) It follows from Theorem 2.6 that $(F \sqcup G)_E^{\theta} \supseteq F_E^{\theta} \sqcup G_E^{\theta}$. To prove the reverse inclusion, let $x_e \notin F_E^{\theta} \sqcup G_E^{\theta}$. Then x_e belongs neither to F_E^{θ} nor to G_E^{θ} . Therefore, there exist a τ -open soft sets O_{x_e} , W_{x_e} containing x_e such that $cl(O_{x_e}) \sqcap (F, E) \in \overline{\mathfrak{I}}$ and $cl(W_{x_e}) \sqcap (F, E) \in \overline{\mathfrak{I}}$ $\overline{\mathcal{J}}$. Since $\overline{\mathcal{J}}$ is additive, $(cl(O_{x_e}) \sqcap (F, E)) \sqcup (cl(W_{x_e}) \sqcap (F, E)) \in \overline{\mathcal{J}}$. Moreover, since $\overline{\mathcal{J}}$ is hereditary and

$$\begin{aligned} (cl(O_{x_e}) \sqcap (F, E)) \sqcup (cl(W_{x_e}) \sqcap (G, E)) \\ &= [(cl(O_{x_e}) \sqcap (F, E)) \sqcup cl(W_{x_e})] \sqcap [(cl(O_{x_e}) \sqcap (F, E)) \sqcup (G, E)] = (cl(O_{x_e}) \sqcup cl(W_{x_e})) \sqcap (cl(W_{x_e}) \sqcup (F, E)) \sqcap (cl(O_{x_e}) \sqcup (G, E)) \sqcap ((F, E) \sqcup (G, E)) \\ &\supseteq cl(O_{x_e} \sqcap W_{x_e}) \sqcap ((F, E) \sqcup (G, E)). \end{aligned}$$

Therefore, $cl(O_{x_e} \sqcap W_{x_e}) \sqcap ((F, E) \sqcup (G, E)) \in \overline{\mathcal{I}}$. Since $O_{x_e} \sqcap W_{x_e}$ is a τ -open soft set containing x_e , we have $x_e \notin (F \sqcup G)_E^{\theta}$ and $(F \sqcup G)_E^{\theta} \sqsubseteq F_E^{\theta} \sqcup G_E^{\theta}$. Hence we obtain $(F \sqcup G)_E^{\theta} = F_E^{\theta} \sqcup G_E^{\theta}$.

Lemma 2.9. Let (X, τ, E) be a soft topological space and $\overline{\mathfrak{I}}$ be a soft ideal over X with the same set of parameters E and (F, E), (G, E) any subsets of (X, E). Then $F_E^{\theta} - G_E^{\theta} =$ $(F-G)_E^{\theta}-G_E^{\theta}.$

Proof. We have by Theorem 2.8 $F_E^{\theta} = [(F - G) \sqcup (F \sqcap G)]_E^{\theta} = (F - G)_E^{\theta} \sqcup (F \sqcap G)_E^{\theta} \sqsubseteq (F - G)_E^{\theta} \sqcup G_E^{\theta}$. Thus $F_E^{\theta} - G_E^{\theta} \sqsubseteq (F - G)_E^{\theta} - G_E^{\theta}$. By Theorem 2.6 $(F - G)_E^{\theta} \sqsubseteq F_E^{\theta}$ and hence $(F - G)_E^{\theta} - G_E^{\theta} \sqsubseteq F_E^{\theta} - G_E^{\theta}$. Hence $F_E^{\theta} - G_E^{\theta} = (F - G)_E^{\theta} - G_E^{\theta}$.

Corollary 2.10. Let (X, τ, E) be a soft topological space and $\overline{\mathfrak{I}}$ be a soft ideal over X with the same set of parameters E and (F, E), (G, E) any subsets of (X, E) with $(G, E) \in \overline{\mathfrak{I}}$. Then $(F \sqcup G)_E^{\theta} = F_E^{\theta} = (F - G)_E^{\theta}.$

Proof. Since $(G, E) \in \overline{\mathcal{I}}$, by Theorem 2.6 $G_E^{\theta} = \phi$. By Lemma 2.9, $F_E^{\theta} = (F - G)_E^{\theta}$ and by Theorem 2.8 $(F \sqcup G)_E^{\theta} = F_E^{\theta} \sqcup G_E^{\theta} = F_E^{\theta}$.

3. θ -compatibility of soft topological spaces

Definition 3.1. [3] Let (X, τ, E) be a soft topological space and $\overline{\mathcal{I}}$ be a soft ideal over X with the same set of parameters E. We say that the soft topology τ is compatible with the soft ideal $\overline{\mathfrak{I}}$, denoted by $\tau \sim \overline{\mathfrak{I}}$. If the following holds for every $(F, E) \in SS(X)_E$, if for every soft point $x_e \in (F, E)$ there exists a τ -open soft set O_{x_e} containing x_e such that $O_{x_e} \sqcap (F, E) \in \overline{\mathfrak{I}}$, then $(F, E) \in \overline{\mathfrak{I}}$.

Definition 3.2. Let (X, τ, E) be a soft topological space and $\overline{\mathcal{I}}$ be a soft ideal over X with the same set of parameters E. We say that the soft topology τ is θ -compatible with the soft ideal $\overline{\mathfrak{I}}$, denoted by $\tau \sim_{\theta} \overline{\mathfrak{I}}$. If the following holds for every $(F, E) \in SS(X)_E$, if for every soft point $x_e \in (F, E)$ there exists a τ -open soft set O_{x_e} containing x_e such that $cl(O_{x_e}) \sqcap (F, E) \in \overline{\mathfrak{I}}$, then $(F, E) \in \overline{\mathfrak{I}}$.

Remark 3.3. If τ is compatible with the soft ideal $\overline{\mathcal{I}}$, then τ is θ -compatible with the soft ideal $\overline{\mathcal{I}}$.

Theorem 3.4. Let (X, τ, E) be a soft topological space and \overline{J} be a soft ideal over X with the same set of parameters E. Then the following properties are equivalent:

- (1) $\tau \sim_{\theta} \overline{\mathfrak{I}};$
- (2) If a soft subset (F, E) of (X, E) has a cover of τ -open soft sets each of whose closure intersection with (F, E) is in \overline{J} , then $(F, E) \in \overline{J}$;
- (3) For every $(F, E) \sqsubseteq (X, E)$ with $(F, E) \sqcap F_E^{\theta} = \phi$ implies that $(F, E) \in \overline{\mathfrak{I}}$; (4) For every $(F, E) \sqsubseteq (X, E)$, $(F, E) F_E^{\theta} \in \overline{\mathfrak{I}}$;

(5) For every $(F,E) \sqsubseteq (X,E)$, if (F,E) contains no nonempty subset (G,E) with $(G, E) \sqsubseteq G_E^{\theta}$, then $(F, E) \in \overline{\mathfrak{I}}$.

Proof. (1) \Rightarrow (2): The proof is obvious.

(2) \Rightarrow (3): Let $(F, E) \sqsubseteq (X, E)$ and $x_e \in (F, E)$. Then $x_e \notin F_E^{\theta}$ and there exists τ open soft set O_{x_e} containing x_e such that $cl(O_{x_e}) \sqcap (F, E) \in \overline{\mathfrak{I}}$. Therefore, we have $(F, E) \sqsubseteq \sqcup \{O_{x_e} : x_e \in O_{x_e}\}$ and by (2) $(F, E) \in \overline{\mathcal{I}}$.

(3)
$$\Rightarrow$$
 (4): For any $(F, E) \sqsubseteq (X, E), (F, E) - F_E^{\theta} \sqsubseteq (F, E)$ and

$$\left[(F,E) - F_E^{\theta} \right] \sqcap \left[(F,E) - F_E^{\theta} \right]_E^{\theta} \sqsubseteq \left[(F,E) - F_E^{\theta} \right] \sqcap F_E^{\theta} = \phi.$$

By (3), $(F, E) - F_E^{\theta} \in \mathcal{I}$.

 $\begin{array}{l} (4) \Rightarrow (5); \ (2, L) & = I_E \in \mathcal{O}: \\ (4) \Rightarrow (5): \ \text{By (4), for every } (F, E) \sqsubseteq (X, E), \ (F, E) - F_E^{\theta} \in \overline{\mathcal{I}}. \ \text{Let } (F, E) - F_E^{\theta} = \\ J \in \overline{\mathcal{I}}, \ \text{then } (F, E) = J \sqcup [(F, E) \sqcap F_E^{\theta}] \ \text{and by Theorem } 2.6 \ (5) \ \text{and Theorem } 2.8 \\ (2), \ F_E^{\theta} = J_E^{\theta} \sqcup \left[(F, E) \sqcap F_E^{\theta} \right]_E^{\theta} = \left[(F, E) \sqcap F_E^{\theta} \right]_E^{\theta}. \ \text{Therefore, we have } (F, E) \sqcap F_E^{\theta} = \\ \end{array}$ $(F,E) \sqcap \left[(F,E) \sqcap F_E^{\theta} \right]_E^{\theta} \sqsubseteq \left[(F,E) \sqcap F_E^{\theta} \right]_E^{\theta}$ and $(F,E) \sqcap F_E^{\theta} \sqsubseteq (F,E)$. By the assumption $(F,E) \sqcap \overline{F_E^{\theta}} = \phi$ and hence $(F,E) = (F,\overline{E}) - F_E^{\theta} \in \overline{\mathbb{J}}.$

 $(5) \Rightarrow (1)$: Let $(F, E) \sqsubseteq (X, E)$ and assume that for every $x_e \in (F, E)$, there exists τ -open soft set O_{x_e} containing x_e such that $cl(O_{x_e}) \sqcap (F, E) \in \overline{\mathfrak{I}}$. Then $(F, E) \sqcap F_E^{\theta} = \phi$. Suppose that (F, E) contains a subset (G, E) with $(G, E) \sqsubseteq G_E^{\theta}$. Then $(G, E) = (G, E) \sqcap G_E^{\theta} \sqsubseteq (F, E) \sqcap F_E^{\theta} = \phi$. Therefore, (F, E) contains no nonempty subset (G, E) with $(G, E) \sqsubseteq G_E^{\theta}$. Hence $(F, E) \in \mathcal{I}$.

Theorem 3.5. Let (X, τ, E) be a soft topological space and \overline{J} be a soft ideal over X with the same set of parameters E. If τ is θ -compatible with the soft ideal J. Then the following equivalent properties hold:

- (1) For every $(F, E) \sqsubseteq (X, E)$, $(F, E) \sqcap F_E^{\theta} = \phi$ implies that $F_E^{\theta} = \phi$; (2) For every $(F, E) \sqsubseteq (X, E)$, $\left[(F, E) F_E^{\theta} \right]_E^{\theta} = \phi$;
- (3) For every $(F, E) \sqsubseteq (X, E)$, $\left[(F, E) \sqcap F_E^{\theta} \right]_{\theta}^{\theta} = F_E^{\theta}$.

Proof. First, we show that (1) holds if τ is θ -compatible with the soft ideal $\overline{\mathfrak{I}}$. Let $(F,E) \sqsubseteq (X,E)$ and $(F,E) \sqcap F_E^{\theta} = \phi$. By Theorem 3.4, $(F,E) \in \overline{\mathfrak{I}}$ and by Theorem 2.6 (5) $F_E^{\theta} = \phi$.

(1) \Rightarrow (2): Assume that for every $(F, E) \sqsubseteq (X, E), (F, E) \sqcap F_E^{\theta} = \phi$ implies that $F_E^{\theta} = \phi$. Let $(G, E) = (F, E) - F_E^{\theta}$, then

$$(G, E) \sqcap G_E^{\theta} = \left[(F, E) - F_E^{\theta} \right] \sqcap \left[(F, E) - F_E^{\theta} \right]_E^{\theta}$$
$$= \left[(F, E) \sqcap \left[(X, E) - F_E^{\theta} \right] \right] \sqcap \left[(F, E) \sqcap \left[(X, E) - F_E^{\theta} \right] \right]_E^{\theta}$$
$$\subseteq \left[(F, E) \sqcap \left[(X, E) - F_E^{\theta} \right] \right] \sqcap \left[F_E^{\theta} \sqcap \left[(X, E) - F_E^{\theta} \right]_E^{\theta} \right] = \phi.$$

By (1), we have $G_E^{\theta} = \phi$. Hence $\left[(F, E) - F_E^{\theta} \right]_E^{\theta} = \phi$. (2) \Rightarrow (3): Assume that for every $(F, E) \sqsubseteq (X, E), [(F, E) - F_E^{\theta}]_{r}^{\theta} = \phi.$ $(F,E) = \left[(F,E) - F_E^{\theta} \right] \sqcup \left[(F,E) \sqcap F_E^{\theta} \right]$ $F_E^{\theta} = \left[\left[(F, E) - F_E^{\theta} \right] \sqcup \left[(F, E) \sqcap F_E^{\theta} \right] \right]_E^{\theta}$ $= \left[(F, E) - F_E^{\theta} \right]_{B}^{\theta} \sqcup \left[(F, E) \sqcap F_E^{\theta} \right]_{B}^{\theta}$

$$= \left[(F, E) \sqcap F_E^\theta \right]_E^\theta$$

 $\begin{array}{l} (3) \Rightarrow (1): \text{ Assume that for every } (F, E) \sqsubseteq (X, E), \, (F, E) \sqcap F_E^{\theta} = \phi \text{ and} \\ \left[(F, E) \sqcap F_E^{\theta} \right]_E^{\theta} = F_E^{\theta}. \end{array} \\ \begin{array}{l} \text{This implies that } \phi = \phi_E^{\theta} = F_E^{\theta}. \end{array} \end{array}$

Theorem 3.6. Let (X, τ, E) be a soft topological space and \overline{J} be a soft ideal over X with the same set of parameters E. Then the following properties are equivalent:

- (1) $cl(\tau) \sqcap \overline{\mathfrak{I}} = \phi$, where $cl(\tau) = \{cl(U) : U \text{ is } \tau \text{-open soft set}\};$
- (2) If $S \in \overline{\mathfrak{I}}$, then $Int_{\theta}(S) = \phi$;
- (3) For every clopen soft set $(F, E) \sqsubseteq (X, E), (F, E) \sqsubseteq F_E^{\theta}$;
- $(4) (X, E) = X_E^{\theta}.$

Proof. (1) \Rightarrow (2): Let $cl(\tau) \sqcap \overline{\mathcal{I}} = \phi$ and $S \in \overline{\mathcal{I}}$. Suppose that $x_e \in Int_{\theta}(S)$. Then there exists τ -open soft set U such that $x_e \in U \sqsubseteq cl(U) \sqsubseteq S$. Since $S \in \overline{\mathcal{I}}$ and hence $\phi \neq \{x_e\} \sqsubseteq cl(U) \in cl(\tau) \sqcap \overline{\mathcal{I}}$. This is contrary to $cl(\tau) \sqcap \overline{\mathcal{I}} = \phi$. Therefore, $Int_{\theta}(S) = \phi$.

 $(2) \Rightarrow (3)$: Let $x_e \in (F, E)$. Assume $x_e \notin F_E^{\theta}$, then there exists τ -open soft set U_{x_e} containing x_e such that $(F, E) \sqcap cl(U_{x_e}) \in \overline{\mathfrak{I}}$ and hence $(F, E) \sqcap U_{x_e} \in \overline{\mathfrak{I}}$. Since (F, E) is clopen soft set, by (2) and Lemma 2.5 $x_e \in (F, E) \sqcap U_{x_e} = Int[(F, E) \sqcap U_{x_e}] \sqsubseteq Int[(F, E) \sqcap cl(U_{x_e})] = Int_{\theta}[(F, E) \sqcap cl(U_{x_e})] = \phi$. This is a contradiction. Hence $x_e \in F_E^{\theta}$ and $(F, E) \sqsubseteq F_E^{\theta}$.

(3) \Rightarrow (4): Since (X, E) is clopen soft set, then $(X, E) = X_E^{\theta}$.

 $(4) \Rightarrow (1): \ (X,E) = X_E^{\theta} = \{ x_e \in (X,E) : cl(U) \sqcap (X,E) = cl(U) \notin \overline{\mathfrak{I}} \text{ for every } \tau \text{-open soft set } U \text{ containing } x_e \}. \text{ Hence } cl(\tau) \sqcap \overline{\mathfrak{I}} = \phi.$

Theorem 3.7. Let (X, τ, E) be a soft topological space and $\overline{\mathfrak{I}}$ be a soft ideal over X with the same set of parameters E. If τ is θ -compatible with the soft ideal $\overline{\mathfrak{I}}$. Then for every τ_{θ} -open soft set (G, E) and any subset (F, E) of (X, E), $cl\left([(G, E) \sqcap (F, E)]_E^{\theta}\right) =$

$$\left[(G, E) \sqcap (F, E) \right]_{E}^{\theta} \sqsubseteq \left[(G, E) \sqcap F_{E}^{\theta} \right]_{E}^{\theta} \sqsubseteq cl_{\theta} \left(\left[(G, E) \sqcap F_{E}^{\theta} \right] \right).$$

Proof. By Theorem 2.6 (1) and Theorem 3.5 (3) we have

$$[(G,E)\sqcap(F,E)]_E^{\theta} = \left[[(G,E)\sqcap(F,E)]\sqcap[(G,E)\sqcap(F,E)]_E^{\theta}\right]_E^{\theta} \sqsubseteq \left[(G,E)\sqcap F_E^{\theta}\right]_E^{\theta}.$$

Moreover, by Theorem 2.6(3),

$$cl\left(\left[(G,E)\sqcap(F,E)\right]_{E}^{\theta}\right) = \left[(G,E)\sqcap(F,E)\right]_{E}^{\theta} \sqsubseteq \left[(G,E)\sqcap F_{E}^{\theta}\right]_{E}^{\theta} \sqsubseteq cl_{\theta}\left(\left[(G,E)\sqcap F_{E}^{\theta}\right]\right).$$

4. S_E -soft operator

Definition 4.1. Let (X, τ, E) be a soft topological space and $\overline{\mathcal{I}}$ be a soft ideal over X with the same set of parameters E. A soft operator $\mathcal{S}_E : SS(X)_E \to \tau$ is defined as follows: for every $(F, E) \sqsubseteq (X, E), \ \mathcal{S}_E(F) = \{x_e \in (X, E) : \text{there exists a } \tau\text{-open soft}$ set (G, E) containing x_e such that $cl[(G, E)] - (F, E) \in \overline{\mathcal{I}}\}$ and observe that $\mathcal{S}_E(F) = (X, E) - [(X, E) - (F, E)]_E^{\theta}$.

Several basic facts that are related to the behavior of the S_E -soft operator are included in the following theorem.

Theorem 4.2. Let (X, τ, E) be a soft topological space and \overline{J} be a soft ideal over X with the same set of parameters E. Then the following properties are hold:

- (1) If $(F, E) \sqsubseteq (X, E)$, then $S_E(F)$ is a τ -open soft.
- (2) If $(F, E) \sqsubseteq (G, E)$, then $\mathcal{S}_E(F) \sqsubseteq \mathcal{S}_E(G)$.

1282

- (3) If $(F, E), (G, E) \in SS(X)_E$, then $\mathcal{S}_E(F \sqcap G) = \mathcal{S}_E(F) \sqcap \mathcal{S}_E(G)$. (4) If $(F, E) \sqsubseteq (X, E)$, then $S_E(S_E(F)) = S_E(F)$ if and only if $[(X, E) - (F, E)]_E^{\theta} = \left([(X, E) - (F, E)]_E^{\theta} \right)_E^{\theta}.$ (5) If $(A, E) \in \overline{\mathfrak{I}}$, then $\mathfrak{S}_E(A) = (X, E) - X_E^{\theta}$. (6) If $(F, E) \sqsubseteq (X, E)$, $(A, E) \in \overline{\mathcal{I}}$, then $\mathcal{S}_E(F - A) = \mathcal{S}_E(F)$. (7) If $(F, E) \sqsubseteq (X, E)$, $(A, E) \in \overline{\mathfrak{I}}$, then $\mathfrak{S}_E(F \sqcup A) = \mathfrak{S}_E(F)$.
- (8) If $(F, E), (G, E) \in SS(X)_E$ and $(F G) \sqcup (G F) \in \overline{\mathfrak{I}}$, then $\mathfrak{S}_E(F) = \mathfrak{S}_E(G)$.

Proof. (1) This follows from Theorem 2.6 (3). (2) This follows from Theorem 2.6 (1).

(3)
$$\begin{split} & S_E(F \sqcap G) = (X, E) - [(X, E) - ((F \sqcap G), E)]_E^{\theta} \\ & = (X, E) - [((X, E) - (F, E)) \sqcup ((X, E) - (G, E))]_E^{\theta} \\ & = (X, E) - [[(X, E) - (F, E)]_E^{\theta} \sqcup [(X, E) - (G, E)]_E^{\theta}] \\ & = [(X, E) - [(X, E) - (F, E)]_E^{\theta}] \sqcap [(X, E) - [(X, E) - (G, E)]_E^{\theta}] \\ & = S_E(F) \sqcap S_E(G). \end{split}$$

(4) This follows from the facts:

(1)
$$\mathscr{S}_{E}(F) = (X, E) - [(X, E) - (F, E)]_{E}^{\theta}$$
.
(2) $\mathscr{S}_{E}(\mathscr{S}_{E}(F)) = (X, E) - ([(X, E) - (F, E)]_{E}^{\theta})_{E}^{\theta}$
 $= (X, E) - ((X, E) - [(X, E) - (F, E)]_{E}^{\theta})_{E}^{\theta}$.

(5) By Corollary 2.10 we obtain that $[(X, E) - (F, E)]_E^{\theta} = X_E^{\theta}$ if $(F, E) \in \overline{\mathfrak{I}}$ and $\mathfrak{S}_E(A) =$ $(X,E) - X_E^{\theta}.$

(6) This follows from Corollary 2.10 and

 $S_E(F-A) = (X, E) - [(X, E) - ((F, E) - (A, E))]_E^{\theta} = (X, E) - [[(X, E) - (F, E)] \sqcup (A, E)]_E^{\theta} = (X, E) - [(X, E) - (F, E)]_E^{\theta} = S_E(F).$ (7) This follows from Corollary 2.10 and

 $S_E(F \sqcup A) = (X, E) - [(X, E) - ((F, E) \sqcup (A, E))]_E^{\theta} =$

 $(X, E) - [[(X, E) - (F, E)] - (A, E))]_E^{\theta} = (X, E) - [(X, E) - (F, E)]_E^{\theta} = \mathcal{S}_E(F).$ (8) Assume $[(F, E) - (G, E)] \sqcup [(G, E) - (F, E)] \in \overline{\mathfrak{I}}.$ Let $[(F, E) - (G, E)] = S_1$ and $[(G, E) - (F, E)] = S_2.$ Observe that $S_1, S_2 \in \overline{\mathfrak{I}}$ by heredity. Also observe that (G, E) = $[(F, E) - S_1] \sqcup S_2$. Thus $S_E(F) = S_E(F - S_1) = S_E[(F - S_1) \sqcup S_2] = S_E(G)$ by (6) and (7).

Corollary 4.3. Let (X, τ, E) be a soft topological space and \overline{J} be a soft ideal over X with the same set of parameters E. Then $(F, E) \sqsubseteq S_E(F)$ for every τ_{θ} -open soft set (F, E) of (X, E).

Proof. We know that $\mathcal{S}_E(F) = (X, E) - [(X, E) - (F, E)]_E^{\theta}$. Now $[(X, E) - (F, E)]_E^{\theta} \sqsubseteq cl_{\theta}((X, E) - (F, E)) = (X, E) - (F, E), \text{ since } (X, E) - (F, E) \text{ is } \tau_{\theta}\text{-closed soft set. Therefore, } (F, E) = (X, E) - [(X, E) - (F, E)] \sqsubseteq (X, E) - [(X, E) - (X, E)] = (X, E) (F,E)]_E^{\theta} = \mathcal{S}_E(F).$

Theorem 4.4. Let (X, τ, E) be a soft topological space and \overline{J} be a soft ideal over X with the same set of parameters E and $(F, E) \subseteq (X, E)$. Then the following properties are hold:

- (1) $S_E(F) = \sqcup \{ (G, E) \in \tau : cl((G, E)) (F, E) \in \overline{J} \}.$
- (2) $S_E(F) \supseteq \sqcup \{ (G, E) \in \tau : [cl((G, E)) (F, E)] \sqcup [(F, E) cl((G, E))] \in \overline{\mathfrak{I}} \}.$

Proof. (1) This follows immediately from the definition of S_E -soft operator. (2) Since $\overline{\mathcal{I}}$ is heredity, it is obvious that

$$\mathcal{S}_E(F) = \sqcup \{ (G, E) \in \tau : cl((G, E)) - (F, E) \in \overline{\mathfrak{I}} \} \sqsupseteq$$
$$\sqcup \{ (G, E) \in \tau : [cl((G, E)) - (F, E)] \sqcup [(F, E) - cl((G, E))] \in \overline{\mathfrak{I}} \}$$

for every $(F, E) \sqsubseteq (X, E)$.

Theorem 4.5. Let (X, τ, E) be a soft topological space and $\overline{\mathfrak{I}}$ be a soft ideal over X with the same set of parameters E. If $\sigma = \{(F, E) \sqsubseteq (X, E) : (F, E) \sqsubseteq S_E(F)\}$. Then σ is a soft topology for (X, E).

Proof. Let $\sigma = \{(F, E) \sqsubseteq (X, E) : (F, E) \sqsubseteq S_E(F)\}$. Since $(\phi, E) \in \overline{J}$, by Theorem 2.6 (5) $\phi_E^{\theta} = \phi$ and $S_E(X) = (X, E) - [X - X]_E^{\theta} = (X, E) - \phi_E^{\theta} = (X, E)$. Moreover, $S_E(\phi) = (\phi, E) - [X - \phi]_E^{\theta} = (X, E) - (X, E) = (\phi, E)$. Therefore, we obtain that $(\phi, E) \sqsubseteq S_E(\phi)$ and $(X, E) \sqsubseteq S_E(X)$, and thus (ϕ, E) and $(X, E) \in \sigma$. Now if (F, E), $(G, E) \in \sigma$, then by Theorem 4.2 $(F, E) \sqcap (G, E) \sqsubseteq S_E(F) \sqcap S_E(G) = S_E(F \sqcap G)$ which implies that $(F, E) \sqcap (G.E) \in \sigma$. If $\{(A_\alpha, E) : \alpha \in \Delta\} \sqsubseteq \sigma$, then $A_\alpha \sqsubseteq S_E(A_\alpha) \sqsubseteq S_E(\sqcup A_\alpha)$ for every α and hence $\sqcup A_\alpha \sqsubseteq S_E(\sqcup A_\alpha)$ This shows that σ is a soft topology. \Box

Lemma 4.6. If either (F, E) or (G, E) is a τ -open soft sets, then $Int(cl((F, E) \sqcap (G, E))) = Int(cl((F, E))) \sqcap Int(cl((G, E))).$

Theorem 4.7. Let (X, τ, E) be a soft topological space and \overline{J} be a soft ideal over X with the same set of parameters E. If $\sigma_0 = \{(F, E) \sqsubseteq (X, E) : (F, E) \sqsubseteq Int(cl(S_E(F)))\}$. Then σ_0 is a soft topology for (X, E).

Proof. By Theorem 4.2, for any subset (F, E) of (X, E), $\mathcal{S}_E(F)$ is τ -open soft and $\sigma \sqsubseteq \sigma_0$. Therefore, (ϕ, E) and $(X, E) \in \sigma_0$. Let (F, E), $(G, E) \in \sigma_0$. Then by Theorem 4.2 and Lemma 4.6, we have

$$(F, E) \sqcap (G, E) \sqsubseteq Int(cl(\mathfrak{S}_E(F))) \sqcap Int(cl(\mathfrak{S}_E(G)))$$
$$=Int(cl(\mathfrak{S}_E(F) \sqcap \mathfrak{S}_E(G)))$$
$$=Int(cl(\mathfrak{S}_E(F \sqcap G))).$$

Therefore, $(F, E) \sqcap (G, E) \in \sigma_0$. Let $A_\alpha \in \sigma_0$ for each $\alpha \in \Delta$. By Theorem 4.2, for each $\alpha \in \Delta$, $(A_\alpha, E) \sqsubseteq Int(cl(\mathfrak{S}_E(A_\alpha))) \sqsubseteq Int(cl(\mathfrak{S}_E(\sqcup A_\alpha)))$ and hence $\sqcup(A_\alpha, E) \sqsubseteq Int(cl(\mathfrak{S}_E(\sqcup A_\alpha)))$. Hence $\sqcup(A_\alpha, E) \in \sigma_0$. This shows that σ_0 is a soft topology. \Box

Theorem 4.8. Let (X, τ, E) be a soft topological space and \overline{J} be a soft ideal over X with the same set of parameters E. Then $\tau \sim_{\theta} \overline{J}$ if and only if $S_E(F) - (F, E) \in \overline{J}$ for every subset (F, E) of (X, E).

Proof. Necessity. Assume $\tau \sim_{\theta} \overline{\mathfrak{I}}$ and let $(F, E) \sqsubseteq (X, E)$. Observe that $x_e \in \mathcal{S}_E(F) - (F, E)$ if and only if $x_e \notin (F, E)$ and $x_e \notin [X - F]_E^{\theta}$ if and only if $x_e \notin (F, E)$ and there exists $(U_{x_e}, E) \in \tau$ containing x_e such that $cl((U_{x_e}, E)) - (F, E) \in \overline{\mathfrak{I}}$ if and only if there exists $(U_{x_e}, E) \in \tau$ containing x_e such that $x_e \in cl((U_{x_e}, E)) - (F, E) \in \overline{\mathfrak{I}}$. Now, for each $x_e \in \mathcal{S}_E(F) - (F, E) \in \overline{\mathfrak{I}}$ and $(U_{x_e}, E) \in \tau$ containing x_e , $cl[(U_{x_e}, E)] \cap [\mathcal{S}_E(F) - (F, E)] \in \overline{\mathfrak{I}}$ by heredity and hence $\mathcal{S}_E(F) - (F, E) \in \overline{\mathfrak{I}}$ by assumption that $\tau \sim_{\theta} \overline{\mathfrak{I}}$.

Sufficiency. Let $(F, E) \sqsubseteq (X, E)$ and assume that for each $x_e \in (F, E)$ there exists $(U_{x_e}, E) \in \tau$ containing x_e such that $cl((U_{x_e}, E)) \sqcap (F, E) \in \overline{\mathfrak{I}}$. Observe that $\mathfrak{S}_E(X - F) - [(X, E) - (F, E)] = (F, E) - F_E^{\theta} = \{x_e : \text{there exists } (U_{x_e}, E) \in \tau \text{ containing } x_e \text{ such that } x_e \in cl((U_{x_e}, E)) \sqcap (F, E) \in \overline{\mathfrak{I}}\}$. Thus we have $(F, E) \sqsubseteq \mathfrak{S}_E(X - F) - ((X, E) - (F, E)) \in \overline{\mathfrak{I}}$ and hence $(F, E) \in \overline{\mathfrak{I}}$ by heredity of $\overline{\mathfrak{I}}$.

1284

Proposition 4.9. Let (X, τ, E) be a soft topological space and $\overline{\mathfrak{I}}$ be a soft ideal over X with the same set of parameters E, $\tau \sim_{\theta} \overline{\mathfrak{I}}$ and $(F, E) \sqsubseteq (X, E)$. If (N, E) is nonempty τ -open soft subset of $F_E^{\theta} \sqcap \mathfrak{S}_E(F)$, then $(N, E) - (F, E) \in \overline{\mathfrak{I}}$ and $cl(N, E) \sqcap (F, E) \notin \overline{\mathfrak{I}}$.

Proof. If $(N, E) \sqsubseteq F_E^{\theta} \sqcap \mathcal{S}_E(F)$, then $(N, E) - (F, E) \sqsubseteq \mathcal{S}_E(F) - (F, E) \in \overline{\mathfrak{I}}$ by Theorem 4.8 and hence $(N, E) - (F, E) \in \overline{\mathfrak{I}}$ by heredity. Since (N, E) is nonempty τ -open soft and $(N, E) \sqsubseteq F_E^{\theta}$, we have $cl(N, E) \sqcap (F, E) \notin \overline{\mathfrak{I}}$ by definition of F_E^{θ} .

Theorem 4.10. Let (X, τ, E) be a soft topological space and \overline{J} be a soft ideal over X with the same set of parameters E and $\tau \sim_{\theta} \overline{J}$, where $cl(\tau) \sqcap \overline{J} = \phi$. Then for $(F, E) \sqsubseteq (X, E)$, $\mathcal{S}_E(F) \sqsubseteq F_E^{\theta}$.

Proof. Suppose $x_e \in \mathcal{S}_E(F)$ and $x_e \notin F_E^{\theta}$. Then there exists a nonempty soft neighborhood $(U_{x_e}, E) \in \tau(x_e)$ such that $cl((U_{x_e}, E)) \sqcap (F, E) \in \overline{J}$. Since $x_e \in \mathcal{S}_E(F)$, by Theorem 4.4 $x_e \in \sqcup\{(G, E) \in \tau : cl((G, E)) - (F, E) \in \overline{J}\}$ and there exists $(V, E) \in \tau$ containing x_e and $cl((V, E)) - (F, E) \in \overline{J}$. Now we have $(U_{x_e}, E) \sqcap (V, E) \in \tau$ and containing x_e , $cl((U_{x_e}, E) \sqcap (V, E)) \sqcap (F, E) \in \overline{J}$ and $cl((U_{x_e}, E) \sqcap (V, E)) \in \tau$ and containing x_e , $cl((U_{x_e}, E) \sqcap (V, E)) \sqcap (F, E) \in \overline{J}$ and $cl((U_{x_e}, E) \sqcap (V, E)) - (F, E) \in \overline{J}$ by heredity. Hence by finite additivity we have $[cl((U_{x_e}, E) \sqcap (V, E)) \sqcap (F, E)] \sqcup [cl((U_{x_e}, E) \sqcap (V, E)) - (F, E)] = cl((U_{x_e}, E) \sqcap (V, E)) \in \overline{J}$. Since $(U_{x_e}, E) \sqcap (V, E) \in \tau$, this is contrary to $cl(\tau) \sqcap \overline{J} = \phi$. Therefore, $x_e \in F_E^{\theta}$. This implies that $\mathcal{S}_E(F) \sqsubseteq F_E^{\theta}$.

References

- M.I. Ali, F. Feng, X. Liu, W.K. Min and M. Shabir, On some new operations in soft set theory, Comput. Math. Appl. 57, 1547–1553, 2009.
- [2] A. Aygünoğlu and H. Aygün, Some note on soft topolgical spaces, Neural Comput. Appl. 21 (1), 113–119, 2012.
- [3] A. Kandil, O.A.E. Tantawy, S.A. El-Sheikh and A.M. Abd El-latif, Soft ideal theory, Soft local function and generated soft topological spaces, Appl. Math. Inf. Sci. 8 (4), 1595–1603, 2014.
- [4] P.K. Maji, R. Biswas and A.R. Roy, Soft set theory, Comput. Math. Appl. 45, 555– 562, 2003.
- [5] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (4-5), 19–31, 1999.
- [6] M. Shabir and M. Naz, On soft topolgical spaces, Comput. Math. Appl. 61, 1786–1799, 2011.
- [7] I. Zorlutuna, M. Akdağ, W.K. Min and S. Atmaca, *Remarks on soft topological spaces*, Ann. Fuzzy Math. Inform. 3, 171–185, 2012.